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Abstract
This paper challenges the use of stocks in portfolio construction, instead we demon-
strate thatAsian derivatives, straddles, or baskets could bemore convenient substitutes.
Our results are obtained under the assumptions of the Black–Scholes–Merton setting,
uncovering a hidden benefit of derivatives that complements their well-known gains
for hedging, risk management, and to increase utility in market incompleteness. The
new insights are also transferable to more advanced stochastic settings. The analy-
sis relies on the infinite number of optimal choices of derivatives for a maximized
expected utility theory agent; we propose risk exposure minimization as an additional
optimization criterion inspired by regulations. Working with two assets, for simplic-
ity, we demonstrate that only two derivatives are needed to maximize utility while
minimizing risky exposure. In a comparison among one-asset options, e.g. American,
European, Asian, Calls and Puts, we demonstrate that the deepest out-of-the-money
Asian products available are the best choices to minimize exposure. We also explore
optimal selections among straddles, which are better practical choice than out-of-
the-money Calls and Puts due to liquidity and rebalancing needs. The optimality of
multi-asset derivatives is also considered, establishing that a basket option could be a
better choice than one-asset Asian call/put in many realistic situations.
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1 Introduction

Financial derivatives such as futures, options and swaps play essential roles in current
financial markets. They are used for hedging and speculation as well as for arbitrage
opportunities. The history of derivatives is as old as the history of commerce. Deriva-
tives have grown into an indispensable asset class since the 1970s, in part due to the
increase in volatility and complexity of global financial markets. The popularity of
derivatives is such that some market analysts, such as Maverick (2020), place the size
of derivatives at more than 10 times the total world gross domestic product (GDP).
Vanilla European and American options usually come to mind first when discussing
options. Beyond that, a wide variety of options are traded in centralized exchanges
or over-the-counter (OTC) markets, and some investors are even able to define their
own products and terms. The enduring appeal of derivatives lies in their diversity and
hence the capacity to fulfill their needs of financial players.

This paper uncovers an additional benefit of derivatives. It addresses a basic, yet
poorly understood question for investors: what is the best financial derivative to include
in a portfolio? We challenge the common practice of using the underlying stock;
instead, we demonstrate that Asian derivatives, straddles or baskets could be more
convenient choices. Our analysis and results are obtained under the safe assumptions
of a Black–Scholes–Merton model, which not only uncovers the hidden “in plain
sight” benefits of derivatives, but also highlights their potential for applications in
more advanced settings incorporating market incompleteness, jumps and transaction
costs, among others.

Derivative valuation in the context of continuously trading markets was initiated
by the seminal papers of Black and Scholes (1973) and Merton (1973). The authors
solved associated partial differential equations (PDEs) and obtained the price function
of a European option in closed form, when the underlying asset follows a geometric
Brownian motion (GBM). Their work (i.e. Black–Scholes–Merton formula) laid the
foundation for the development of derivative pricing. Their results have been extended
in many directions; most relevant to this study are extensions to the pricing of many
other types of options, such as American options (see Bjerksund and Stensland 1993)
lookback options (see Goldman et al. 1979) and geometric average Asian options (see
Kemna and Vorst 1990), to mention a few. The distinctive exercise rights and structure
of payoff reflect the complexity of financial derivatives.

Our paper focuses on the benefits of derivatives from the portfolio investment
perspective for a maximized expected utility theory (EUT) agent. Investment incor-
porating derivatives have been studied from multiple perspectives. Haugh and Lo
(2001) found a buy-and-hold strategy that minimizes the mean-squared distance to
the terminal wealth of Merton (1969) continuously rebalancing portfolio. Moreover,
an elasticity approach was introduced in Kraft (2003), by which the author obtained
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the optimal strategy of a portfolio with path-dependent options. Mi and Xu (2020)
studied a portfolio of volatility derivatives (options or swaps) for a constant abso-
lute risk aversion (CARA) investor. In additions, Liu and Pan (2003) investigated the
optimal portfolio in a stock-derivatives market with Heston’s SV model and jumps.
Their results demonstrated the improvement in performance when using derivatives
to complete the market, while showing that an infinite number of derivatives can be
used with the same optimal performance for the portfolio. In contrast to the existing
literature, our paper investigates how to best select derivatives.

For this purpose, in addition to amaximizedEUT,we develop a second optimization
criterion for the portfolio manager as a way of selecting the best derivative. We choose
risky asset exposure minimization motivated by two facts. First, the maximization of
the utility can be achieved by an infinitely number of equally optimal derivatives (as
per Liu and Pan 2003). Second, minimizing risk exposure, as a second optimization
criterion, aligns with practical needs in the industry. In general, investment companies
facemanyconstraints in the constructionof their portfolios,manyofwhich are imposed
by regulatory agencies. The key factor behind regulatory constraints is the intention
to control the exposure of a portfolio to risky assets, protecting an investor’s capital
in the case of a market crash. Some of these risks are difficult to accurately model,
which highlights the importance of minimizing exposure.

Our findings demonstrate that derivatives can be used to reduce risk exposure with
no impact on the level of satisfaction of the investor (e.g. maximum utility). We
investigate the selection of derivatives in three specific option classes: (1) American,
European and Asian calls and puts; (2) American, European and Asian synthetic
straddles; and (3) basket options.We further compare one-asset andmulti-asset options
in various realistic situations, and we consider the relationship between risky asset
exposure and portfolio rebalancing frequency.

The contributions of the paper are summarized as follows:

1. Given the infinite number of choices of equally optimal financial derivatives for
an EUT investor, we explore an additional optimization criterion, namely, risk
exposure minimization, to help investors make a practical derivative selection.

2. We demonstrate, in the context of two one-factor (e.g. GBM) assets, that the
minimum number of derivatives needed not only to maximize EUT performance,
but also to minimize risk exposure is exactly two.

3. In a comparison of the most popular types of simple one-asset options (e.g.
American, European and Asian calls and puts), we illustrate that the deepest out-
of-the-money Asian products are the best choices for minimizing risk exposure.

4. To avoid illiquid out-of-the-money options, which also require plenty of rebalanc-
ing, we explore optimal selections among straddles. We demonstrate the existence
of an optimal strike price for risk exposure minimization, which is likely a better
practical choice than out-of-the-money calls and puts.

5. Given the setting of two assets in the portfolio, we study the optimality of multi-
asset derivatives. We determine that a basket option could be a better selection
than one-asset Asian calls and puts in many realistic situations.
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6. Several analyses are performed to solidify our findings; in particular, the rela-
tionship between risky asset exposure and portfolio rebalancing frequency is
investigated, and the results are put to the test for a variety of parametric choices.

The paper is organized as follows. Section 2 describes the EUT problem for an
investor allocating directly among financial derivatives. Given the vast number of
optimal derivatives available for this problem, Sect. 2 defines a criterion based on an
additional optimization problem that aids in selecting a single optimal solution. Section
3 then explores two cases of one-asset options available to a portfolio investor: (1)
calls and puts and (2) straddles. Thereafter, Sect. 4 focuses on the benefit of multi-
asset derivatives such as basket options, and Sect. 5 concludes this study. “AppendixA"
presents all the proofs and complementary analyses in support of our findings.

2 Mathematical setting and results

Let (�,F ,P) be a complete probability space with a right-continuous filtration
{Ft }t∈[0,T ]. We consider a frictionless market, in which trading occurs without trans-
action costs or market impact, comprising a money market account Mt and two risky
assets St = [S(1)

t , S(2)
t ]T , with the following dynamics:

{
dMt
Mt

= rdt

dSt = diag(St) [(r · 1 + diag(σ )�)dt + diag(σ )dBt ]
(1)

where Bt = [B(1)
t , B(2)

t ]T are Brownian motions modelling the risk of two underlying
assets, whose correlation is denoted by ρ ∈ (−1, 1). Here, r is the risk-free rate and 1
denote the vector of ones,� = [λ(1), λ(2)]T are constants capturing themarket price of
risk of Bt , and σ = [σ (1), σ (2)]T represents the volatility of the two underlying assets.
This is the well-known Black-Scholes-Merton model, where assets’ prices follow
a log-normal distribution. In this case, risky assets have constant excess return and
covariance. Thismodel iswidely used in derivatives pricing and portfolio optimization,
and it is the basis for more sophisticated models. In this paper, we develop a new
derivatives-based portfolio framework with this model.

