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Abstract
We introduce a new system of stochastic differential equations which models
dependence of market beta and unsystematic risk upon size, measured by market
capitalization. We fit our model using size deciles data from Kenneth French’s data
library. This model is somewhat similar to generalized volatility-stabilized models.
The novelty of our work is twofold. First, we take into account the difference between
price and total returns (in other words, between market size and wealth processes).
Second, we work with actual market data. We study the long-term properties of this
system of equations, and reproduce observed linearity of the capital distribution curve.
In the “Appendix”, we analyze size-based real-world index funds.

Keywords Capital asset pricing model · Stochastic differential equations · Capital
distribution curve · Stochastic stability · Market weight

JEL Classification C58 · G17

1 Introduction

1.1 Size effect and the capital asset pricingmodel

The size of a stock is measured by its market capitalization, or market cap: current
stock price multiplied by the number of shares. For a stock portfolio, its market cap
is defined as weighted sum of market caps of constituent stocks, with weights equal
to the portfolio weights. The size is a very important fundamental characteristic of a
stock or a portfolio.

It is observed that small stocks have higher returns but higher risk than large
stocks. An explanation is that small companies are in their dynamic growth phase
and they have higher growth potential relative to large mature companies, but small
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companies are more vulnerable to failure and bankruptcy. Some researchers claim that
even after adjusting for risk, small stocks have higher returns than large stocks. This
adjustment can be made rigorous within the framework of the Capital Asset Pricing
Model (CAPM). Take a portfolio of stocks with total returns (including dividends,
not inflation-adjusted) Q(t) during time t . Here, we operate in a discrete-time setting.
Compare it with risk-free returns from short-term Treasury bills R(t). An investor
deserves premium reward for taking risk and investing in stocks rather than in safeTrea-
sury bills. We calculate this equity premium P(t) by subtracting P(t) = Q(t)− R(t).
Next, we compute this equity premium P0(t) for a market portfolio, used as a bench-
mark. An example of such benchmark is the Standard & Poor (S&P) 500, a widely
used benchmark for large U.S. stocks. Run a linear regression:

P(t) = α + βP0(t) + ε(t). (1)

The parameter β shows market exposure, how much risk the portfolio is exposed to
because of fluctuations in the benchmark. The parameter α shows excess return, how
much can one earn from this portfolio on top of thismarket return. They are often called
by their Greek names: beta and alpha. The residual ε(t) is called unsystematic risk
which can be eliminated by diversification. According to the CAPM, α = 0 and the
only risk which deserves rewards is the systematic risk (due to market exposure) since
other risk can be diversified away. The CAPM was proposed in the classic article
Sharpe (1964). Subsequent research cast doubt on the consistency of CAPM with
actual market data. In particular, Banz (1981) found that taking a portfolio of small
stocks generates positive α. That is, small stocks have higher returns than large stocks
even after adjusting for market exposure (which is greater than 1 for small stocks).
Subsequent classic article Fama and French (1993) confirmed this. Further research
on the size effect can be found in Semenov (2015) and van Dijk (2011) and references
therein. See also critique of CAPM in Fama and French (2004).

1.2 Our model

We study dependence of α, β, σ (the standard deviation of ε(t)) on the size, measured
by the market cap S(t), or, more precisely, by relative size to S0(t):

C(t) = ln
S0(t)

S(t)
. (2)

We would like to find functions α, β, σ of C such that for standardized white noise
terms Z(t), with E[Z(t)] = 0 and E[Z2(t)] = 1:

P(t) = α(C(t)) + β(C(t))P0(t) + σ(C(t))Z(t). (3)

This allows us to quantify how exactly α and β (and σ the standard deviation of
unsystematic risk) depend on the relative size measure. We then consider a version of
the Eq. (3) in which equity premia are replaced by price returns, that is, returns due
to price changes (or, equivalently, market cap changes). That is, we replace P(t) and
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P0(t) with ln(S(t + 1)/S(t)) and ln(S0(t + 1)/S0(t)), ignoring for now risk-free rate
and dividends. This gives us:

ln
S(t + 1)

S(t)
= α(C(t)) + β(C(t)) ln

S0(t + 1)

S0(t)
+ σ(C(t))Z(t) (4)

withC(t) from (2). This Eq. (4) includes only market caps of benchmark S0(t) and the
portfolio S(t). This time series equation or its continuous-time version, a stochastic
differential equation, allows us to model S(t) and S0(t) separately from dividends and
risk-free returns. On top of this, we add the Eq. (3). Surprisingly, market data gives
us almost the same functions α, β, σ in (3) and (4), but with differing coefficients.
Moreover, the white noise terms in (3) and (4) are almost perfectly (more than 99%)
correlated. This does not follow from any theoretical considerations, and seems simply
a piece of good luck which simplifies analysis.

