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Abstract
We derive an explicit asymptotic approximation for the implied volatilities of Call
options written on bonds assuming the short-rate is described by an affine short-rate
model. For specific affine short-rate models, we perform numerical experiments in
order to gauge the accuracy of our approximation.
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1 Introduction

Affine short-rate models refer to a class of interest rate models in which the price
of any zero-coupon bond can be expressed as the exponential of affine function of
the instantaneous short-rate. Well-known affine short-rate models include the Vasicek
(Vasicek 1977), Cox–Ingersoll–Ross (CIR) (Cox et al. 2005), Hull–White (Hull and
White 1990) and Fong–Vasicek (Fong and Vasicek 1991) models, as well as their
multi-factor versions. Such models enjoy wide popularity among practitioners and
academics alike because these models are flexible enough to fit the observed yield
curve and easy to calibrate, due to the closed-form expression for bond prices, and
hence yields.

Despite their widespread use in yield-curve modeling, affine short-rate models are
rarely used to price options on bonds or calibrate to the implied volatility surface of
bond options. For this task, practitioners assume forward prices of bonds are modeled
by a local-stochastic volatility (LSV) model. In particular, the SABR model (Hagan
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et al. 2002), is often used as a model for forward bond prices because it admits an
explicit approximation of implied volatility, which can be used to calibrate to observed
implied volatilities.

Yet, if one assumes an affine model for the short-rate, the resulting forward
bond prices will not have SABR dynamics. As a result, if a bank uses an affine
short-rate model to describe the yield curve, and the SABR model to describe
the implied volatility surface of options on bonds, the bank is using two differ-
ent models for the short-rate. Such a practice clearly introduces arbitrage into the
market.

The purpose of this paper is to derive an explicit approximation for the implied
volatilities of options on bonds assuming the short-rate is of the affine class. In doing
so, we provide a unified framework for calibrating both to observed yields and to
observed implied volatilities. To derive the implied volatility approximation, we use
the polynomial expansion method that was introduced by Pagliarani and Pascucci
(2012) in order to derive approximate prices for options on equity in a scalar setting and
later extended in Lorig et al. (2017) in order to obtain approximate implied volatilities
in a multi-factor LSV setting. For a comprehensive reference on perturbation methods
in finance, see Turfus (221).

The rest of this paper proceeds as follows: in Sect. 2 we introduce the class
of affine short-rate models that we will consider in this paper and in Sect. 3 we
briefly review how one can compute prices for bonds and options on bonds in the
affine short-rate setting. In Sect. 4 we provide an explicit relation between affine
short-rate models and classical local-stochastic volatility models. We use this rela-
tion in Sects. 5 and 6 to develop explicit approximations for the prices of options
on bonds and their corresponding implied volatilities. In Sect. 7, we perform a
number of numerical experiments to gauge the accuracy of our implied volatility
approximation in four specific affine term-structure models: Vasicek, CIR, two-
dimensional CIR and Fong–Vasicek. Some thoughts on future work are offered in
Sect. 8.

2 Model and assumptions

Throughout this paper, we will consider a financial market over a time horizon from
zero to T < ∞with no arbitrage and no transactions costs. As a starting point, we fix a
complete probability space (�,F ,P) and afiltrationF = (Ft )0≤t≤T . Theprobability
measure P represents the market’s chosen pricing measure taking the money market
account M = (Mt )0≤t≤T as numéraire. The filtration F represents the history of the
market.

We shall assume that money market account M has dynamics of the form

dMt = RtMtdt, (2.1)

where R = (Rt )t≥0 is the instantaneous short-rate of interest. We further suppose that
the short-rate R is given by
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Rt = r(Yt ), (2.2)

for some function r : Rd → R+ and some Markov diffusion process Y =
(Y (1)

t ,Y (2)
t , . . . ,Y (d)

t ). Specifically, we suppose that Y is the unique strong solution
of a stochastic differential equation (SDE) of the form

dYt = μ(t,Yt )dt + σ(t,Yt )dWt , (2.3)

for some functions μ : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×d , where
W = (W (1)

t ,W (2)
t , . . . ,W (d)

t )t≥0 is a d-dimensional (P,F)-Brownian motion. Thus,
the i th component of Y is given by

dY (i)
t = μi (t,Yt )dt +

d∑

j=1

σi, j (t,Yt )dW
( j)
t . (2.4)

Lastly, we shall assume that R is an affine short-rate model, meaning that the
functions (r , μ, σ ) satisfy

r(y) = q +
d∑

i=1

ψi yi ,

μ(t, y) = b(t) +
d∑

i=1

βi (t)yi ,

σ (t, y)σTr(t, y) = �(t) +
d∑

i=1

λi (t)yi ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

for some constants q ∈ R and ψ ∈ Rd and some functions b, βi : [0, T ] → R
d and

�, λi : [0, T ] → R
d×d . Note that σTr denotes the transpose of σ .

3 Bond and option pricing

In this section we review some classical results on bond and option pricing in an
affine short-rate setting. Our aim here is not to be rigorous, but rather to present in
a concise and formal manner the results that will be needed in subsequent sections.
For a rigorous treatment of the formal results presented below, we refer the reader to
Filipovic (2009, Chapter 10).

To begin, for any T ≤ T and ν ∈ Cd , let us define 	( · , · ; T , ν) : [0, T ] ×Rd →
Cd by

	(t,Yt ; T , ν) := Et exp

(
−

∫ T

t
r(Ys)ds +

d∑

i=1

νi Y
(i)
T

)
, (3.1)
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where we have introduced the short-hand notation Et ( · ) := E( · |Ft ). The existence
of the function 	 follows from the Markov property of Y . Formally, 	 satisfies the
Kolmogorov backward partial differential equation (PDE)

(∂t + A (t) − r)	(t, · ; T , ν) = 0, 	(T , y; T , ν) = exp

(
d∑

i=1

νi yi

)
, (3.2)

where the operator A is the generator of Y under P. Explicitly, the generator A is
given by

A (t) =
d∑

i=1

μi (t, y)∂yi + 1

2

d∑

i=1

d∑

j=1

(
σ(t, y)σTr(t, y)

)

i, j
∂yi ∂y j , (3.3)

where (σσTr)i, j denotes its (i, j)-th component of σσTr. One can verify by direct
substitution that the solution to (3.2) is

	(t, y; T , ν) = exp
(

− F(t; T , ν) −
d∑

i=1

Gi (t; T , ν)yi
)
, (3.4)

where the functions F and G = (Gi )i=1,2,...,d are the solution of the following system
of coupled ordinary differential equations (ODEs)

∂t F(t; T , ν) = 1

2
GTr(t; T , ν)�(t)G(t; T , ν)

− bTr(t)G(t; T , ν) − q,

F(T ; T , ν) = 0,

⎫
⎪⎪⎬

⎪⎪⎭
(3.5)

∂tGi (t; T , ν) = 1

2
GTr(t; T , ν)λi (t)G(t; T , ν)

− βTr
i (t)G(t; T , ν) − ψi ,

Gi (T ; T , ν) = −νi .

⎫
⎪⎪⎬

⎪⎪⎭
(3.6)

Now, for any T ≤ T , let us denote by BT = (BT
t )0≤t≤T the value of a zero-coupon

bond that pays one unit of currency at time T . In the absence of arbitrage the process
BT /M must be a (P,F)-martingale. As such, we have

BT
t

Mt
= Et

(
BT
T

MT

)
= Et

(
1

MT

)
, (3.7)

where we have used BT
T = 1. Solving for BT

t , we obtain

BT
t = Et

(
Mt

MT

)
= Et

(
e− ∫ T

t r(Ys )ds
)

= 	(t,Yt ; T , 0) (3.8)
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= exp
(

− F(t; T , 0) −
d∑

i=1

Gi (t; T , 0)Y (i)
t

)
, (3.9)

where the third equality follows from (3.1) and the fourth equality follows from (3.4).
Next, let V = (Vt )0≤t≤T denote the value of a European option that pays ϕ(log BT

T )

at time T for some function ϕ : R− → R. With the aim of finding Vt , let ϕ̂ : C → C

denote the generalized Fourier transform of ϕ, which is defined as follows

ϕ̂(ω) :=
∫ ∞

−∞
dx e−iωxϕ(x), ω = ωr + iωi , ωr , ωi ∈ R. (3.10)

We can recover ϕ from ϕ̂ using the inverse Fourier transform

ϕ(x) := 1

2π

∫ ∞

−∞
dωr e

iωx ϕ̂(ω). (3.11)

Noting that, in the absence of arbitrage, the process V /M must be a (P,F)-
martingale, we have

Vt
Mt

= Et

(
VT
MT

)
= Et

⎛

⎝
ϕ

(
log BT

T

)

MT

⎞

⎠ . (3.12)

Solving for Vt , we have that

Vt = Et exp

(
−

∫ T

t
r(Ys)ds

)
ϕ(log BT

T ) (3.13)

= 1

2π

∫ ∞

−∞
dωr ϕ̂(ω)Et exp

(
−

∫ T

t
r(Ys)ds

)
exp(iω log BT

T ) (3.14)

= 1

2π

∫ ∞

−∞
dωr ϕ̂(ω)Et exp

(
−

∫ T

t
r(Ys)ds

)
ET exp(iω log BT

T ) (3.15)

= 1

2π

∫ ∞

−∞
dωr ϕ̂(ω) exp

(−iωF(T ; T , 0)
)

(3.16)

× Et exp

(
−

∫ T

t
r(Ys)ds −

d∑

i=1

iωGi (T ; T , 0)Y (i)
T

)
(3.17)

= 1

2π

∫ ∞

−∞
dωr ϕ̂(ω) exp

(−iωF(T ; T , 0)
)
	(t,Yt ; T ,−iωG(T ; T , 0))

(3.18)

=: u(t,Yt ; T , T ), (3.19)

where the second equality follows from (3.7), the fourth follows from (3.9) and the
fifth follows from (3.1). For the particular case of a T -maturity European Call option
written on BT we have
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ϕ(x) = (ex − ek)+, ϕ̂(ω) = −ek−ikω

ω2 + iω
, ωi < −1, (3.20)

where k is the log of the strike.