We now introduce a set of admissible financial derivatives on the assets St , for a
fixed n ≥ 1:

�
(n)
O =

{
Ot = [O(1)

t , O(2)
t , . . . , O(n)

t ]T | O(i)
t �= 0,

i = 1, . . . , n and rank (�t) = 2, t ∈ [0, T ]}

where �t represents the variance matrix of Ot . Using Itô’s lemma, it’s easy to show
that the element (i, j), i = 1, . . . , n, j = 1, 2, of �t , denoted by f i jt , represents

the sensitivity of O(i)
t to the underlying asset S( j)

t , i.e. f i j = ∂O(i)
t

∂S( j)
t

1
O(i)
t
S( j)
t σ ( j). Note

that �O is an infinite set, which could contain standardized exchange-traded options
and non-standardized OTC options available to a generic investor. The reader should
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observe that f i jt depends on derivative type, style, underlying price, strike price, time
to maturity and other factors, and�t is a full-rank matrix, which allows us to continue
working in a complete market if n ≥ 2. For simplicity, we also assume that the
derivatives in �

(n)
O will be rolled over, always keeping the same time to maturity and

a non-zero value.
We are now ready to create a derivatives-based dynamic portfolio choice problem

for a risk-averse investor. The investor preference is measured by the widely used
and algebraically simple CRRA utility.1 We assume that an investor allocates in an
element of �O ; that is, a specific Ot = [O(1)

t , O(2)
t , . . . , O(n)

t ]T (n ≥ 2). Note that
by arbitrage arguments, the dynamics of the derivatives-based assets and the market
account are as follows:

{
dMt
Mt

= rdt

dOt = diag(Ot) [(r · 1 + �t�)dt + �tdBt ]
(2)

As it is shown above, �t = { f i j , i = 1, . . . , n, j = 1, 2} is computed via Itô’s
lemma. Furthermore, under the risk-neutral measure the drift of Ot equals the risk-
free rate, hence the excess return of Ot should be �t� where � is the market price of
risk vector. The investor is not prohibited from trading on the underlying assets. This
would be equivalent to setting n = 2 and taking Ot = St .

Let �
(O)
π denote the space of admissible strategies satisfying the standard condi-

tions, where the element πt = [π(1)
t , π

(2)
t , . . . , π

(n)
t ]T represents the proportions of

the investor’s wealth in the options Ot = [O(1)
t , O(2)

t , . . . , O(n)
t ]T with the remaining

1 − 1Tπt invested in the cash account Mt . The wealth process Wt satisfies

dWt

Wt
= (r + πt

T�t�)dt + πt
T�tdBt . (3)

A CRRA utility function represents the investor’s preference on the terminal wealth
WT , which is given by

U (WT ) = W 1−γ

T

1 − γ
, (4)

Moreover, γ > 0, γ �= 1 measures the investor’s level of risk aversion. The investor’s
objective is to derive an investment strategyπ∗

t thatmaximizes the EUT of the terminal
wealth WT . Then, the investor’s problem can be written as follows:

V (t,W ) = max
πs≥t∈�

(O)
π

E(U (WT ) | Ft ), (5)

and V (t,W ) denotes the value function at time t . According to the principles of
stochastic control, we state the Hamilton-Jacobi-Bellman (HJB) equation for the value

1 This can easily be extended to other utility functions.
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function V :

sup
πt

{
Vt + WtVW (r + πT

t �t�) + 1

2
W 2

t VWW (πT
t �t��T�T

t πt)

}
= 0, (6)

where � =
[
1 0
ρ
√
1 − ρ2

]
.

Proposition 1 (Solution for V and π∗
t ) The value function has the representation:

V (t,W ) = W 1−γ

1 − γ
exp

(
(1 − γ )

(
r + 1

2

�T (��T )−1�

γ

)
(T − t)

)
. (7)

Moreover, π∗
t is an optimal strategy if it satisfies �t

Tπ∗
t = η∗

t , where η∗
t is given by

η∗
t =

[
η

(1)
t

η
(2)
t

]
= (��T )−1�

γ
. (8)

Proof See “Appendix A.1." ��
Proposition 1 highlights three important implications. First, for any given element

in �
(n)
O , if n > 2 numerous, indeed infinitely many, strategies, all produce the same

maximum value function. This can be interpreted as a redundant market case. Second,
if n = 2, then a unique optimal strategy exists for the problem. Finally, if n = 1, there
is no optimal solution: the value function cannot reach the global maximum; this is
actually an incomplete market situation.

In summary, as there are a host of tradeable derivatives in the financial market,
hence a myriad of elements exist in �

(n)
O . This means there are an infinite number of

choices of the portfolio composition Ot that can deliver the same optimal solution to
the EUT problem. The next section takes advantage of this pool of optimal solutions
to design a criterion that allows investors to select the best portfolio composition, with
the corresponding strategy. This extra criterion is motivated by investor needs. Adding
such a criterion will lead to an additional optimization problem, the solution of which
is explored below.

2.1 Derivative selection criterion: minimizing �1 risk exposure

In this section,we propose a derivative selection criterion. Proposition 1 illustrates that,
given Ot ∈ �

(n)
O , with n ≥ 2, an optimal strategy π∗

t ∈ �
(O)
π exists that maximizes the

EUT of terminal wealth. From the traditional dynamic portfolio choice perspective,
derivative selection does not benefit the investor, because regardless of the derivative
chosen, the optimal strategy always achieves the same EUT.

In reality, investors are always concerned with the size of their risky allocations. For
example, market conditions may change over time, and a risky investor could suffer
large, unexpected losses especially during crisis periods. Regulatory constraints also
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force the investor to keep increasingly large percentages of wealth in cash. This means
that strategies with smaller exposure on the risky products are naturally preferable to
the investor. In this regard, we design a simple derivative selection criterion aimed at
capturing this practical dilemma:

min
Ot∈�

(n)
O

∥∥∥∥∥∥argmax
πt∈�

(O)
π

E(U (WT ) | Ft )

∥∥∥∥∥∥
1

(9)

where ‖πt‖1 =
n∑

i=1

∣∣∣π(i)
t

∣∣∣ represents the �1 norm of allocations at time t . Note that

this objective is equivalent to maximizing the cash position while shorting less.
As we mentioned before, it is suboptimal for the investor to choose a portfolio

composition size n < 2 based on the unhedgeable risk resources and incompleteness
of the market. However, the investor might be interested in a redundant (n > 2)
market situation, hoping to reduce their risky asset exposure. In the next proposition,
we demonstrate that the best choice of n, for problem (9), is actually n = 2.

Proposition 2 Assume that an optimal solution for problem (9) exists for n ≥ 2, then,
(9) leads to the same minimal �1 norm for any n ≥ 2. In addition, an optimal strategy
exists for problem (9) such that the number of non-zero allocations is less than or
equal to 2.

Proof See “Appendix A.2." ��

Proposition 2 demonstrates that redundancy will not offer any additional help with
the investor’s risky asset exposure. In other words, working with n = 2 is sufficient for
problem (9). This allows us to work with the simplest case given a complete market
setting (i.e. n = 2).

3 Applications to one-asset derivatives

In this section, we solve the derivative selection problem—that is, (9)—for n = 2,
within subsets of the derivative set �(2)

O . The derivative selection problem is rewritten
as

min
Ot∈�

(2,1)
O

∥∥∥∥∥∥argmax
πt∈�

(O)
π

E(U (WT ) | Ft )

∥∥∥∥∥∥
1

, (10)

where �
(2,1)
O captures one-asset (single-stock) derivatives, which can be represented

as follows:

�
(2,1)
O =

{
Ot = [O(1)

t , O(2)
t ]T | Ot ∈ �

(2)
O , O(i)

t = g
(
S(i)
)
, i = 1, 2, t ∈ [0, T ]

}
.
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In this situation, the option’s variance matrix for a portfolio composition Ot =
[O(1)

t , O(2)
t ]T ∈ �

(2,1)
O is defined by

�t =
[
f (1)
t 0
0 f (2)

t

]
, (11)

which, provided f (1)
t and f (2)

t are nonzero, is a rank 2 (non-singular) diagonal matrix.
By Itô’s lemma, the sensitivity of O(i)

t is a function of the option Delta, spot price S(i)
t ,

stock volatility σ (i) and the option price O(i)
t :

f (i) = ∂O(i)
t

∂S(i)
t

S(i)
t σ (i)

O(i)
t

. (12)

The next proposition states the fundamental principle of one-asset option selection.