We also adapt (3) and (4) for continuous time: Equity premium P(t) becomes
then d ln V (t), where V (t) is the wealth process adjusted for risk-free returns. More
precisely, V (t) = U (t)/U∗(t), where U (t) is the wealth accumulated from investing
U (0) = 1 in stock portfolio and reinvesting dividends, while U∗ is a similar wealth
process from investing in Treasury bills. Then (3) takes the form

d ln V (t) = α(C(t)) dt + β(C(t)) d ln V0(t) + σ(C(t)) dW (t), (5)

where V0 is the adjusted wealth process for the benchmark, and W is a Brownian
motion: A real-valued continuous process withW (t)−W (s) ∼ N (0, t − s) indepen-
dent of W (u), 0 ≤ u ≤ s, for all 0 ≤ s < t . This Brownian motion can be viewed
as a zoomed out random walk with very small but very frequent steps. For simplicity,
we assume that ln V0(t) is also a Brownian motion with positive drift (which captures
the tendency of long-term stock returns to be greater than risk-free returns). Although
equity premia have heavy tails and thus are not well-described by the Gaussian distri-
bution, the Brownian motion provides a simple first approximation. Similarly, Eq. (4)
becomes

d ln S(t) = α(C(t)) dt + β(C(t)) d ln S0(t) + σ(C(t)) dW (t), (6)

with C(t) from (2). By the above remark, we can assume that the driving Brownian
motion W from (5) and (6) is the same.

1.3 Dependence upon the size measure

What is the dependence of market exposure β, excess return α, and standard deviation
of unsystematic risk σ upon relative size?

Our statistical analysis does not yield conclusive results. The white noise tests for
Z unfortunately fail. Thus we cannot claim that a model (3), (4) passes goodness of
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fit tests. The most resonable guess for α, β, σ seems to be:

α(c), β(c), σ (c) =
{

α+c, 1 + β+c, σ+c, c ≥ c+
−α−|c|1/2, 1 + β−c, σ−|c|1/2, c ≤ −c−.

(7)

Here, α±, β±, σ±, c± are positive constants. Our data analysis does not allow us to
suggest these functions in a neighborhood of zero. This is due to the fact that observed
C(t) in our data do not come very close to zero.

1.4 Stochastic portfolio theory

The continuous-time version is useful because we can use stochastic calculus and
immerse these models in Stochastic Portfolio Theory (SPT). This is a framework
for stock market modeling which does not depend on particular models. It suggests
overweighing small stocks and continuous rebalancing. This means investing in small
stocks in proportion greater than their market cap would dictate. One example of this is
taking the equal-weighted portfolio. The central result of SPT: under mild conditions,
diversity (no stock dominates the entire market) and sufficient intrinsic volatility, such
portfolios outperform the market portfolio, which invests in each stock in proportion
to its market cap; see Banner and Fernholz (2008), Fernholz and Karatzas (2005),
Fernholz et al. (2005). This theory has solid theoretical basis, and is consistent with
observed data. For references, see the book Fernholz (2002) and a more recent survey
Fernholz and Karatzas (2009). SPT is based on the same observation as above: small
stocks have higher return and risk than large stocks.

Although we mentioned above that SPT is model-independent, there are some SPT
models which attempt to capture this observation: competing Brownian particles,
where logarithms of market caps evolve as Brownian motions with drift and diffu-
sion coefficients dependent on their current ranks relative to other particles, Banner
et al. (2005), Banner et al. (2011), Karatzas and Sarantsev (2016); their generaliza-
tions with jumps, or with dependence on both name and rank (so-called second-order
models): see articles Banner et al. (2011), Barnes and Sarantsev (2020), Shkolnikov
(2011); volatility-stabilized models, where ln S(t) are modeled by stochastic differ-
ential equations (SDE) with volatility inversely proportional to S(t), Pal (2011), and
their generalizations, Pickova (2014). As the number of stocks tends to infinity, the
limiting behavior of competing Brownian particles and volatility-stabilized models
is studied in Chatterjee and Pal (2010), Jourdain and Reygner (2015), Shkolnikov
(2012), Shkolnikov (2013).

In this article, we recognize the difference between price and total returns, and
model them separately as (3) and (4) for discrete time or (5) and (6) for continuous
time. SPT is much more developed for continuous-time diffusive models based on
SDE than for discrete-time, see Pal and Wong (2016). Thus it is reasonable to switch
to continuous time in (5) and (6).

Stochastic Portfolio Theory deals with diversification benefits in the form of excess
growth rate, and functionally generated portfolios. The standard assumption in SPT is
that there are no dividends; that is, price and total returns are the same. But here this is
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no longer true. Tomodel separately price returns (which drive themarket capitalization
processes) and total returns (which drive the wealth processes) requires an extension
of the SPT, in particular the concept of functionally generated portfolios. This is left
for future research.

1.5 Data analysis

We take real U.S. market data fromKenneth French’s Data Library online: market cap,
price and total returns for equal-weighted portfolios made from size deciles (stocks
split into top 10%, next 10%, etc. according to their size). This library contains data
processed from original raw data from the Center for Research in Securities Prices
(CRSP) at the University of Chicago, July 1926–June 2020 (84 years), monthly data.