4 Relation to local-stochastic volatility models

While (3.19) in conjunction with (3.20) can be used to compute T -maturity Call prices
on BT , the resulting expression tells us very little about the corresponding implied
volatilities. In this section, wewill establish a precise relation between affine short-rate
models and local-stochastic volatility models. This relation will be used in subsequent
sections to find an explicit approximation for Call option implied volatilities.

We begin deriving the dynamics of BT /M . Using (2.1) and (3.9), we have by Itô’s
Lemma that

d

(
BT
t

Mt

)
=

(
BT
t

Mt

) d∑

j=1

γ j (t,Yt ; T )dW ( j)
t , (4.1)

where we have introduced

γ j (t,Yt ; T ) :=
d∑

i=1

σi, j (t,Yt )∂yi log	(t,Yt ; T , 0), (4.2)

= −
d∑

i=1

σi, j (t,Yt )Gi (t; T , 0). (4.3)

Observe that BT /M is a (P,F)-martingale, as it must be.
It will be helpful at this point to introduce the T -forward probability measure P̃,

whose relation to P is given by the following Radon-Nikodym derivative

dP̃

dP
:= M0BT

T

BT
0 MT

(4.4)

= exp

⎛

⎝−1

2

d∑

j=1

∫ T

0
γ 2
j (t,Yt ; T )dt +

d∑

j=1

∫ T

0
γ j (t,Yt ; T )dW ( j)

t

⎞

⎠ . (4.5)

Note that the the last equality follows from (4.1). The following lemma will be
useful.

Lemma 1 Let � = (�t )0≤t≤T denote the value of a self-financing portfolio and let

�T = (�T
t )0≤t≤T , defined by �T

t := �t/BT
t , be the T -forward price of �. Then the

process �T is a (P̃,F)-martingale.
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Proof Define the Radon-Nikodym derivative process Z = (Zt )0≤t≤T by Zt :=
Et (dP̃/dP). Using the fact that �/M is a (P,F)-martingale as well as Shreve (2004,
Lemma 5.2.2) we have for any 0 ≤ t ≤ s ≤ T that

�t

Mt
= Et

(
�s

Ms

)
= Zt Ẽt

(
1

Zs

�s

Ms

)
= BT

t

Mt
Ẽt

(
Ms

BT
s

�s

Ms

)
, (4.6)

where Ẽ denotes an expectation under P̃. Dividing both sides of Eq. (4.6) by BT
t and

canceling common factors of Mt and Ms , we obtain

�T
t = �t

BT
t

= Ẽt
�s

BT
s

= Ẽt�
T
s , (4.7)

which establishes that �T is a (P̃,F)-martingale, as claimed. ��

Now, let us denote by X = (Xt )0≤t≤T the log of the T -forward price of a T -maturity

bond BT . We have

Xt := log

(
BT
t

BT
t

)
(4.8)

= F(t; T , 0) − F(t; T , 0) +
d∑

i=1

(
Gi (t; T , 0) − Gi (t; T , 0)

)
Y (i)
t , (4.9)

where the second equality follows from (3.9). It follows from the explicit relationship
(4.9) between X and Y that the process

(X , Ỹ ) := (Xt ,Y
(2)
t , . . . ,Y (d)

t )0≤t≤T

is a d-dimensional Markov process. We are now in a position to state the main result
of this section.

Proposition 2 Let V T = V /BT denote the T -forward price of an option that pays
ϕ(log BT

T ) at time T . Then there exists a function v( · , · , · ; T , T ) : [0, T ] × R− ×
Rd−1 → R such that

V T
t = v(t, Xt , Ỹt ; T , T ). (4.10)

Moreover, the function v satisfies the following PDE

(∂t + Ã (t))v(t, · , · ; T , T ) = 0, v(T , x, ỹ; T , T ) = ϕ(x), (4.11)

where Ã is the generator of (X , Ỹ ) under P̃. Explicitly, Ã is given by
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Ã (t) = 1

2

d∑

i=1

d∑

j=1

(
σ̃ (t, x, ỹ; T , T )̃σ Tr(t, x, ỹ; T , T )

)

i, j
(4.12)

×
(
Gi (t; T , 0) − Gi (t; T , 0)

)(
G j (t; T , 0) − G j (t; T , 0)

)
(∂2x − ∂x ) (4.13)

+
d∑

i=2

(
μ̃i (t, x, ỹ; T , T ) −

d∑

j=1

(
σ̃ (t, x, ỹ; T , T )̃σ Tr(t, x, ỹ; T , T )

)

i, j
G j (t; T , 0)

)
∂yi

(4.14)

+ 1

2

d∑

i=2

d∑

j=2

(
σ̃ (t, x, ỹ; T , T )̃σ Tr(t, x, ỹ; T , T )

)

i, j
∂yi ∂y j (4.15)

+
d∑

i=2

d∑

j=1

(
σ̃ (t, x, ỹ; T , T )̃σ Tr(t, x, ỹ; T , T )

)

i, j
(4.16)

×
(
G j (t; T , 0) − G j (t; T , 0)

)
∂x∂yi , (4.17)

where the functions μ̃( · , · , · ; T , T ) : [0, T ] × R− × Rd−1 → Rd and
σ̃ ( · , · , · ; T , T ) : [0, T ] × R− × Rd−1 → Rd×d are given by

μ̃(t, x, ỹ; T , T ) := μ(t, η(t, x, ỹ; T , T ), ỹ),

σ̃ (t, x, ỹ; T , T ) := σ(t, η(t, x, ỹ; T , T ), ỹ),

}
(4.18)

the function η( · , · , · ; T , T ) : [0, T ] × R− × Rd−1 → R is defined as follows

η(t, x, ỹ; T , T ) = 1

G1(t; T , 0) − G1(t; T , 0)

(
F(t; T , 0) − F(t; T , 0) − x

)

(4.19)

+ 1

G1(t; T , 0) − G1(t; T , 0)

(
d∑

i=2

(Gi (t; T , 0) − Gi (t; T , 0))yi

)
, (4.20)

and the functions F and Gi satisfy the system of coupled ODEs (3.5) and (3.6).

Proof Noting that V T is a (P̃,F)-martingale, we have

V T
t = Vt

BT
t

= Ẽt

(
VT
BT
T

)
= Ẽtϕ

(
log BT

T

)
= Ẽtϕ(XT ) =: v(t, Xt , Ỹt ; T , T ),

(4.21)

where the existence of the function v follows from the Markov property of (X , Ỹ ).
The function v satisfies the Kolmogorov backward PDE (4.11) where Ã denotes the
generator of (X , Ỹ ) under P̃. To derive the expression (4.17) for Ã , we note that,
by Girsanov’s theorem and (4.5), the process W̃ := (W̃ (1)

t , W̃ (2)
t , . . . , W̃ (d)

t )0≤t≤T ,
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defined as follows

W̃ ( j)
t := −

∫ t

0
γ j (s,Ys; T )ds + W ( j)

t , (4.22)

is a d-dimensional (P̃,F)-Brownian motion. Thus, we have from equations (2.4),
(4.3) and (4.22) that

dY (i)
t =

(
μi (t, Yt ) −

d∑

j=1

(
σ(t, Yt )σ

Tr(t, Yt )
)

i, j
G j (t; T , 0)

)
dt +

d∑

j=1

σi, j (t, Yt )dW̃
( j)
t

(4.23)

=
(
μ̃i (t, Xt , Ỹt ; T , T ) −

d∑

j=1

(
σ̃ (t, Xt , Ỹt ; T , T )̃σTr(t, Xt , Ỹt ; T , T )

)

i, j
G j (t; T , 0)

)
dt

(4.24)