Proposition 3 (Fundamental principle of one-asset option selection) A portfolio com-
position: O∗

t = [O(1),∗
t , O(2),∗

t ]T ∈ �
(2,1)
O is optimal for problem (10) if and only

if

O(i),∗
t = argmax

O(i)
t

∣∣∣∣∣∂O
(i)
t

∂S(i)
t

1

O(i)
t

∣∣∣∣∣ . (13)

Proof See “Appendix A.3." ��
Note that both option Delta and price must be bounded away from 0 and∞ to avoid

the suboptimal incomplete market case, such that the option sensitivity f (i) ∈ (0,∞)

and variance matrix �t is non-singular. In other words, we could witness an infinitely
large allocation as f (i) → 0 (to be explained in Sect. 3.1), which would also lead to
a suboptimal solution (incomplete market) and hence a departure from the investor’s
target (i.e. maximizing utility and minimizing risk exposure).

The fundamental principle of one-asset option selection illustrates that the selection
of one-asset options is separable. Investors can first pick the option with the largest
relative sensitivity to S(1)

t among all one-asset options on S(1)
t as O(1),∗

t , and they can
then select O(2),∗

t in a similar way. Based on this principle, we consider the case where
�

(2,1)
O is a subset of put and call options in Sect. 3.1. Then, the best option style and

strike price for minimizing ‖πt‖1 is quantified.
Selection of put and call options is studied first due to their popularity. Nonetheless,

calls and puts have a problem: their optimal is on the boundary of the strike price range.
This could lead to illiquid choices (high out-of-the-money options) or, even worse,
incomplete market suboptimality on the limit as the strike price goes to zero (puts) or
infinity (calls). In Sect. 3.2, we investigate derivative selection in a subset of straddles.
Straddles are also popular products, which avoid the boundary optimality of calls and
puts. Note that the selection of O(1),∗

t and O(2),∗
t is independent, and the procedures

are similar; hence, for simplicity, we only present the result for O(2),∗
t .

123



Derivatives-based portfolio decisions: an expected utility... 225

Table 1 Parameter Value

Parameter Value Parameter Value

σ (1) 0.13 σ (2) 0.2

r 0.05 ρ 0.4

λ(1) 0.52 λ(2) 0.6

Investment horizon T 1 Time to maturity of options T̂ 2

S(1)
0 40 S(2)

0 30

η
(1)
t 0.083 η

(2)
t 0.117

γ 4.0

The chosen parameters are presented in Table 1. 2 These parameters are considered
to be plausible.

The option variance matrix may not be solvable in closed form. Therefore, we
approximate the sensitivity of European, American and arithmetic average Asian
options via the finite difference method: the Delta of option Ot is given by

Delta = Ot (S + �S) − Ot (S − �S)

2�S
. (14)

Here, Ot (S) is the simulated option price given spot price S. In addition, we estimate
the sensitivity of American options with the generalized infinitesimal perturbation
analysis approach introduced by Chen and Liu (2014).

3.1 Put and call options

We first consider the derivative selection problem (10) on the subset denoted by
�

(2,put call)
O that contains only European-, American- and Asian-style put and call

options:

�
(2,put call)
O =

{
Ot =[O(1, j)

t , O(2, j)
t ]T | O(i, j)

t = g( j)
(
S(i)
)
, i = 1, 2, t ∈ [0, T ]

}
.

For both practical and theoretical reasons, the strike price K (i, j) of a given optionO(i, j)
t

is bounded within [A(i, j), B(i, j)], where j ∈ {Euro Call, Asian Call, Amer Call,
Euro Put, Asian Put, Amer Put}. The put option strike price is bounded away from
0; that is, A(i, j) > 0, where j ∈ {Euro Put, Asian Put, Amer Put}. Similarly, the call
option strike excludes ∞. Both conditions ensure the non-zero option price assump-
tion. For simplicity, we also assume that all the options have the same time to maturity
T̂ = 2, and we search the optimal portfolio composition in terms of option type, style
and strike price.

European put and call prices and their sensitivities are solved by the well-known
Black–Scholes–Merton model (see Black and Scholes (1973)). Let O(i,Euro Call)

t and

2 See “Appendix A.9" for analysis of other parameter choices.
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O(i,Euro Put)
t be a call and put option on S(i)

t given in (1). The Black–Scholes–Merton
model indicates that

O(i,Euro Call)
t = S(i)

t N (d1) − K (i,Euro Call)e−r(T̂−t)N (d2)

O(i,Euro Put)
t = K (i,Euro Put)e−r(T̂−t)N (−d2) − S(i)

t N (−d1)

∂O(i,Euro Call)
t

∂S(i)
t

= N (d1)
∂O(i,Euro Put)

t

∂S(i)
t

= −N (−d1)

(15)

where N is the cumulative distribution function of a standard normal random variable
and

d1 = ln (S(i)
t /K (i,Euro Call/Put)) + (r + 1

2 (σ
(i))2)(T̂ − t)

σ (i)
√
T̂ − t

, d2 = d1−σ (i)
√
T̂ − t .

(16)
Thepropositionnext demonstrates the existenceof anoptimal portfolio composition

O∗
t ∈ �

(2,put call)
O , given the assumption that O(i, j)

t ∈ C
1 and the Delta is non-zero.

Proposition 4 (Existence of optimal portfolio composition in put and call subset)
Assume O(i, j)

t
(
S(i), K (i, j)

) ∈ C
1 on (0,∞) × [A(i, j), B(i, j)]3, the optimal portfolio

composition for problem (10) within the subset �(2,put call)
O exists.

Proof See “Appendix A.4." ��
It is easy to show the expression for this optimal composition, in the case of the

European options, as clarified in the following corollary.

Corollary 5 The risk exposure to anEuropean call option decreaseswith K (i,Euro Call)

and converges to 0 as K (i,Euro Call) → ∞. Similarly, the risk exposure to an European
put option increases with K (i,Euro Call) and converges to 0 as K (i,Euro Put) → 0.

Therefore, the optimalEuropeancall is achievedwhen K (i,Euro Call) = B(i,Euro Call)

and the optimal European put is achieved when K (i,Euro Put) = A(i,Euro Put) .

Proof See “Appendix A.5." ��
Corollary 5 demonstrates that ‖πt‖1 can vanish if the European call option’s strike

price approaches infinity. These extreme options cannot be found in the market, but
more importantly, they would also lead to a violation of the non-singular matrix �t

condition, creating an incomplete market situation. This is known as the problem of
“boundary optimality.” The corollary thus illustrates the importance of our derivative
selection.

Figure 1a exhibits π
(2, j)
0 —that is, the allocation on call options O(2, j)

t at t = 0—as

a function of strike price and spot price ratio K (2, j)/S(2)
t ; for example, K (2, j)/S(2)

t = 1
indicates at-the-money options. The analytical sensitivity of European calls is obtained

3 ∂O(i, j)
t

∂K (i, j) on boundary is defined as the one-sided derivative.
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with (12) and (15),withwhich the optimal strategy is known immediately.Note that the
European call option reduces to S(2)

t when K (2,Euro Call) = 0, and the allocation hence
converges to the optimal strategy on S(2)

t . The allocation on the European call obtained
by the finite difference method is also plotted to verify the accuracy of numerical
approximation. Allocations obtained via analytical and numerical approaches visually
overlap except when K (2,Euro Call) is extremely large. The allocation to Asian calls
is similar to that of European calls when the strike prices are small, but it decreases
faster. Asian calls are consequently preferable to European calls given the same upper
bound on strike price; that is, B(2,Euro call) = B(2,Asian call).

The allocation on put options is illustrated in Fig. 1b. The absolute allocations for
European, American4 andAsian puts increase with strike price because of the decreas-
ing instantaneous sensitivity. The absolute allocationonAsianputs is the smallestwhen
K (2,Asian Put) is small, but the opposite occurs as the strike price rises. Figure 1 not
only confirms Corollary 5—that is π

(2,Euro Call)
t → 0 as K (2,Euro Call) → ∞ and

π
(2,Euro Put)
t → 0 as K (2,Euro Put) → 0—but also demonstrates a similar conclusion

for Asian and American options.
In summary, the absolute allocation on a put or call option is monotone with strike

price; hence, the optimal choice of O(2, j)
t is on the boundary. This means we only need

to compare the allocation π(2, j) on the deepest out-of-the-money option to obtain the
option with the smallest absolute allocation.

Next, we consider the case where options of different style5 share an identical
boundary:

[S(2)
t , RBS(2)

t ] = [A(2, j), B(2, j)], j ∈ {Euro Call, Asian Call}
[RAS(2)

t , S(2)
t ] = [A(2, j), B(2, j)], j ∈ {Euro Put, Asian Put, Amer Put}.

Here, RA ≤ 1, and RB ≥ 1. As we move the lower bound of put option strike price
RAS(2)

t and the upper bound of call option strike price RBS(2)
t , the optimal choice

of O(2, j)
t is shown in Fig. 1c. The Asian option is preferable compared to American

and European options. Asian calls dominate when both RA and RB are large, whereas
Asian puts dominate when both RA and RB are small.

Figure 2 displays the performance of the portfolio Ot = [O(1,Euro Call)
t ,

O(2,Euro Call)
t ]T versus strike prices for different rebalancing frequencies. The port-

folio performance is measured by annualized certainty equivalent (CER), defined as

U (W0 exp (CER ∗ T )) = V (0,W0). (17)

4 We assume stocks which pay no dividends, so American call is identical to the European call in (a). In
addition, the allocation on American put is shown in (b) when K (2,Amer Put) < 37.7, i.e. the region, in
which the American put should be held and not yet exercised.
5 The actual range of American put strike price is the intersection of [A(i,Amer Put), B(i,Amer Put)] and
the region of K (i,Amer Put) such that the option is not exercised immediately, hence American option is
not considered when [A(i,Amer Put), B(i,Amer Put)] is mutually exclusive with that region.
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Fig. 1 Allocation on options versus strike price

The theoretical optimal CER (orange wireframe) is plotted as the benchmark, which
can only be achieved by continuously rebalancing. We also present the incomplete
market CER (i.e. the green wireframe) for comparison purposes, for example obtained
through the lack of an asset to hedge the risk in B(2)

t . A portfolio with in-the-money
call options is insensitive to the rebalancing frequency, and the loss from occasional
rebalancing is not significant. On the other hand, the CER of a portfolio with two
deep out-of-the-money calls could be even smaller than that of an incomplete market
CER when the portfolio is only rebalanced 10 times per year, whereas it approaches
complete market CER as the rebalancing frequency increases.

This is important for investors reducing their risk exposure with deep out-of-the-
money options. These products lack liquidity; hence, the trading strategy might fail
because investors cannot adjust their position quickly enough. In summary, the best
(out-of-the-money) options are those requiring more frequent rebalancing, as Fig. 2
demonstrates. This points at future research addressing the trade-off between exposure
and rebalancing.

3.2 Straddles

Next, we consider the derivative selection in a subset of options called straddles:

�
(2,straddle)
O =

{
Ot =[O(1, j)

t , O(2, j)
t ]T | O(i, j)

t = g( j)
(
S(i)
)
, i = 1, 2, t ∈ [0, T ]

}
.
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Fig. 2 Certainty equivalent rate (CER) versus strike price with different rebalancing frequencies

where j ∈ {Euro Strad, Asian Strad, Amer Strad}. A straddle is an option
synthesized by simultaneously taking a long position in a call and a put option;

hence, the terminal payoff of a European straddle is
∣∣∣S(i)

T − K (i,Euro Strad)
∣∣∣, where

K (i,Euro Strad) denotes the strike price. The European straddle price and Delta are
obtained with the Black–Scholes– Merton model:

O(i,Euro Strad)
t = S(i)

t (2N (d1) − 1) − K (i,Euro Strad)e−r(T̂−t)(2N (d2) − 1)

∂O(i,Euro Strad)
t

∂S(i)
t

= 2N (d1) − 1.
(18)

d1and d2 are defined in (16). We substitute the straddle’s Delta into (12), and the
sensitivity of straddle O(i,Euro Strad)

t is given by

f (i,Euro Strad) = (2N (d1) − 1)S(i)
t σ (i)

O(i,Euro Strad)
t

. (19)

Thenon-singular variancematrix condition requires non-zero sensitivity f (i,Euro Strad),
such that 2N (d1) − 1 �= 0 and the feasible region for the strike price is as follows:

K (i,Euro Strad) ∈
[
0, S(i)

t exp (r + 1

2
(σ (i))2)(T̂ − t)

)

∪
(
S(i)
t exp (r + 1

2
(σ (i))2)(T̂ − t),∞

)
.

(20)

It is easy to verify that O(Euro Strad)
t ∈ (0,∞) and O(i, j)

t
(
S(i), K (i, j)

) ∈ C
1. We

define the feasible region for the straddle O(i, j)
t by analogy: K (i, j) ∈ [0, A(i, j)) ∪
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Fig. 3 Allocation on straddle versus K (i, j)

S(i, j)
0

(A(i, j),∞), where j ∈ {Euro Strad, Asian Strad}, and K (i, j) ∈ [0, A(i, j)) ∪
(A(i, j), B(i, j)], where j ∈ {Amer Strad}. Here, A(i,Amer Strad) is the point Delta of
O(i,Amer Strad)
t equal to 0, and B(i,Amer Strad) is the maximum strike price such that

the American put is not immediately exercised. The next theorem shows the existence
of an optimal straddle (i.e. an optimal strike price).

Proposition 6 (Existence of optimal portfolio composition in the straddle subset)
There exists a portfolio composition O∗

t = [O(1),∗
t , O(2),∗

t ]T with finite strike prices

K (i, j,∗), such that O∗
t is optimal for problem (10)within�

(2,straddle)
O .Here the optimal

strike price, K (i, j,∗) is the solution of the equation:

∂2O(i, j)
t

∂S(i)
t ∂K (i, j)

O(i, j)
t − ∂O(i, j)

t

∂S(i)
t

∂O(i, j)
t

∂K (i, j)
= 0. (21)

Proof See “Appendix A.6." ��
Next, we quantify the derivative selection within the subset of straddles. Here, we

only illustrate the optimal choice of O(2, j)
t because of the separable selection within a

one-asset option subset (see Proposition 3). We first compute the optimal strike price
of American straddle B(i,Amer Strad) = 37.7 and the unfeasible point A(2, j) for Euro-
pean,Asian andAmerican straddles; this iswhere theDelta ofO(2, j)

t is equal to 0. From
the formulas above, we have A(2,Euro Strad) = S(2)

t exp (r + 1
2 (σ

(2))2)(T̂ − t) =
34.5, A(2,Asian Strad) = 31.9 and A(2,Amer Strad) = 32.9, which are all obtained with
Brent’s algorithm.

Figure 3 depicts the allocation π
(2, j)
0 , where j ∈ {Euro Strad, Asian Strad,

Amer Strad} versus the ratio of spot price to strike price. The allocation π
(2, j)
0 has

the shape of a hyperbola, and it approaches ±∞ as K (2, j) ↑↓ A(2, j), which forms a
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“cliff.” In contrast to the put and call option, the optimal straddle is found in the interior
regardless of the option style. The boundary optimality issue is thus avoided, and
it’s plausible that the straddle minimum risk exposure will have acceptable liquidity.
Moreover, the optimal straddle minimizing the risk exposure lies on the left branch;
that is, K (2, j) ∈ [0, A(2, j)). The Asian straddle is superior to European and American
straddles because of its smaller absolute allocation.