+
d∑

j=1

σ̃i, j (t, Xt , Ỹt ; T , T )dW̃ ( j)
t , (4.25)

where, in the the second equality, we have used Y (1)
t = η(t, Xt , Ỹt ; T , T ), which

follows from from (4.9). Similarly, using (4.1) and (4.8), we find using Itô’s Lemma
that

dXt = −1

2

d∑

i=1

d∑

j=1

(
σ(t,Yt )σ

Tr(t,Yt )
)

i, j
(4.26)

×
(
Gi (t; T , 0) − Gi (t; T , 0)

)(
G j (t; T , 0) − G j (t; T , 0)

)
dt (4.27)

+
d∑

i=1

d∑

j=1

σi, j (t,Yt )
(
Gi (t; T , 0) − Gi (t; T , 0)

)
dW̃ ( j)

t (4.28)

= −1

2

d∑

i=1

d∑

j=1

(
σ̃ (t, Xt , Ỹt ; T , T )̃σTr(t, Xt , Ỹt ; T , T )

)

i, j
(4.29)

×
(
Gi (t; T , 0) − Gi (t; T , 0)

)(
G j (t; T , 0) − G j (t; T , 0)

)
dt (4.30)

+
d∑

i=1

d∑

j=1

σ̃i, j (t, Xt , Ỹt ; T , T )
(
Gi (t; T , 0) − Gi (t; T , 0)

)
dW̃ ( j)

t . (4.31)

The explicit expression (4.17) for the generator Ã follows from (4.25) and (4.31).
��

Observe that eX = BT /BT is a strictly positive (P̃,F)-martingale. Thus, the pro-
cess (X , Ỹ ) has the same form as a local-stochastic volatilitymodelwhere X represents
the log of the T -forward price of an risky asset (e.g., stock, index, etc.) and Ỹ represents
(d − 1) non-local factors of volatility.
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192 M. Lorig, N. Suaysom

Example 1 Consider a one-factor affine short-rate model (d = 1). Then X has the
form of a (pure) local volatility model with generator

Ã (t) = c(t, x)(∂2x − ∂x ), (4.32)

c(t, x) := 1

2
σ̃ 2(t, x; T , T )

(
G(t; T , 0) − G(t; T , 0)

)2
, (4.33)

where we have omitted the argument ỹ as it plays no role.

Example 2 Consider a two-factor affine short-rate model (d = 2). Then the process
(X ,Y (2)) has the form of a local-stochastic volatility model with a single non-local
factor of volatility. The generator in this case, is given by

Ã (t) = c(t, x, y2)(∂
2
x − ∂x ) + f (t, x, y2)∂y2 + g(t, x, y2)∂

2
y2 (4.34)

+ h(t, x, y2)∂x∂y2 , (4.35)

where the functions c, f , g and h are given by

c(t, x, y2) := 1

2

(
σ̃ 2
1,1(t, x, y2; T , T ) + σ̃ 2

1,2(t, x, y2; T , T )
)

(4.36)

×
(
G1(t; T , 0) − G1(t; T , 0)

)2
(4.37)

+
(
σ̃1,1(t, x, y2; T , T )̃σ2,1(t, x, y2; T , T ) (4.38)

+ σ̃1,2(t, x, y2; T , T )̃σ2,2(t, x, y2; T , T )
)

(4.39)

×
(
G1(t; T , 0) − G1(t; T , 0)

)(
G2(t; T , 0) − G2(t; T , 0)

)
(4.40)

+ 1

2

(
σ̃ 2
2,1(t, x, y2; T , T ) + σ̃ 2

2,2(t, x, y2; T , T )
)

(4.41)

×
(
G2(t; T , 0) − G2(t; T , 0)

)2
, (4.42)

f (t, x, y2) := μ̃2(t, x, y2; T , T ) (4.43)

−
(
σ̃ 2
2,1(t, x, y2; T , T ) + σ̃ 2

2,2(t, x, y2; T , T )
)
G2(t; T , 0) (4.44)

−
(
σ̃1,1(t, x, y2; T , T )̃σ2,1(t, x, y2; T , T ) (4.45)

+ σ̃1,2(t, x, y2; T , T )̃σ2,2(t, x, y2; T , T )
)
G1(t; T , 0), (4.46)

g(t, x, y2) := 1

2

(
σ̃ 2
2,1(t, x, y2; T , T ) + σ̃ 2

2,2(t, x, y2; T , T )
)
, (4.47)

h(t, x, y2) :=
(
σ̃ 2
2,1(t, x, y2; T , T ) + σ̃ 2

2,2(t, x, y2; T , T )
)

(
G2(t; T , 0) − G2(t; T , 0)

)
(4.48)

+
(
σ̃1,1(t, x, y2; T , T )̃σ2,1(t, x, y2; T , T ) (4.49)
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+ σ̃1,2(t, x, y2; T , T )̃σ2,2(t, x, y2; T , T )
)(

G1(t; T , 0) − G1(t; T , 0)
)
.

(4.50)

5 Option price asymptotics

We have from (4.11) that v satisfies a parabolic PDE of the form

(∂t + Ã (t))v(t, · ) = 0, Ã (t) =
∑

|α|≤2

aα(t, z)∂α
z , v(T , · ) = ϕ, (5.1)

where z := (x, y2, . . . , yd). Note that, for brevity, we have omitted the dependence
on T and T and we have introduced standard multi-index notation

α = (α1, α2, . . . , αd), ∂α
z =

d∏

i=1

∂αi
zi , zα =

d∏

i=1

zi
αi , (5.2)

|α| =
d∑

i=1

αi , α! =
d∏

i=1

αi !. (5.3)

In general there is no explicit solution to PDEs of the form (5.1). In this section,
we will show in a formal manner how an explicit approximation of v can be obtained
by using a simple Taylor series expansion of the coefficients aα of Ã . The method
described belowwas introduced for scalar diffusions in Pagliarani and Pascucci (2012)
and subsequently extended to d-dimensional diffusions in Lorig et al. (2017) and Lorig
et al. (2015).

To begin, for any ε ∈ [0, 1] and z̄ : [0, T ] → Rd , let vε be the unique classical
solution to

0 = (∂t + Ã ε(t))vε(t, · ), vε(T , · ) = ϕ, (5.4)

where the operator Ã ε is defined as follows

Ã ε(t) :=
∑

|α|≤2

aε
α(t, z)∂α

z , with aε
α := aα(t, z̄(t) + ε(z − z̄(t))), (5.5)

Observe that Ã ε|ε=1= Ã and thus vε|ε=1= v. We will seek an approximate solution
of (5.4) by expanding vε and Ã ε in powers of ε. Our approximation for v will be
obtained by setting ε = 1 in our approximation for vε. We have

vε =
∞∑

n=0

εnvn, Ã ε(t) =
∞∑

n=0

εnÃn(t), (5.6)
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where the functions (vn) are, at the moment, unknown, and the operators (Ãn) are
given by

Ãn(t) = dn

dεn
Ã ε|ε=0=

∑

|α|≤2

aα,n(t, z)∂
α
z , (5.7)

aα,n =
∑

|β|=n

1

β! (z − z̄(t))β∂β
z aα(t, z̄(t)). (5.8)

Note that aα,n(t, · ) is the sum of the nth order terms in the Taylor series expansion
of aα(t, · ) about the point z̄(t). Inserting the expansions from (5.6) for vε and Ã ε

into PDE (5.4) and collecting terms of like order in ε we obtain

O(ε0) : (∂t + Ã0(t))v0(t, · ) = 0,

v0(T , · ) = ϕ,
(5.9)

O(εn) : (∂t + Ã0(t))vn(t, · ) +
n∑

k=1

Ãk(t)vn−k(t, · ) = 0,

vn(T , · ) = 0.

(5.10)

Now, observe that the coefficients (aα,0) of Ã0 do not depend on z. Thus, Ã0 is
the generator of a d-dimensional Brownian motion with a time-dependent drift vector
and covariance matrix. As such, v0 is given by

v0(t, z) = P0(t, T )ϕ(z) =
∫

Rd
dz′ p0(t, z; T , z′)ϕ(z′). (5.11)

whereP0 is the semigroup generated by Ã0 and p0 is the associated transition density
(i.e., the solution to (5.9) with ϕ = δz′ ). Explicitly, we have

p0(t, z; T , z′) = 1√
(2π)d |C(t, T )| (5.12)

× exp

(
−1

2
(z′ − z − m(t, T ))TrC−1(t, T )(z′ − z − m(t, T ))

)
,

(5.13)

where m and C are given by

m(t, T ) :=
∫ T

t
ds m(s), C(t, T ) :=

∫ T

t
ds A(s), (5.14)
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and m and A are, respectively, the instantaneous drift vector and covariance matrix

m(s) :=

⎛

⎜⎜⎜⎝

a(1,0,··· ,0),0(s)
a(0,1,··· ,0),0(s)

...

a(0,0,··· ,1),0(s)

⎞

⎟⎟⎟⎠ , (5.15)

A(s) :=

⎛

⎜⎜⎜⎝

2a(2,0,··· ,0),0(s) a(1,1,··· ,0),0(s) . . . a(1,0,··· ,1),0(s)
a(1,1,··· ,0),0(s) 2a(0,2,··· ,0),0(s) . . . a(0,1,··· ,1),0(s)

...
...

. . .
...

a(1,0,··· ,1),0(s) a(0,1,··· ,1),0(s) . . . 2a(0,0,··· ,2),0(s)

⎞

⎟⎟⎟⎠ . (5.16)

By Duhamel’s principle, the solution vn of (5.10) is

vn(t, z) =
n∑

k=1

∫ T

t
dt1P0(t, t1)Ãk(t1)vn−k(t1, z) (5.17)

=
n∑

k=1

∑

i∈In,k

∫ T

t
dt1

∫ T

t1
dt2 · · ·

∫ T

tk−1

dtk
(
P0(t, t1)Ai1(t1)P0(t1, t2)Ai2(t2) (5.18)

· · ·P0(tk−1, tk)Aik (tk)P0(tk, T )ϕ(z)
)
, (5.19)

In,k = {i = (i1, i2, · · · , ik) ∈ Nk : i1 + i2 + · · · + ik = n}. (5.20)

While the expression (5.19) for vn is explicit, it is not easy to compute as operating
on a function with P0 requires performing a d-dimensional integral. The following
proposition establishes that vn can be expressed as a differential operator acting on
v0.

Proposition 3 The solution vn of PDE (5.10) is given by

vn(t, z) = Ln(t, T )v0(t, z), (5.21)

where L is a linear differential operator, which is given by

Ln(t, T ) =
n∑

k=1

∑

i∈In,k

∫ T

t
dt1

∫ T

t1
dt2 · · ·

∫ T

tk−1

dtkGi1(t, t1)Gi2(t, t2) · · ·Gik (t, tk),

(5.22)

the index set In,k as defined in (5.20) and the operator Gi is given by

Gi (t, tk) :=
∑

|α|≤2

aα,i (tk,Z (t, tk))∂
α
z ,

Z (t, tk) := z + m(t, tk) + C(t, tk)∇z .

⎫
⎪⎬

⎪⎭
(5.23)
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Proof The proof, which is given in Lorig et al. (2017, Theorem 2.6), relies on the fact
that, for any 0 ≤ t ≤ tk < ∞ the operator Gi in (5.23) satisfies

P0(t, tk)Ai (tk) = Gi (t, tk)P0(t, tk). (5.24)

Using (5.24), as well as the semigroup property P0(t1, t2)P0(t2, t3) = P0(t1, t3),
we have that

P0(t, t1)Ai1(t1)P0(t1, t2)Ai2(t2) · · ·P0(tk−1, tk)Aik (tk)P0(tk, T )ϕ(z) (5.25)

= Gi1(t, t1)Gi2(t, t2) · · ·Gik (t, tk)P0(t, t1)P0(t1, t2) · · ·P0(tk−1, tk)P0(tk, T )ϕ

(5.26)

= Gi1(t, t1)Gi2(t, t2) · · ·Gik (t, tk)P0(t, T )ϕ (5.27)

= Gi1(t, t1)Gi2(t, t2) · · ·Gik (t, tk)v0(t, · ), (5.28)

where, in the last equality we have used P0(t, T )ϕ = v0(t, · ). Inserting (5.28) into
(5.19) yields (5.21). ��

Having obtained explicit expressions for the functions (vn), we define v̄, the nth
order approximation of v, as follows

v̄n :=
n∑

k=0

vk . (5.29)

Note that v̄n depends on the choice of z̄. In general, if one is interested in the value
of v(t, z) a good choice for z̄ is z̄(t) = z. Indeed, when one chooses z̄(t) = z, we have
from [Lorig et al. (2015), Theorem 3.10] that

|v(t, z) − v̄n(t, z)| = O
(
(T − t)(n+k+2)/2

)
as T − t → 0, (5.30)

when the terminal data ϕ is a bounded function with globally Lipschitz continuous
derivatives of order less than or equal to k.

6 Implied volatility asymptotics

The goal of this section is to find an explicit approximation for the implied volatility
corresponding to the T -forward Call price v(t, x, ỹ; T , T , k) where we have included
now the dependence on the log strike k. For brevity, in what follows, we will omit the
dependence on (t, x, ỹ; T , T , k).

To begin, we remind the reader that, in the Black–Scholes setting, the T -forward
price of a risky asset S has dynamics of the form

d

(
St
BT
t

)
= �

(
St
BT
t

)
dW̃t , (6.1)
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where � > 0 is the Black–Scholes volatility and W̃ is a one-dimensional Brownian
motion under P̃. Given that log(St/BT

T ) = x , the T -forward Black–Scholes Call price
with volatility � > 0 is given by

vBS(�) := ex�(d+) − ek�(d−), (6.2)

d± = 1

�
√
T − t

(
x − k ± �2(T − t)

2

)
, (6.3)

�(d) =
∫ d

−∞
dx

1√
2π

e−x2/2. (6.4)

From this, one defines the implied volatility corresponding to the T -forward Call
price v as the unique positive solution � to

vBS(�) = v. (6.5)

As in the previous section, we will seek an approximation of the implied volatility
�ε corresponding to vε by expanding �ε in power of ε. Our approximation of � will
then be obtained by setting ε = 1. We have

�ε = �0 + δ�ε, δ�ε =
∞∑

n=1

εn�n . (6.6)

Next, expanding vBS(�ε) in powers of ε we obtain

vBS(�ε) = vBS(�0 + δ�ε) (6.7)

=
∞∑

k=0

1

k! (δ�
ε∂�)kvBS(�0) (6.8)

= vBS(�0) +
∞∑

k=1

1

k!
∞∑

n=1

εn
∑

In,k

( k∏

j=1

�i j

)
∂k�vBS(�0) (6.9)

= vBS(�0) +
∞∑

n=1

εn
∞∑

k=1

1

k!
∑

In,k

( k∏

j=1

�i j

)
∂k�vBS(�0) (6.10)

= vBS(�0) +
∞∑

n=1

εn
(

�n∂� +
∞∑

k=2

1

k!
∑

In,k

⎛

⎝
k∏

j=1

�i j

⎞

⎠ ∂k�

)
vBS(�0),

(6.11)

where In,k is given by (5.20). Inserting the expansions for vε and vBS(�ε) into vε =
vBS(�ε) and collecting terms of like order in ε we obtain

O(ε0) v0 = vBS(�0), (6.12)
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O(εn) vn =
⎛

⎝�n∂� +
∞∑

k=2

1

k!
∑

In,k

⎛

⎝
k∏

j=1

�i j

⎞

⎠ ∂k�

⎞

⎠ vBS(�0). (6.13)

Now, from (5.11) we have

v0 = vBS
(√

C1,1(t, T )/(T − t)
)

, (6.14)

where C is defined in (5.14). Thus, it follows from (6.12) that

�0 = √
C1,1(t, T )/(T − t). (6.15)

Having identified �0, we can use (6.13) to obtain �n recursively for every n ≥ 1.
We have

�n = 1

∂�vBS(�0)

⎛

⎝vn −
∞∑

k=2

1

k!
∑

In,k

⎛

⎝
k∏

j=1

�i j

⎞

⎠ ∂k�vBS(�0)

⎞

⎠ . (6.16)

Using the expression given in (5.21) for vn , one can show that �n is an nth order
polynomial in log-moneyness k − x with coefficients that depend on (t, T ); see Lorig
et al. (2017, Section 3) for details. We provide explicit expressions for �0, �1, and
�2 for the cases d = {1, 2} in “Appendix A”.

Having obtained expressions for (�n), we define �̄, the nth order approximation
of �, as follows

�̄n :=
n∑

k=0

�k . (6.17)

Note that �̄n depends on the choice of z̄. In general, the best choice for z̄ is z̄(t) =
(x, ỹ). In this case, we have under mild conditions on the generator Ã that

|�(t, x, ỹ; T , T , k) − �̄n(t, x, ỹ; T , T , k)| = O((T − t)(n+1)/2), (6.18)

as |k − x | = O(
√
T − t). (6.19)

by Pagliarani and Pascucci (2017, Theorem 5.1).

7 Examples

In this section we use the results from Sect. 6 to compute approximate implied volatil-
ities for T -forward Call prices written on BT for the following four affine short-rate
models:
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• Section 7.1: Vasicek model,
• Section 7.2: Cox–Ingersoll–Ross model,
• Section 7.3: Two-factor Cox–Ingersoll–Ross model,
• Section 7.4: Fong–Vasicek model.

Note that, given (Xt , Ỹt ) = (x, ỹ), exact T -forward Call prices can be computed
using

v(t, x, ỹ; T , T ) = u(t, y; T , T )

	(t, y; T , 0)
, y1 = η(t, x, ỹ; T , T ), (7.1)

where 	, u and η are given in (3.4), (3.19)–(3.20) and (4.20), respectively. The corre-
sponding “exact” implied volatilities can be obtained by inserting (7.1) into (6.5) and
solving for � numerically. We will use this in what follows below in order to gauge
the numerical accuracy of our implied volatility approximation �̄n .