The allocation on the European straddle π
(i,Euro Strad)
t is solved in closed form

with (19):

π
(i,Euro Strad)
t = η

(i)
t

f (i,Euro Strad)

= η
(i)
t (2S(i)

t (2N (d1) − 1) − K (i,Euro Strad)e−r(T̂−t)(2N (d2) − 1)

(2N (d1) − 1)S(i)
t σ (i)

,

(22)
which is a function of the ratio of strike price to spot price K (i,Euro Strad)/S(i)

t .
In the subset of put and call �

(2,put call)
O (previous section), the optimal option is

always found at the boundary. Therefore, investors stick to the option by rolling over
with the same strike price. The optimal option in �

(2,straddle)
O depends on the spot

price and time-dependent optimal ratio K (i,Euro Strad)/S(i)
t , and the investor should

roll from the current holding to new straddles at each rebalancing time to minimize
risk exposure. In this regard, Fig. 4a plots the optimal strike and spot price ratio of
European straddle K (i,Euro Strad)/S(i)

t versus time t . Both K (1,Euro Strad)/S(1)
t and

K (2,Euro Strad)/S(2)
t increase with time t , while K (2,Euro Strad)/S(2)

t grows faster.
The connection between portfolio CER and rebalancing frequency is demonstrated

in Fig. 4b. As expected, the portfolio CER approaches the theoretical result as rebal-
ancing frequency rises. Note that the CER of the rolling straddle portfolio is close to
the theoretical CER even when the rebalancing frequency is less than 10 times per
year, suggesting that rebalancing even relatively infrequently causes only a small loss.
This is another benefit of choosing straddles over out-of-the-money calls or puts.

Fig. 4 Straddle analysis
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In conclusion, straddles are an ideal option class for two reasons. First, the optimal
straddle for minimizing risk exposure happens to be an active and liquid option. In
addition, a rolling straddle portfolio is insensitive to the rebalancing frequency, thus
reducing an investor’s additional costs, such as transaction costs (although transaction
cost is not exactly modelled yet).

4 Multi-asset option selection

Multi-asset options are commonly traded in theOTCmarket. In this section,we explore
the benefits of including such options in an investor’s portfolio. A subset of multi-asset
options is defined as follows:

�
(2,multi asset)
O =

{
Ot = [O(1, j1)

t , O(2, j2)
t ]T | O(1, j1)

t = g( j1)
(
S(1)

)
, j1 = one-asset option;

O(2, j2)
t = g( j2)

(
S(1), S(2)

)
, j2 = multi-asset option, t ∈ [0, T ]

}
.

Assume the portfolio composition Ot ∈ �
(2,multi asset)
O consists of a one-asset option

and a multi-asset option. The variance matrix then has the representation

�t =
[
f (11)
t 0
f (21)
t f (22)

t

]
. (23)

The next proposition states the fundamental principle of derivative selection in the
subset of multi-asset options.

Proposition 7 (Fundamental principle of multi-asset option selection) If a port-
folio composition O∗

t = [O(1),∗
t , O(2),∗

t ]T is optimal for problem (10) within

�
(2,multi asset)
O , then

O(1),∗
t = argmax

O
(1, j1)
t

∣∣∣∣∣∂O
(1, j1)
t

∂S(1)
t

1

O(1, j1)
t

∣∣∣∣∣ . (24)

Proof See “Appendix A.7." ��
Proposition 7 demonstrates a necessary condition for multi-asset option selection

and reveals the sequential selection property for problem (10) within �
(2,multi asset)
O .

Investors should pick the one-asset option with the largest relative sensitivity to S(1)
t

first, and they should then search for the optimal multi-asset option (see Eq. (A18))
given a fixed f (11)

t .
Now, we illustrate the multi-asset portfolio selection with an example of basket

options. The subset of basket option is given by

�
(2,call basket)
O =

{
Ot = [O(1, j1)

t , O(2, j2)
t ]T | O(1, j)

t = g( j1)
(
S(1)

)
, j1 = European call;

O(2, j2)
t = g( j2)

(
S(1), S(2)

)
, j2 = Basket Call or Basket Put, t ∈ [0, T ]

}
.
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Notably,�(2,call basket)
O ⊂ �

(2,multi asset)
O . The basket option, simultaneously hedging

the risk on a combination of two assets, has the following payoff6:

⎧⎨
⎩
O(2, j2)
T =

(
S(1)
T + S(2)

T − K (2, j2)
)+

j2 = Basket Call

O(2, j2)
T =

(
K (2, j2) − S(1)

T − S(2)
T

)+
j2 = Basket Put.

(25)

Furthermore, K (i, ji ) ∈ [A(i, ji ), B(i, ji )], where j1 = Euro Call and j2 ∈
{Basket Call, Basket Put}, denotes the strike price of call and basket options.
The existence of optimal portfolio composition within the subset of basket option
is demonstrated in the next proposition.

Proposition 8 (Existence of optimal portfolio composition in the subset of basket

option) Let the basket option price O(2, j2)
t be a function of

(
S(1)
t , S(2)

t , K (2, j2)
)
and

O(2, j2)
t ∈ C

1 on (0,∞) × (0,∞) × [A(2, j2), B(2, j2)], then the optimal portfolio com-
position for problem (10) within the subset �(2,call basket)

O exists.

Proof See “Appendix A.8." ��

The risky asset exposure (see Eq. (A18)) is broken down into the allocation on
O(1, j1)
t and O(2, j2)

t . Note that allocation on O(2, j2)
t depends only on f (22)

t because
B(2)
t is solely hedged by the basket option O(2, j2)

t . Figure 5a illustrates how risky
asset exposure varies with K (1, j1) and K (2, j2). Allocation on O(1, j1)

t is scaled by
the relative sensitivity f (11)

t (see Eq. (A18)); hence, risky asset exposure decreases
with K (1, j1), and out-of-the-money O(1, j1)

t is preferable regardless of the choice of
O(2, j2)
t , for example one-asset or multi-asset options. In addition, risky asset exposure

is monotonic with K (2, j2) except when K (1, j1) is extremely small. We plot the cross
section of (a) in Fig. 5b for illustration purposes. Given an at-the-money or out-of-
the-money O(1, j1)

t , ‖πt‖1 decreases when j2 = Basket Call and increases when
j2 = Basket Put . Therefore, out-of-the-money basket options minimize risky asset
exposure.Moreover, ‖πt‖1 is insensitive to K (1, j1) because investing in basket options
generally leads to a smaller allocation on O(1, j1)

t .
Similarly to put and call options, with the parameters listed in Table 1, the optimal

basket call is achieved when the strike price K (2, j2) is at the upper bound, while the
optimal basket put is achieved when strike price K (2, j2) is at the lower bound.

Given the similarities between one-asset calls/puts and basket calls/puts, investors
could be interested in the best among those choices. To answer this question, we fix
the strike price of a European call O(1, j1)

t , letting the lower bound of a put option strike

6 Investor can choose the weight on each asset of basket option in OTC market, we only consider equal
weighted case in this paper.
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Fig. 5 ‖πt‖1 versus strike price (Basket option)

price and the upper bound of a call option strike price be proportional to the spot price:

[S(2)
t , RBS(2)

t ] = [A(2, j2), B(2, j2)], j2 ∈ {Euro Call, Asian Call};
[S(1)

t + S(2)
t , RB(S(1)

t + S(2)
t )] = [A(2, j2), B(2, j2)], j2 ∈ {Basket Call};

[RAS(2)
t , S(2)

t ] = [A(2, j2), B(2, j2)], j2 ∈ {Euro Put, Asian Put, Amer Put};
[RA(S(1)

t + S(2)
t ), S(1)

t + S(2)
t ] = [A(2, j2), B(2, j2)], j2 ∈ {Basket Put},

where RA ≤ 1 and RB ≥ 1.
By letting the ratio RA and RB vary, the optimal choice of O(2, j2)

t is studied in Fig. 6.
One can observe that when O(1, j1)

t is an at-the-money-option—that is, K (1, j1) = 40—
a one-asset Asian option dominates for a small RB , while a basket call is superior to
other options when RB is large. However, basket calls become less preferable as
K (1, j1) increases. As mentioned above, compared with one-asset options, investors
have a smaller absolute allocation on O(1, j1)

t and a larger absolute allocation on O(2, j2)
t

with a basket option. Furthermore, the allocation on O(1, j1)
t is scaled by the relative

sensitivity f (11)
t (see Eqs. (A10) and (A18)), which explains why a basket call has

an advantage over one-asset options when K (1, j1) is small but loses its dominant
position as K (1, j1) rises. The optimal choice of O(2, j2)

t with other sets of parameters
is demonstrated in “Appendix A.9."