7.1 Vasicek

In the short-rate model developed in Vasicek (1977), the dynamics of R = r(Y ) are
given by

dYt = κ(θ − Yt )dt + δdWt , Rt = Yt . (7.2)

Comparing (7.2) with (2.2) and (2.4), we see that the functions r , μ, and σ are given
by

r(y) = y, μ(t, y) = κ(θ − y), σ (t, y) = δ, (7.3)

and comparing (7.3) with (2.5) we identify

q = 0, ψ = 1, b(t) = κθ, β(t) = −κ, �(t) = δ2, λ(t) = 0, (7.4)

where we have dropped the subscripts from ψ , β and λ as d = 1. With the above
parameters, the solution G of ODE (3.6) is

G(t; T , ν) = −e−κ(T−t)ν + 1 − e−κ(T−t)

κ
. (7.5)

While the solution F of ODE (3.5) is needed to compute exact Call option prices,
we shall see that it is not needed to compute implied volatilities in the Vasicek setting.
As such, we do not provide a formula for F here. From (4.18), (4.20), and (7.3), we
have

σ̃ (t, x; T , T ) := δ. (7.6)
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And thus, using (4.32), (7.5) and (7.6), the generator Ã is given by

Ã (t) = c(t, x)(∂2x − ∂x ), c(t, x) = 1

2
δ2

(
1 − e−κ(T−t)

κ
− 1 − e−κ(T−t)

κ

)2

.

(7.7)

The explicit implied volatility approximation �̄n up to order n = 2 can now be
computed using the formulas in “Appendix A”. Because the coefficient c does not
depend on x in the Vasicek setting, the zeroth order implied volatility approximation
is exact

� = �0 =
√

1

T − t

∫ T

t
ds δ2

(1 − e−κ(T−s)

κ
− 1 − e−κ(T−s)

κ

)2
(7.8)

= δ

κ3/2

√
e2κT − e2κt

2(T − t)

(
e−κT − e−κT

)
. (7.9)

From the above, it is easy to identify the following limits

lim
t→T

� = δ

κ

(
1 − e−κ

(
T−T

))
, lim

T→T
� = 0, (7.10)

lim
T→∞

� = δ

κ3/2

√
1 − e−2κ(T−t)

2(T − t)
, lim

t→T ,T→∞
� = δ

κ
. (7.11)

In Fig. 1 we plot � as a function of t for various valued of T with T fixed.

7.2 Cox–Ingersoll–Ross

In the Cox–Ingersoll–Ross (CIR) short-rate model developed in Cox et al. (2005), the
dynamics of R = r(Y ) are given by

dYt = κ(θ − Yt )dt + δ
√
YtdWt , Rt = Yt . (7.12)

Comparing (7.12) with (2.2) and (2.4), we see that the functions r , μ, and σ are given
by

r(y) = y, μ(t, y) = κ(θ − y), σ (t, y) = δ
√
y, (7.13)

and comparing (7.13) with (2.5) we identify

q = 0, ψ = 1, b(t) = κθ, β(t) = −κ, �(t) = 0, λ(t) = δ2, (7.14)
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Fig. 1 For the Vasicek short-rate model described in Sect. 7.1, we plot implied volatility � as a function of
t with the maturity date of the options fixed at T = 0.5 and with the maturity date of the underlying bond
taking the following values T = {1, 3, 5, 10}, which correspond to the blue, orange, green, and red curves,
respectively. The following model parameters remained fixed: κ = 0.9, δ = √

0.033, and θ = 0.08
0.9

where we have dropped the subscripts from ψ , β and λ as d = 1. With the above
parameters, the solutions F and G of coupled ODEs (3.5) and (3.6) are

F(t; T , ν) = −2κθ

δ2

(
log

(
2� exp

(
(� + κ)τ/2

)
(7.15)

− log
(

− δ2ν(exp(�τ) − 1) + �(exp(�τ) + 1) (7.16)

+ κ(exp(�τ) − 1)
))

, (7.17)

G(t; T , ν) = 2(exp(�τ) − 1) − (
�(exp(�τ) + 1) − κ(exp(�τ) − 1)

)
ν

−δ2ν
(
exp(�τ) − 1

) + �(exp(�τ) + 1) + κ(exp(�τ) − 1)
,

(7.18)

τ := T − t, (7.19)

� :=
√

κ2 + 2δ2. (7.20)

From (4.18), (4.20), and (7.13), we have

σ̃ (t, x; T , T ) = δ

√
F(t; T , 0) − F(t; T , 0) − x

G(t; T , 0) − G(t; T , 0)
, (7.21)
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And thus, using (4.32) and (7.21), the generator Ã is given by

Ã (t) = c(t, x)(∂2x − ∂x ), (7.22)

c(t, x) = δ2

2

(
F(t; T , 0) − F(t; T , 0) − x

)(
G(t; T , 0) − G(t; T , 0)

)
. (7.23)

Introducing the short-hand notation c j (t, x) := ∂
j
x c(t, x)/ j !, we have

c0(t, x) = δ2

2

(
F(t; T , 0) − F(t; T , 0) − x

)(
G(t; T , 0) − G(t; T , 0)

)
,(7.24)

c1(t, x) ≡ c1(t) = −δ2

2

(
G(t; T , 0) − G(t; T , 0)

)
, (7.25)

cn(t, x) = 0, n ≥ 2. (7.26)

The explicit implied volatility approximation �̄n can now be computed up to order
n = 2 using the formulas in “Appendix A”. We have

�0 =
√
2

τ

∫ T

t
ds c0(s, x), (7.27)

�1 = 2(k − x)

�3
0τ

2

∫ T

t
ds c1(s, x)

∫ s

t
dq c0(q, x), (7.28)

�2 = 6(k − x)2

�7
0τ

4

(
− 2

( ∫ T

t
ds c1(s)

∫ s

t
dq c0(q, x)

)
2 (7.29)

+ �2
0τ

∫ T

t
ds1

∫ T

s1
ds2 c1(s1)c1(s2)

∫ s1

t
dq c0(q, x)

)
(7.30)

+ (�2
0τ + 12)

2�5
0τ

3

(( ∫ T

t
ds c1(s)

∫ s

t
dq c0(q, x)

)
2 (7.31)

− �2
0τ

∫ T

t
ds1

∫ T

s1
ds2 c1(s1)c1(s2)

∫ s1

t
dq c0(q, x)

)
. (7.32)

In Fig. 2 we plot our explicit approximation of implied volatility �̄n up to order
n = 2 as a function of log-moneyness k − x with t = 0 and T = 2 fixed and
with option maturities ranging over T = { 1

12 ,
1
4 ,

1
2 ,

3
4 }. For comparison, we also plot

the exact implied volatility �. We observe that the second order approximation �̄2
accurately matches the level, slope, and convexity of the exact implied volatility �

near-the-money for all four option maturity dates. In Fig. 3 we plot the absolute value
of the relative error of our second order approximation |�̄2 − �|/� as a function of
log-moneyness k − x and option maturity T . We observe that the error decreases as
we approach the origin in both directions of k − x and T and the best approximation
region is within 0.2% of the exact implied volatility.

123



Options on bonds: implied volatilities from affine… 203

Fig. 2 For the CIR short-rate model described in Sect. 7.2, we plot exact implied volatility � and approxi-
mate implied volatility �̄n up to order n = 2 as a function of log-moneyness k− x with the maturity date of
the bond fixed at T = 2 and with the maturity of the option taking the following values T = { 1

12 , 1
4 , 1

2 , 3
4 }.

The zeroth, first, and second order approximate implied volatilities correspond to the orange, green and red
curves, respectively, and the blue curve correspond to the exact implied volatility. The following parameters,
which were taken from Filipovic (2009, Example 10.3.2.2), remained fixed t = 0, κ = 0.9, δ = √

0.033,
θ = 0.08

0.9 , y = 0.08

7.3 Two-factor Cox–Ingersoll–Ross

In the Two-factor Cox–Ingersoll–Ross (2-D CIR) short-rate model developed in Cox
et al. (2005), the dynamics of R = r(Y ) are given by

dY (1)
t = κ1(θ1 − Y (1)

t )dt + δ1

√
Y (1)
t dW (1)

t , (7.33)

dY (2)
t = κ2(θ2 − Y (2)

t )dt + δ2

√
Y (2)
t dW (2)

t , (7.34)

Rt = Y (1)
t + Y (2)

t . (7.35)

Comparing (7.35) with (2.2) and (2.4), we see that the functions r , μ, and σ are given
by

r(y1, y2) = y1 + y2,

μ(t, y1, y2) =
(

κ1(θ1 − y1)
κ2(θ2 − y2)

)
,

σ (t, y1, y2) =
(

δ1
√
y1 0

0 δ2
√
y2

)
,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(7.36)
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and comparing (7.36) with (2.5) we identify

q = 0, ψ =
(
1
1

)
, b(t) =

(
κ1θ1
κ2θ2

)
, β1(t) = −

(
κ1
0

)
,

(7.37)

β2(t) = −
(
0
κ2

)
, �(t) = 0, λ1(t) =

(
δ21 0
0 0

)
, λ2(t) =

(
0 0
0 δ22

)
. (7.38)

With the above parameters, the solutions F and G = (G1,G2) of coupled ODEs
(3.5) and (3.6) are, for i = {1, 2},

F(t; T , ν) = −
2∑

i=1

2κiθi
δ2i

(
log

(
2�i exp

(
(�i + κi )τ/2

))
(7.39)

− log
(

− δ2i νi
(
exp(�iτ) − 1

) + �i (exp(�iτ) + 1) (7.40)

+ κi (exp(�iτ) − 1)
))

, (7.41)

Gi (t; T , ν) = 2(exp(�iτ) − 1) − (
�i (exp(�iτ) + 1) − κi (exp(�iτ) − 1)

)
νi

−δ2i νi
(
exp(�iτ) − 1

) + �i (exp(�iτ) + 1) + κi (exp(�iτ) − 1)
,

(7.42)

�i :=
√

κ2
i + 2δ2i . (7.43)

From (4.18), (4.20), and (7.36), we have

η(t, x, y2; T , T ) = 1

G1(t; T , 0) − G1(t; T , 0)

(
F(t; T , 0) − F(t; T , 0) − x

(7.44)

+
(
G2(t; T , 0) − G2(t; T , 0)

)
y2

)
, (7.45)

σ̃ (t, x, y2; T , T ) =
(

δ1

√
η(t, x, y2; T , T ) 0

0 δ2
√
y2

)
, (7.46)

and thus, using (4.35) and (7.3), the generator Ã is given by

Ã (t) = c(t, x, y2)(∂
2
x − ∂x ) + f (t, x, y2)∂y2 + g(t, x, y2)∂

2
y2 + h(t, x, y2)∂x∂y2 ,

(7.47)

where the functions c, f , g and h are given by

c(t, x, y2) = 1

2
δ21

(
F(t; T , 0) − F(t; T , 0) − x (7.48)

+
(
G2(t; T , 0) − G2(t; T , 0)

)
y2

)
(7.49)
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×
(
G1(t; T , 0) − G1(t; T , 0)

)
(7.50)

+ 1

2
δ22

(
G2(t; T , 0) − G2(t; T , 0)

)2
y2, (7.51)

f (t, x, y2) = κ2(θ2 − y2) − δ22 y2G2(t; T , 0), (7.52)

g(t, x, y2) = 1

2
δ22 y2, (7.53)

h(t, x, y2) = δ22 y2
(
G2(t; T , 0) − G2(t; T , 0)

)
. (7.54)

Introducing the notation χi, j (t, x, y2) := ∂ ix∂
j
y2χ(t, x, y2)/(i ! j !) where χ ∈

{c, f , g, h}, we compute

χ0,0(t, x, y2) = χ(t, x, y2), (7.55)

c1,0(t, x, y2) = −1

2
δ21

(
G1(t; T , 0) − G1(t; T , 0)

)
, (7.56)

c0,1(t, x, y2) = 1

2
δ21

(
G2(t; T , 0) − G2(t; T , 0)

)(
G1(t; T , 0) − G1(t; T , 0)

)

(7.57)

+ 1

2
δ22

(
G2(t; T , 0) − G2(t; T , 0)

)2
, (7.58)

f0,1(t, x, y2) = −
(
κ2 + δ22

)
G2(t; T , 0), (7.59)

g0,1(t, x, y2) = 1

2
δ22, (7.60)

h0,1(t, x, y2) = δ22

(
G2(t; T , 0) − G2(t; T , 0)

)
, (7.61)

and χi, j (t, x, y2) = 0, for any term not given above. The explicit implied volatility
approximation �̄n can now be computed up to order n = 2 using the formulas in
“Appendix A”. We have

�0 =
√
2

τ

∫ T

t
ds c0,0(s, x, y2), (7.62)

�1 = (k − x)

τ 2�3
0

(
2

∫ T

t
ds c1,0(s, x, y2)

∫ s

t
dq c0,0(q, x, y2) (7.63)

+
∫ T

t
ds c0,1(s, x, y2)

∫ s

t
dq h0,0(q, x, y2)

)
(7.64)

+ 1

2τ�0

∫ T

t
ds c0,1(s, x, y2)

(
2

∫ s

t
dq f0,0(q, x, y2) +

∫ s

t
dq h0,0(q, x, y2)

)
,

(7.65)

where we have omitted the 2nd order term �2 due to its considerable length.
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Fig. 3 For the CIR short-rate model described in Sect. 7.2, we plot the absolute value of the relative error of
our second order implied volatility approximation |�̄2 −�|/� as a function of log-moneyness (k− x) and
option maturity T . The horizontal axis represents log-moneyness (k − x) and the vertical axis represents
optionmaturity T . Ranging from darkest to lightest, the regions above represent relative errors in increments
of 0.2% from< 0.2% to> 1.4%. Thematurity date of the bond is fixed at T = 2. The following parameters,
which were taken from Filipovic (2009, Example 10.3.2.2), remained fixed t = 0, κ = 0.9, δ = √

0.033,
θ = 0.08

0.9 , y = 0.08

In Fig. 4 we plot our explicit approximation of implied volatility �̄n up to order
n = 2 as a function of log-moneyness k − x with t = 0 and T = 2 fixed and with
option maturities ranging over T = { 1

12 ,
1
4 ,

1
2 ,

3
4 }. For comparison, we also plot the

the exact implied volatility �. As is the case with the (1-D) CIR model, we observe
in the 2-D CIR model that the second order approximation �̄2 accurately matches the
level, slope, and convexity of the exact implied volatility � near-the-money for all
four option maturity dates. In Fig. 5 we plot the absolute value of the relative error of
our second order approximation |�̄2 − �|/� as a function of log-moneyness k − x
and option maturity T . We observe that the error decreases as we approach the origin
in both directions of k − x and T and the best approximation region is within 0.1% of
the exact implied volatility.
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Fig. 4 For the 2-D CIR short-rate model described in Sect. 7.3, we plot exact implied volatility � and
approximate implied volatility �̄n up to order n = 2 as a function of log-moneyness k − x with the
maturity date of the bond fixed at T = 2 and with the maturity of the option taking the following values
T = { 1

12 , 1
4 , 1

2 , 3
4 }. The zeroth, first, and second order approximate implied volatilities correspond to the

orange, green and red curves, respectively, and the blue curve correspond to the exact implied volatility.
The following parameters remained fixed t = 0, κ1 = κ2 = 0.9, δ1 = δ2 = √

0.033, θ1 = θ2 = 0.08
0.9 ,

y1 = y2 = 0.04

7.4 Fong–Vasicek

In the Fong–Vasicek short-rate model developed in Fong and Vasicek (1991), the
dynamics of R = r(Y ) are given by

dY (1)
t = κ1

(
θ1 − Y (1)

t

)
dt +

√
Y (2)
t dW (1)

t , (7.66)

dY (2)
t = κ2

(
θ2 − Y (2)

t

)
dt + δ2ρ

√
Y (2)
t dW (1)

t + δ2ρ̄

√
Y (2)
t dW (2)

t , ρ̄ =
√
1 − ρ2

(7.67)

Rt = Y (1)
t . (7.68)

Comparing (7.68) with (2.2) and (2.4), we see that the functions r , μ, and σ are
given by
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Fig. 5 For the 2-D CIR short-rate model described in Sect. 7.3, we plot the absolute value of the relative
error of our second order implied volatility approximation |�̄2 − �|/� as a function of log-moneyness
(k − x) and option maturity T . The horizontal axis represents log-moneyness (k − x) and the vertical axis
represents option maturity T . Ranging from darkest to lightest, the regions above represent relative errors in
increments of 0.1% from< 0.1% to> 0.8%. Thematurity date of the bond is fixed at T = 2. The following
parameters remained fixed t = 0, κ1 = κ2 = 0.9, δ1 = δ2 = √

0.033, θ1 = θ2 = 0.08
0.9 , y1 = y2 = 0.04

r(y1, y2) = y1,

μ(t, y1, y2) =
(

κ1(θ1 − y1)
κ2(θ2 − y2)

)
,

σ (t, y1, y2) =
( √

y2 0
δ2ρ

√
y2 δ2ρ̄

√
y2

)
,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(7.69)

and comparing (7.69) with (2.5) we identify

q = 0, ψ =
(
1
0

)
, b(t) =

(
κ1θ1
κ2θ2

)
, β1(t) = −

(
κ1
0

)
,

(7.70)

β2(t) = −
(
0
κ2

)
, �(t) = 0, λ1(t) =

(
0 0
0 0

)
, λ2(t) =

(
1 δ2ρ

δ2ρ δ22

)
.