5 Conclusions

This paper reveals the benefit of using options to minimize the total risk exposure
of a portfolio, while maintaining an optimal level of utility. We demonstrate that the
farther out-of-the-money calls or puts are, the better choices they are, particularly the
Asian type. Given the lack of liquidity on those type of options, we explored straddle
options and found that optimal choices are close to at-the-money options, which are
hence likely liquid products. We also explored multi-asset derivatives and can confirm
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Fig. 6 Derivatives selection O
(2, j2)
t

that basket options are preferable to one-asset options in terms of minimizing risk
exposure.

Appendix A Proofs

A.1 Proof of Proposition 1

We assume V (t,W ) = W 1−γ
t

1−γ
exp(h(T − t)), which is substituted into (6). Then,

h(T − t) satisfies:

sup
πt

{
h′(T − t)

1 − γ
+ r + πt

T�t� − γ

2
(πt

T�t��T�t
Tπt)

}
= 0, (A1)

Denote ηt = �t
Tπt , then problem (A1) can be rewritten as,

sup
ηt

{
h′(T − t)

1 − γ
+ r + ηt

T� − γ

2
(ηt

T��T ηt)

}
= 0. (A2)
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which implies the optimal strategy

η∗
t = (��T )−1�

γ
. (A3)

With η∗
t = �t

Tπ∗
t , there are infinitelymany choice ofπt

∗ if n > 2.Next, we substitute
η∗
t into (A2) and derive the ordinary differential equation (ODE) for h(T − t):

{
h′(T−t)
1−γ

+ r + �T (��T )−1�
2γ = 0

h(T ) = 0.
(A4)

where the terminal condition results from V (t,W ) = U (W ). The solution to (A4) is

h(T − t) = (1 − γ )(r + �T (��T )−1�

2γ
)(T − t). (A5)

A.2 Proof of Proposition 2

Let Ot,n = [O(1)
t , O(2)

t , . . . , O(n)
t ]T with variance matrix �t of rank 2 be an optimal

subset of options for problem (9). π∗
t,n is a strategy maximizing the expected utility

if and only if �T
t π∗

t,n = η∗
t . Therefore, Ot,n and π∗

t,n is an optimal pair for (9) when
π∗
t,n is an optimal solution for

minimize
πt

‖πt‖1
subject to �t

Tπt = η∗
t (A6)

According to the principle 4.5 in Rardin andRardin (1998), problem (A6) is equivalent
to

minimize
δt

1T δt

subject to �̂t
T
δt = η∗

t

δt ≥ 0 (A7)

where δt = [α(1)
t , α

(2)
t , . . . , α

(n)
t , β

(1)
t , β

(2)
t , . . . , β

(n)
t ]T satisfies α

(i)
t = |π(i)

t |+π
(i)
t

2 ,

and β
(i)
t = |π(i)

t |−π
(i)
t

2 , with

�̂t =
[

�t

−�t

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

f 11t f 12t
. . . . . .

f n1t f n2t
− f 11t − f 12t
. . . . . .

− f n1t − f n2t

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A8)
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Theorems2.3 and2.4 inBertsimas andTsitsiklis (1997) list the necessary and sufficient
conditions for the extreme point δt , i.e.

1. δt = [δ(1)
t , δ

(2)
t , . . . , δ

(n)
t , δ

(n+1)
t , δ

(n+2)
t , . . . , δ

(2n)
t ]T .

2. the q̂th and p̂th rows in �̂t are linear independent, δ
(i)
t = 0 if i �= q̂ or p̂.

3. δt is feasible solution.

Without loss of generality, we assume the pth and qth rows in� are linear independent,
and we consider 4 cases:

δ
[1]
t =

{
[δ[1],(1)

t , δ
[1],(2)
t , . . . , δ

[1],(n)
t , δ

[1],(n+1)
t , δ

[1],(n+2)
t , . . . , δ

[1],(2n)
t ]T

δ
[1],(i)
t = 0 i f i �= qorp

δ
[2]
t =

{
[δ[2],(1)

t , δ
[2],(2)
t , . . . , δ

[2],(n)
t , δ

[2],(n+1)
t , δ

[2],(n+2)
t , . . . , δ

[2],(2n)
t ]T

δ
[2],(i)
t = 0 i f i �= q + norp

δ
[3]
t =

{
[δ[3],(1)

t , δ
[3],(2)
t , . . . , δ

[3],(n)
t , δ

[3],(n+1)
t , δ

[3],(n+2)
t , . . . , δ

[3],(2n)
t ]T

δ
[3],(i)
t = 0 i f i �= qorp + n

δ
[4]
t =

{
[δ[4],(1)

t , δ
[4],(2)
t , . . . , δ

[4],(n)
t , δ

[4],(n+1)
t , δ

[4],(n+2)
t , . . . , δ

[4],(2n)
t ]T

δ
[4],(i)
t = 0 i f i �= q + norp + n

(A9)

It is clear that there is a non-negative strategy in δ
[1]
t , δ[2]

t , δ[3]
t and δ

[4]
t because the ith

row in �̂ is the opposite of the (i + n)th row, and the non-negative strategy is feasible
and an extreme point. This proves the existence of an extreme point for problem
(A7).Now, theorem 2.7 in Bertsimas and Tsitsiklis (1997) guarantees that there is an
optimal solution which is an extreme point for problem (A7).

With the second necessary and sufficient conditions of the extreme point, we know
that an optimal solution δ∗

t for problem (A7) has at most two non-zero elements.

This would imply an optimal solution, denoted by π∗
t,n = [π(1)

t,n , π
(2)
t,n , . . . , π

(n)
t,n ]T , for

problem (A6) with at most two non-zero elements, which would also be the optimal
strategy for (9).

Without loss of generality, we assume π
(i)
t,n = 0, i �= x, y. Ot,2 = [O(x)

t , O(y)
t ] and

π∗
t,2 = [π(x)

t,n , π
(y)
t,n ]T is a feasible strategy for problem (9) with n = 2. We show that

it is an optimal pair by contradiction.
If there is a feasible solution Ôt,n = [Ô(1)

t , Ô(2)
t ] and π̂∗

t,2 = [π̂ (1)
t,2 , π̂

(2)
t,2 ]T such

that ‖π̂∗
t,2‖1 < ‖π∗

t,2‖1, then π̂∗
t,n = [π̂ (1)

t,2 , π̂
(2)
t,2 , 0, . . . . . . , 0]T is a feasible strategy

for (9) such that ‖π̂∗
t,n‖1 < ‖π∗

t,n‖1, which is contradiction to our previous conclusion.
Note that ‖π∗

t,2‖1 = ‖π∗
t,n‖1, so problem (9) with n = 2 and with n ≥ 2 have the

same minimum �1 norm of allocation.

A.3 Proof of Proposition 3

Let Ot ∈ �
(2,1)
O with non-singular variance matrix �t (see (11)), the optimal strategy

space �O
π contains a unique strategy, i.e. πt = (�t

T )−1η∗
t , and �1 norm of πt is given
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by

‖πt‖1 =
∣∣∣∣∣ η

(1)
t

f (1)
t

∣∣∣∣∣+
∣∣∣∣∣ η

(2)
t

f (2)
t

∣∣∣∣∣ . (A10)

Anon-zerodenominator is guaranteedby thenon-singular variancematrix assumption.
O∗
t = [O(1),∗

t , O(2),∗
t ]T ∈ �

(2,1)
O with variance matrix

�∗
t =

[
f (1),∗
t 0
0 f (2),∗

t

]
. (A11)

For Ot ∈ �
(2,1)
O , if

∣∣∣ f (1)
t

∣∣∣ ≤
∣∣∣ f (1),∗

t

∣∣∣ and ∣∣∣ f (2)
t

∣∣∣ ≤
∣∣∣ f (2),∗

t

∣∣∣ hold, then it is easy to see

‖πt‖1 ≥ ‖πt
∗‖1, so O∗

t is a optimal portfolio composition.

If
∣∣∣ f (1)

t

∣∣∣ ≤
∣∣∣ f (1),∗

t

∣∣∣ or ∣∣∣ f (2)
t

∣∣∣ ≤
∣∣∣ f (2),∗

t

∣∣∣ does not hold, then there is a O∗∗
t ∈ �

(2,1)
O ,

such that the corresponding strategy ‖πt
∗∗‖1 < ‖πt

∗‖1, hence O∗
t is not the optimal.