(7.71)
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With the above parameters, we find using (3.5) and (3.6) that the ODEs satisfied
by F and G = (G1,G2) are

∂t F(t; T , ν) = −κ1θ1G1(t; T , ν) − κ2θ2G2(t; T , ν),

F(T ; T , ν) = 0,
(7.72)

∂tG1(t; T , ν) = κ1G1(t; T , ν) − 1,

G1(T ; T , ν) = −ν1,
(7.73)

∂tG2(t; T , ν) = 1

2
δ22G

2
2(t; T , ν) +

(
δ2ρG1(t; T , ν) + κ2

)
G2(t; T , ν)

+ 1

2
G2

1(t; T , ν),

G2(T ; T , ν) = −ν2.

(7.74)

Although one can obtain explicit expressions for F(t; T , ν), G1(t; T , ν) and
G2(t; T , ν), these expressions are given in terms of confluent hypergeometric fuctions
(CHFs). As numerical evaluation of CHFs is time-consuming, computing explicit Call
prices using (7.1) is not practical because it involves integrals with respect to ν. By
contrast, in order to compute our explicit approximation of implied volatility �̄n , we
need only expressions for F(t; T , 0), G1(t; T , 0) and G2(t; T , 0), which we provide
in “Appendix B”.

From (4.18), (4.20), and (7.69), we have

η(t, x, y2; T , T ) = 1

G1(t; T , 0) − G1(t; T , 0)

(
F(t; T , 0) − F(t; T , 0) − x

(7.75)

+
(
G2(t; T , 0) − G2(t; T , 0)

)
y2

)
, (7.76)

σ̃ (t, x, y2; T , T ) =
( √

y2 0
δ2ρ

√
y2 δ2ρ̄

√
y2

)
, (7.77)

And thus, using (4.35) and (7.77), the generator Ã is given by

Ã (t) = c(t, x, y2)(∂
2
x − ∂x ) + f (t, x, y2)∂y2 + g(t, x, y2)∂

2
y2 + h(t, x, y2)∂x∂y2 ,

(7.78)

where the functions c, f , g and h are given by

c(t, x, y2) = 1

2
y2

(
G1(t; T , 0) − G1(t; T , 0)

)2
(7.79)

+ ρδ2y2
(
G1(t; T , 0) − G1(t; T , 0)

)
(7.80)

×
(
G2(t; T , 0) − G2(t; T , 0)

)
(7.81)

+ 1

2
δ22 y2

(
G2(t; T , 0) − G2(t; T , 0)

)2
, (7.82)
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f (t, x, y2) = κ2(θ2 − y2) − δ22 y2G2(t; T , 0) − ρδ2y2G1(t; T , 0), (7.83)

g(t, x, y2) = 1

2
δ22 y2, (7.84)

h(t, x, y2) = δ22 y2
(
G2(t; T , 0) − G2(t; T , 0)

)
(7.85)

+ ρδ2y2
(
G1(t; T , 0) − G1(t; T , 0)

)
. (7.86)

Once again using the short-hand notation χi, j (t, x, y2) := ∂ ix∂
j
y2χ(t, x, y2)/(i ! j !)

where χ ∈ {c, f , g, h}, we compute

χ0,0(t, x, y2) = χ(t, x, y2), (7.87)

c0,1(t, x, y2) = 1

2

(
G1(t; T , 0) − G1(t; T , 0)

)2
(7.88)

+ ρδ2

(
G1(t; T , 0) − G1(t; T , 0)

)(
G2(t; T , 0) − G2(t; T , 0)

)

(7.89)

+ 1

2
δ22

(
G2(t; T , 0) − G2(t; T , 0)

)2
, (7.90)

f0,1(t, x, y2) = −κ2 − δ22G2(t; T , 0) − ρδ2G1(t; T , 0), (7.91)

g0,1(t, x, y2) = 1

2
δ22, (7.92)

h0,1(t, x, y2) = δ22

(
G2(t; T , 0) − G2(t; T , 0)

)
(7.93)

+ ρδ2

(
G1(t; T , 0) − G1(t; T , 0)

)
, (7.94)

where χi, j (t, x, y2) = 0 for any term not given above. The explicit implied volatility
approximation �̄n can now be computed up to order n = 2 using the formulas in
“Appendix A”. We have

�0 =
√
2

τ

∫ T

t
ds c0,0(s, x, y2), (7.95)

�1 = k − x

τ 2�3
0

(∫ T

t
ds c0,1(s, x, y2)

∫ s

t
dq h0,0(q, x, y2)

)
(7.96)

+ 1

2τ�0

∫ T

t
ds c0,1(s, x, y2)

(
2

∫ s

t
dq f0,0(q, x, y2) +

∫ s

t
dq h0,0(q, x, y2)

)
.

(7.97)

where we have omitted the second order term �2 due to its considerable length.
In Fig. 6 we plot our second order approximation of implied volatility �̄2 as a

function of log-moneyness k − x with the maturity date of the bond fixed at T = 2,
the maturity date of the option taking the following values T = { 1

12 ,
1
4 ,

1
2 ,

3
4 } and the

correlation parameter taking the following values ρ = {−0.7,−0.3, 0.3, 0.7}. We can
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Fig. 6 For the Fong–Vasicek short-rate model described in Sect. 7.4, we plot the approximate implied
volatility �̄2 as a function of log-moneyness k − x with the maturity date of the bond fixed at T = 2,
with the maturity of the option taking the following values T = { 1

12 , 1
4 , 1

2 , 3
4 } and with the correlation

parameter taking values ρ = {−0.7,−0.3, 0.3, 0.7} corresponding to the blue, orange, green and red
curves respectively. The following model parameters remained fixed in all four plots t = 0, κ1 = κ2 = 0.9,
δ2 = √

0.08, θ1 = θ2 = 0.08, y2 = 0.08

see the convexity near-the-money changes from concave to convex as we increase ρ.
From the expression of �1 in (7.97) we observe that the slope of �1 with respect to
k− x is controlled by the sign of c0,1 and h0,0. As G(t; T , 0) is an increasing function
in T , the expression Gi (t; T , 0) − Gi (t; T , 0) is negative, which means that, fixing
all other parameters, ρ controls the sign of c0,1 and h0,0. As a result, as we change ρ

from −1 to 1 the slope of �1 changes accordingly. A similar analysis can be done on
the sign of coefficients of (k − x)2 of �2 to show that ρ controls the convexity of �2
with respect to k − x . This is in contrast to the CIR and 2-D CIR models, where the
implied volatility curve near-the-money is concave.

8 Conclusion

In this paper, we have provided an explicit asymptotic approximation for the implied
volatility of Call options on bonds assuming the short-rate is given by an affine term-
structure model. In future work, we plan to extend our results by providing explicit
implied volatility approximations for other short-rate derivatives including caps and
floors.
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Appendix A: Explicit expressions for 60, 61 and 62

In this appendix we give the expressions for the implied volatility approximation
using (6.15) and (6.16) explicitly up to second order for d = {1, 2} in terms of the
coefficients c, f ,g, and h of Ã , given in (4.35), by performing Taylor’s expansion of
the coefficients around z̄(t) = (x, ỹ). To ease the notation, we define

χi, j (t) ≡ χi, j (t, x, ỹ) = ∂ ix∂
j
yχ(t, x, ỹ)

i ! j ! , χ ∈ {c, f , g, h}. (A1)

The zeroth order term �0 is given by

�0 =
√
2

τ

∫ T

t
ds c0,0(s, x, ỹ). (A2)

Next, let us define

Hn(ξ) :=
( −1

�0
√
2τ

)n
Hn(ξ), ξ := x − k − 1

2�
2
0τ

�0
√
2τ

, τ := T − t, (A3)

where Hn(ξ) is the nth-order Hermite’s polynomial. Then the first order term �1 is
given by

�1 = �1,0 + �0,1, (A4)

where �1,0 and �0,1 are given by

�1,0 = 1

τ�0

∫ T

t
ds c1,0(s, x, ỹ)

∫ s

t
dq c0,0(q, x, ỹ)

(
2H1(ξ) − 1

)
, (A5)

�0,1 = 1

τ�0

∫ T

t
ds c0,1(s, x, ỹ)

( ∫ s

t
dq f0,0(q, x, ỹ) +

∫ s

t
dq h0,0(q, x, ỹ)H1(ξ)

)
.