We have shown that, for any Ot ∈ �
(2,1)
O ,

∣∣∣ f (1)
t

∣∣∣ ≤
∣∣∣ f (1),∗

t

∣∣∣ and ∣∣∣ f (2)
t

∣∣∣ ≤
∣∣∣ f (2),∗

t

∣∣∣
is a sufficient and necessary condition for O∗

t to be an optimal portfolio composition
for problem (10). Therefore,

O(i),∗
t = argmax

O(i)
t

∣∣∣∣∣∂O
(i)
t

∂S(i)
t

1

O(i)
t

∣∣∣∣∣ . (A12)

A.4 Proof of Proposition 4

O∗
t = [O(1),∗

t , O(2),∗
t ]T is the optimal portfolio composition for problem (10) if and

only if it has the largest absolute sensitivity (see Proposition 3), i.e.

O(i),∗
t = argmax

∣∣∣∣∣∂O
(i, j)
t

∂S(i)
t

1

O(i, j)
t

∣∣∣∣∣ . (A13)

For convenience, wewrite the absolute sensitivity as a function of strike price KK (i, j).

h(K (i, j), j) =
∣∣∣∣∣∂O

(i, j)
t

∂S(i)
t

1

O(i, j)
t

∣∣∣∣∣
h(K (i, j), j) is continuous because O(i, j)

t ∈ C
1 and O(i, j)

t �= 0. According to
the extreme value theorem, there is a K̂ (i, j) ∈ [A(i, j), B(i, j)] that achieves the
largest h(K (i, j), j), hence minimizes �1 norm of allocation ‖πt

∗‖1. O(i),∗
t is the

optimal for problem (10) when the strike price K (i, j) is one of the K̂ (i, j) where:
j ∈ {Euro Call, Asian Call, Amer Call, Euro Put, Asian Put, Amer Put} This guaran-
tees the existence of optimal composition in �

(2,put call)
O .
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A.5 Proof of Corollary 5

We first prove the following lemma,

Lemma 9 The inequality
φ(x − c)

N (x − c)
− c ≤ φ(x)

N (x)
(A14)

holds for ∀x ∈ (−∞,∞), c ∈ (0,∞), where φ and N are respectively the density
function and distribution function of a standard normal random variable.

Proof Let us define the “reversed hazard rate” function:

Y (x) = φ(x)

N (x)
.

We want to show
Y (x − c) − c ≤ Y (x).

We first demonstrate Y ′(x) ≥ −1 for all x . To see this, note:

Y ′ + 1 = φ

N 2

(
φ′

φ
N − φ + N 2

φ

)
= φ

N 2 f .

Using φ′ = −xφ, we have f ′ =
(
1 + xN

φ

)
N . It is not difficult to see that x +Y ≥ 0

(use the fact that g = (x + Y ) N → 0 as x → −∞ and g′ = N ≥ 0). Hence we

know
(
1 + xN

φ

)
≥ 0, which implies f ′ ≥ 0. Moreover f (x) ≥ lim

x→−∞ f (x) = 0,

therefore Y ′ + 1 ≥ 0.
Now we complete the proof, using Y ′ ≥ −1 for all x , and the mean value theorem,

we conclude “by contradiction” that

Y (x) − Y (x − c)

c
≥ −1

for all x and c, which implies

Y (x) ≥ Y (x − c) − c.

��

Next, we show that absolute value of optimal allocation on an European call
decreases to 0 as K (i,Euro Call) → ∞ and absolute value of allocation on an European
put increases with K (i,Euro Put) and converges to 0 as K (i,Euro Put) → 0. We first
abbreviate K (i,Euro Call) to K . Equation (12) and (15) shows the sensitivity of an
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European call,

∂O(i,Euro Call)
t

∂S(i)
t

1

O(i,Euro Call)
t

σ (i)S(i)
t = N (d1)σ (i)S(i)

t

S(i)
t N (d1) − Ke−r(T̂−t)N (d2)

= σ (i)

1 − e−r(T̂−t) K
S(i)
t

N (d2)
N (d1)

,

where

d1 = ln (S(i)
t /K ) + (r + 1

2 (σ
(i))2)(T̂ − t)

σ (i)
√
T̂ − t

= a
(
ln (S(i)

t /K ) + r(T̂ − t)
)

+b

d2 = d1 − σ (i)
√
T̂ − t = a

(
ln (S(i)

t /K ) + r(T̂ − t)
)

+b − c

with c = σ (i)
√
T̂ − t > 0, b = 1

2c and a = 1
c . Let us rewrite the sensitivity as follows:

∂O(i,Euro Call)
t

∂S(i)
t

1

O(i,Euro Call)
t

σ (i)S(i)
t = σ (i)

1 − e
b−x
a G(x)

where x = a
(
ln (St/K ) + r(T̂ − t)

)
+b and G(x) = N (d2)

N (d1)
= N (x−c)

N (x) .

We would like to show H(x) = e
b−x
a G(x) is increasing in K , hence decreasing in

x . Its first derivative leads to:

H ′(x) = −e
b−x
a

a
G(x) + e

b−x
a G ′(x)

= −e
b−x
a

a

N (x − c)

N (x)
+ e

b−x
a

n(x − c)N (x) − N (x − c)n(x)

N 2(x)

= −e
b−x
a

a

N (x − c)

N (x)
+ e

b−x
a

(
n(x − c)

N (x − c)
− n(x)

N (x)

)
N (x − c)

N (x)

= e
b−x
a

[
−1

a
+
(
n(x − c)

N (x − c)
− n(x)

N (x)

)]
N (x − c)

N (x)

= e
b−x
a

[
−c +

(
n(x − c)

N (x − c)
− n(x)

N (x)

)]
N (x − c)

N (x)

It’s easy to see H ′(x) < 0 with Lemma 9. The sensitivity of an European call is
positive and increases with K .
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As K → ∞, O(i,Euro call)
t → 0, so Ke−r(T̂−t)N (d2) → 0. Furthermore,

H(x) = Ke−r(T̂−t)N (d2)

S(i)
t N (d1)

L’Hôpital’s rule−−−−−−−−→
e−r(T̂−t)N (d2) − φ(d1)

S(i)
t

Kσ (i)
√

T̂−t

− S(i)
t φ(d1)

Kσ (i)
√

T̂−t

L’Hôpital’s rule−−−−−−−−→
−φ(d1)

S(i)
t

(K )2σ (i)
√

T̂−t
− φ(d1)

d1S
(i)
t

(Kσ (i)
√

T̂−t)2
+ φ(d1)S

(i)
t

(K )2σ (i)
√

T̂−t

−φ(d1)
S(i)
t d1

(Kσ (i)
√

T̂−t)2
+ S(i)

t φ(d1)

(K )2σ (i)
√

T̂−t

= −S(i)
t σ (i)

√
T̂ − t − S(i)

t d1 + S(i)
t σ (i)

√
T̂ − t

−S(i)
t d1 + S(i)

t σ (i)
√
T̂ − t

−→ 1.

Hence,
∂O(i,Euro Call)

t

∂S(i)
t

1

O(i,Euro Call)
t

σ (i)S(i)
t = σ (i)

1 − H(x)
−→ ∞.

Moreover, the absolute value of allocation on O(i,Euro Call)
t is decreasing with K and

∣∣∣π(i,Euro Call)
t

∣∣∣ =
∣∣∣η(i)

t

∣∣∣∣∣∣∣ ∂O(i,Euro Call)
t

∂S(i)
t

1
O(i,Euro Call)
t

σ (i)S(i)
t

∣∣∣∣
−→ 0 as K −→ ∞. (A15)

The proof for European put follows similarly.

A.6 Proof of Proposition 6

Suppose for any Ot ∈ �
(2,straddle)
O , O(i, j)

t satisfies these four conditions:

1. ∂O(i, j)
t

∂S(i)
t

= 0 ⇐⇒ K (i, j) = A(i, j).

2.

∣∣∣∣ ∂O(i)
t

∂S(i)
t

∣∣∣∣ has an upper bound.
3. O(i, j)

t ∈ (0,∞) and O(i, j)
t →

∞ as K (i, j) → ∞, where j ∈
{Euro Strad, Asian Strad}.