(A6)

Note that �0,1 = 0 when d = 1 because in this case f = h = 0. Lastly, the second
order term �2 is given by

�2 = �2,0 + �1,1 + �0,2, (A7)

where, using the short-hand notation ξi, j (t) := ξi, j (t, x, ỹ), the terms �2,0, �1,1,
�0,2 are given by

�2,0 = 1

τ�0

(
1

2

∫ T

t
ds c2,0(s)

(( ∫ s

t
dq c0,0(q)

)2

(4H2(ξ) − 4H1(ξ) + 1) (A8)
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+ 2
∫ s

t
dq c0,0(q)

)
+

∫ T

t
ds1

∫ T

s1
ds2 c1,0(s1)c1,0(s2) (A9)

×
( ∫ s1

t
dq1 c0,0(q1)

∫ s2

t
dq2 c0,0(q2) (A10)

× (
4H4(ξ) − 8H3(ξ) + 5H2(ξ) − H1(ξ)

)
(A11)

+
∫ s1

t
dq1 c0,0(q1)

(
6H2(ξ) − 6H1(ξ) + 1)

))
(A12)

− �2
1,0

2

(
τ�0(H2(ξ) − H1(ξ)) + 1

�0

)
, (A13)

�1,1 = 1

τ�0

(
1

2

∫ T

t
ds c1,1(s)

(
2

∫ s

t
dq1 c0,0(q1)

∫ s

t
dq2 h0,0(q2)H2(ξ) (A14)

+
∫ s

t
dq1 c0,0(q1)(2

∫ s

t
dq2 f0,0(q2) −

∫ s

t
dq2 h0,0(q2))H1(ξ) (A15)

−
∫ s

t
dq1 c0,0(q1)

∫ s

t
dq2 f0,0(q2) +

∫ s

t
dq1 h0,0(q1)

)
(A16)

+
∫ T

t
ds1

∫ T

s1
ds2 c1,0(s1)c0,1(s2) (A17)

×
(
2

∫ s1

t
dq1 c0,0(q1)

∫ s2

t
dq2 h0,0(q2)H4(ξ) (A18)

+
∫ s1

t
dq1 c0,0(q1)

(
2

∫ s2

t
dq2 f0,0(q2) − 3

∫ s2

t
dq2 h0,0(q2)

)
H3(ξ) (A19)

+
( ∫ s1

t
dq c0,0(q)

( ∫ s2

t
dq h0,0(q) (A20)

− 3
∫ s2

t
dq f0,0(q)) +

∫ s1

t
dq h0,0(q)

)
H2(ξ) (A21)

+
( ∫ s1

t
dq1 c0,0(q1)

∫ s2

t
dq2 f0,0(q2) −

∫ s1

t
dq1 h0,0(q1)

)
H1(ξ)

)
(A22)

+
∫ T

t
ds1

∫ T

s1
ds2 c0,1(s1)c1,0(s2) (A23)

×
(
2

∫ s1

t
dq1 h0,0(q1)

∫ s2

t
dq2 c0,0(q2)H4(ξ) (A24)

+
(
2

∫ s1

t
dq1 f0,0(q1) − 3

∫ s1

t
dq1 h0,0(q1)

) ∫ s2

t
dq2 c0,0(q2)H3(ξ)

(A25)

+
(( ∫ s1

t
dq1 h0,0(q1) − 3

∫ s1

t
dq1 f0,0(q1)

) ∫ s2

t
dq2 c0,0(q2) (A26)

+ 3
∫ s1

t
dq1 h0,0(q1)

)
H2(ξ) (A27)
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+
( ∫ s1

t
dq1 f0,0(q1)(2 +

∫ s2

t
dq2 c0,0(q2)

)
(A28)

− 2
∫ s1

t
dq1 h0,0(q1)

)
H1(ξ) −

∫ s1

t
dq1 f0,0(q1)

)
(A29)

+
∫ T

t
ds1

∫ T

s1
ds2 f1,0(s1)c0,1(s2)

∫ s1

t
dq1 c0,0(q1)

(
2H1(ξ) − 1

)
(A30)

+ 2
∫ T

t
ds1

∫ T

s1
ds2 h1,0(s1)c0,1(s2) (A31)

×
∫ s1

t
dq1 c0,0(q1)

(
2H2(ξ) − H1(ξ)

))
(A32)

− �1,0�0,1

(
τ�0(H2(ξ) − H1(ξ)) + 1

�0

)
, (A33)

�0,2 = 1

τ�0

(
1

2

∫ T

t
ds c0,2(s)

(( ∫ s

t
dq h0,0(q)

)2

H2(ξ) (A34)

+ 2
∫ s

t
dq1 h0,0(q1)

∫ s

t
dq2 f0,0(q2)H1(ξ) (A35)

+
(∫ s

t
dq f0,0(q)

)2

+ 2
∫ s

t
dq g0,0(q)

)
(A36)

+
∫ T

t
ds1

∫ T

s1
ds2 c0,1(s1)c0,1(s2) (A37)

×
( ∫ s1

t
dq1 h0,0(q1)

∫ s2

t
dq2 h0,0(q2)H4(ξ) (A38)

+
( ∫ s1

t
dq1 f0,0(q1)

∫ s2

t
dq2 h0,0(q2) (A39)

+
∫ s1

t
dq1 h0,0(q1)

∫ s2

t
dq2 f0,0(q2) (A40)

−
∫ s1

t
dq1 h0,0(q1)

∫ s2

t
dq2 h0,0(q2)

)
H3(ξ) (A41)

+
(
2

∫ s1

t
dq g0,0(q) +

∫ s1

t
dq1 f0,0(q1)

∫ s2

t
dq2 f0,0(q2) (A42)

−
∫ s1

t
dq1 f0,0(q1)

∫ s2

t
dq2 h0,0(q2) (A43)

−
∫ s2

t
dq1 f0,0(q1)

∫ s1

t
dq2 h0,0(q2)

)
H2(ξ) (A44)

−
(
2

∫ s1

t
dq g0,0(q) +

∫ s1

t
dq1 f0,0(q1)

∫ s2

t
dq2 f0,0(q2)

)
H1(ξ)

)
(A45)

+
∫ T

t
ds1

∫ T

s1
ds2 f0,1(s1)c0,1(s2) (A46)
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×
( ∫ s1

t
dq h0,0(q)H1(ξ) +

∫ s1

t
dq f0,0(q)

)
(A47)

+
∫ T

t
ds1

∫ T

s1
ds2 h0,1(s1)c0,1(s2)

( ∫ s1

t
dq h0,0(q)H2(ξ) (A48)

+
∫ s1

t
dq f0,0(q)H1(ξ)

))
− �2

0,1

2

(
τ�0(H2(ξ) − H1(ξ)) + 1

�0

)
. (A49)

Note that when d = 1 we have that �1,1 = �0,2 = 0 because in this case f = g =
h = 0.

Appendix B: Expressions for F, G1 andG2 in the Fong–Vasicek setting

We can derive from (7.72) and (7.73) that

F(t; T , 0) = κ1θ1

∫ T

t
ds G1(s; T , 0) + κ2θ2

∫ T

t
ds G2(s; T , 0), (B1)

G1(t; T , 0) = 1 − e−κ1(T−t)

κ1
, (B2)

and from (7.74) that

G2(t; T , 0) = e−κ1(T−t)

δ22κ
3
1

((
ᾱ1 + ᾱ2e

κ1(T−t)
)

(B3)

+ β̄λ̄U
(
�̄ + 1, �̄ + 1, e−κ1(T−t)ζ̄

) + γ̄ M
(
�̄ + 1, �̄ + 1, e−κ1(T−t)ζ̄

)

λ̄U
(
�̄, �̄, e−κ1(T−t)ζ̄

) + M
(
�̄, �̄, e−κ1(T−t)ζ̄

)
)

, (B4)

where we have introduced constants

ᾱ = ᾱ1 + ᾱ2, ᾱ1 = δ2κ
2
1 (ρ + i ρ̄), (B5)

ᾱ2 = −κ2
1 (δ2ρ + κ1κ2 + β̄2), β̄ = δ2

(
β̄1 + i ρ̄(β̄2 + κ2

1 )
)

,

(B6)

β̄1 = δ2ρ̄
2 + ρκ1(κ1 − κ2), β̄2 =

√
(δ2ρ + κ1κ2)2 − δ22,

(B7)

�̄ = �̄

2
+ β̄1

2iκ2
1 ρ̄

, �̄ = β̄2

κ2
1

+ 1, (B8)

ζ̄ = iδ2ρ̄

κ2
1

, γ̄ = −2�̄κ4
1 ζ̄

�̄
, (B9)

λ̄ = − γ̄ M(�̄ + 1, �̄ + 1, ζ̄ ) + ᾱM(�̄, �̄, ζ̄ )

β̄U (�̄ + 1, �̄ + 1, ζ̄ ) + ᾱU (�̄, �̄, ζ̄ )
. (B10)
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and where M andU are CHF of the first kind and second kind, respectively. Explicitly,
we have

M(a, b, z) =
∞∑

n=0

a(a + 1) . . . (a + n)

b(b + 1) . . . (b + n)

zn

n! , (B11)

U (a, b, z) = 	e(1 − b)

	e(a + 1 − b)
M(a, b, z) + 	e(b − 1)

	e(a)
z1−bM(a + 1 − b, 2 − b, z),

(B12)

where 	e is the Euler Gamma function.
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