4. O(i, j)
t

(
S(i), K (i, j)

) ∈ C
1.

All four assumptions are not restrictive in a Black–Scholes setting. Proposition 3
illustrates that O∗

t = [O(1),∗
t , O(2),∗

t ]T is the optimal portfolio composition for prob-
lem (10) if it has the largest absolute sensitivity, i.e.

O(i),∗
t = argmax

O(i, j)
t

∣∣∣∣∣∂O
(i, j)
t

∂S(i)
t

1

O(i, j)
t

∣∣∣∣∣ . (A16)
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For convenience, we write the absolute sensitivity as a function of strike price K (i, j).

h(K (i, j), j) =
∣∣∣∣∣∂O

(i, j)
t

∂S(i)
t

1

O(i, j)
t

∣∣∣∣∣
With the four assumptions above, it’s easy to see,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
h(0, j) ∈ (0,∞) j ∈ {Euro Strad, Asian Strad, Amer Strad}
h(B(i, j), j) ∈ (0,∞) j = Amer Strad

h(K (i, j), j) → 0 as K (i, j) ↑↓ A(i, j), j ∈ {Euro Strad, Asian Strad, Amer Strad}
h(K (i, j), j) → 0 as K (i, j) → ∞, j ∈ {Euro, Asian}.

(A17)
When K (i, j) ∈ [0, A(i, j)) and j ∈ {Euro Strad, Asian Strad, Amer Strad},
h(K (i, j), j) is continuous because O(i, j)

t
(
S(i), K (i, j)

) ∈ C
1. Besides, there is a Z

such that h(K (i, j), j) < h(0, j) when K (i, j) ∈ (Z , A(i, j)). According to the extreme
value theorem, there is a K (l,i, j) such that h attains the maximum in [0, Z ], hence
h(K (l,i, j), j) ≥ h(0, j). K (l,i, j) is proven to be the maximum point for h(K (i, j), j)
in [0, A(i, j)).

Let M be a real number in (A(i, j),∞)where j ∈ {Euro Strad, Asian Strad}, it’s
obvious that h(M, j) > 0. There is a Z > 0 such that h(K (i, j), j) < h(M, j) when
K (i, j) ∈ (A(i, j), A(i, j) + 1

Z )∪ (Z ,∞). According to the extreme value theorem, there
is a K (r ,i, j) such that h attains the maximum in [A(i, j) + 1

Z , Z ], i.e. h(K (r ,i, j), j) >

h(M, j). Then, K (r ,i, j) is the maximum point for h(K (i, j), j) in (A(i, j),∞).
As for American straddle ( j = Amer Strad), h(B(i, j), j) > 0. There is a Z > 0

such that h(K (i, j), j) < h(B(i, j), j)when K (i, j) ∈ (A(i, j), A(i, j)+ 1
Z ). And there is a

K (r ,i, j) such that h attains themaximum in [A(i, j)+ 1
Z , B(i, j)], hence h(K (r ,i, j), j) ≥

h(B(i, j), j). h(K (r ,i, j), j) is the maximum point on the right branch [A(i, j), B(i, j)].
O(i),∗
t is the optimal for the problem (10) when the strike price K is either K (l,i, j) or

K (r ,i, j) where j ∈ {Euro Strad, Asian Strad, Amer Strad}. The existence of the
optimal composition in a straddle subset is proven.

A.7 Proof of Proposition 7

Let Ot ∈ �
(2,multi asset)
O with non-singular variance matrix �t (see (23)), the optimal

strategy space �O
π contains a unique strategy, i.e. πt = (�t

T )−1η∗
t . The allocation

and its �1 norm can be written as

π(1, j) = 1

f (11)
t

(η
(1)
t − f (21)

t

f (22)
t

η
(2)
t ) π(2, j) = η

(2)
t

f (22)
t

‖πt‖1 = 1∣∣∣ f (11)
t

∣∣∣
∣∣∣∣∣η(1)

t − f (21)
t

f (22)
t

η
(2)
t

∣∣∣∣∣+
∣∣∣η(2)

t

∣∣∣∣∣∣ f (22)
t

∣∣∣ .
(A18)
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If O∗
t = [O(1),∗

t , O(2),∗
t ]T ∈ �

(2,multi asset)
O achieves minimum �1 norm of allocation

and

O(1),∗
t �= argmax

O
(1, j1)
t

∣∣∣∣∣∂O
(1, j1)
t

∂S(1)
t

1

O(1, j1)
t

∣∣∣∣∣ . (A19)

Then there is a O∗∗
t = [O(1),∗∗

t , O(2),∗∗
t ]T , such that

∣∣∣∣∣∂O
(1),∗
t

∂S(1)
t

1

O(1),∗
t

∣∣∣∣∣ <

∣∣∣∣∣∂O
(1),∗∗
t

∂S(1)
t

1

O(1),∗∗
t

∣∣∣∣∣ . (A20)

Therefore, let O(2),∗∗
t = O(2),∗

t , this implies
∣∣∣ f (11),∗

t

∣∣∣ <

∣∣∣ f (11),∗∗
t

∣∣∣, f (21),∗
t = f (21),∗∗

t

and f (22),∗
t = f (22),∗∗

t . Equation (A18) indicates ‖πt
∗‖1 > ‖πt

∗∗‖1, which proves by
contradiction that

O(1),∗
t = argmax

O
(1, j1)
t

∣∣∣∣∣∂O
(1, j1)
t

∂S(1)
t

1

O(1, j1)
t

∣∣∣∣∣ . (A21)

is a necessary condition for O∗
t to be the optimal portfolio composition for problem

(10) within �
(2,multi asset)
O .

A.8 Proof of Proposition 8

Recall f (ik)
t in the variance matrix �t can be written as

f (ik) = ∂O(i, ji )
t

∂S(k)
t

S(k)
t σ (k)

O(i, ji )
t

. (A22)

According to the non-singular variance matrix assumption, f (11)
t , f (22)

t �= 0. In addi-
tion, O(1, j1)

t is an European call option, hence f (11)
t is continuous with respect to

K (1,Euro Call) on [A(1,Euro Call), B(1,Euro Call)]. f (21)
t and f (22)

t are continuous with
respect to K (2, j2) on [A(2, j2), B(2, j2)] because O(2, j2)

t ∈ C
1.

‖πt‖1 (see (A18)) is continuous on the closed set [A(1,Euro Call), B(1,Euro Call)]×
[A(2, j2), B(2, j2)], so there is a portfolio with strike price [K̂ (1,Euro Call), K̂ (2, j2)]T that
achieves minimum risky asset exposure with any j2. O∗

t is the optimal for problem

(10) within�
(2,call basket)
O when the strike price is in [K̂ (1,Euro Call), K̂ (2, j2)]T , where

j2 ∈ {Basket Call, Basket Put}.

A.9 Comparison between the one-asset option andmulti-asset option subsets

In this section, we exhibit the optimal choice of O(2, j2)
t given different set of parame-

ters. In contrast to the two positive correlated underlying assets considered in Sect. 4,
i.e. ρ = 0.4 (see Table 1), we let correlation ρ = −0.4 while all other parameters
remain unchanged, here a similar derivatives selection is conducted.
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Fig. 7 Derivatives selection O
(2, j2)
t (ρ = −0.4)

Results are presented in Fig. 7. Unlike the case of two positive correlated underlying
assets (see Fig. 6), one-asset option is no longer preferable in minimizing risky asset
exposure while basket put becomes competitive. Especially when O(1, j1)

t is an at-the-
money European call, i.e. K (1, j1) = 40, a basket put is superior to other options, i.e.
larger area.

Next, we consider the case when the parameters of the two underlying assets are
exchanged, i.e. λ(1) = 0.6, λ(2) = 0.52, σ (1) = 0.2, σ (2) = 0.13 while all other
parameters are given in Table 1, the optimal choice of O(2, j2)

t is shown in Fig. 8.
Compared with Fig. 6, basket put instead of basket call is selected in the largest region.
Furthermore, the one-asset Asian option is preferable when K (1, j1) is lregardless of
the underlying assets’ parameters.
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Fig. 8 Derivatives selection O
(2, j2)
t (exchange assets’ parameter)
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