We study models of n portfolios and the benchmark with market caps S0, . . . , Sn ,
relative size measuresC0, . . . ,Cn , and wealth processes V0, . . . , Vn . The correspond-
ing Brownian motions W1, . . . ,Wn from (6) and (5) (recall that these two equations
have the same Brownian motions) are assumed to be i.i.d. for simplicity (although our
analysis shows this to be inconsistent with actual data). Consider market weights:

μi (t) = Si (t)

S0(t) + · · · + Sn(t)
, i = 0, . . . , n,

representing the proportion of the i th stock in the overall market. Small stocks have
smaller market weights. The market weight vector μ = (μ0, . . . , μn) is a Markov
process on the n-dimensional simplex �n . If this market weight vector converges to
a unique stationary distribution as t → ∞ in the total variation norm (see definitions
in Sect. 4), then we call the system stable. In this article, we state and prove that
our market model is stable under certain conditions on α, β, σ . We also investigate
whether collisions: Si (t) = S j (t) happen (when small stocks grow and overtake large
stocks). Finally, at each time rank weights from top to bottom:

μ(0)(t) ≥ · · · ≥ μ(n)(t).

The capital distribution curve is the plot of ranked weights vs their ranks on the double
logarithmic scale:

(
ln k, lnμ(k)(t)

)
, k = 0, . . . , n.

For the actual market data, this plot is linear, except at the endpoint. See Fernholz
(2002), Figure 5.1 for the capital distribution curve for the CRSP stock universe for 8
days, chosen to be the last days (December 31) of the eight decades – December 31,
1929; December 31, 1939; …December 31, 1999. Strikingly, these 8 curves almost
completely coincide. In other words, this curve is stable in time. Previously mentioned
competing Brownian particles and volatility-stabilized models reproduce this feature,
see Chatterjee and Pal (2010) and Pal (2011) respectively. In this article, we establish
this property for our model using both theoretical analysis and simulations.
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1.6 Our contributions

We propose a newmodel within SPT which is consistent with CAPM and captures the
size effect. This model is consistent with long-term market data (although not fully
consistent) and captures its important features. We study its properties: long-term
stability, collisions of particles, market weights, and the capital distribution curve.

1.7 Organization of the article

In Sect. 2, we describe our data in detail and analyze it. This provides a motivation for
continuous-time modeling. In Sect. 3, we introduce a system of SDE as in (6) and (5),
and prove existence and uniqueness of the solution. We also discuss applicability of
SPT, since now size and wealth processes are different. In Sect. 4, we show stability
under certain conditions and see how they are compared with data analysis in Sect. 2.
In Sect. 5, we replicate the linear capital distribution curve. Finally, Sect. 6 is devoted
to conclusions and suggestions for future research. The “Appendix” contains some
data analysis for existing exchange-traded funds based on size. The code and data can
be found on GitHub: asarantsev/CAPM-SPT.

2 Data analysis

2.1 Data description

Our main data source, as mentioned in the Introduction, is the CRSP database at the
University of Chicago, taken from Kenneth French’s online data library. We take from
this library price and total monthly returns for equally-weighted portfolios made of
stock in each decile from July 1926 to June 2020. We analyze only the top 8 deciles,
corresponding to large-cap, mid-cap, and small-cap stocks. The two bottom deciles are
micro-cap stocks which we exclude. Deciles are created based on the market cap at the
end of each June. After a year, these deciles are reconstituted. The data library also has
average market capitalizations for the end of each month for each decile. Risk-free
monthly returns are computed as R(t) = ln(1 + r(t)/12), where r(t) are monthly
data for short-term Treasury bills taken from the Federal Reserve Economic Data
(FRED) website: January 1934–June 2020 series TB3MS and July 1926–December
1933 (discontinued) series M1329AUSM193NNBR.

Stock and portfolio returns can be computed in two ways: arithmetic A and geo-
metric G, which are related as follows: G = ln(1+ A). Arithmetic returns are quoted
regularly for their practicality in computing portfolio returns such as in the data library
which we used as our data source. The arithmetic return of a portfolio is equal to the
weighted average of arithmetic returns of constituent stocks, but here we convert
arithmetic returns to their geometric versions according to the above formula.

The advantage of geometric over arithmetic returns for our research is apparent
when combining compound interest rates. For example, 20% and 30% arithmetic

123



A stock market model based on CAPM and market size 411

βk(n)− 1 vs Ck(n) (βk(n)− 1)/Ck(n) vs Ck(n)(a) (b)

Fig. 1 Beta βk (n) vs Ck (n) for top-decile benchmark

returns combined gives 56% returns, whereas geometric returns combine for 50% as
expected.

Our time unit is equal to a month, of total T = 12 · (2020−1926) = 1128 months,
t = 0 corresponding to June 1926, t = T corresponding to June 2020.

For a decile k (with k = 1 for the top decile, k = 8 for the bottom decile), its
average market cap at end of month t is denoted by Sk(t), the price returns are Qk(t),
and the equity premium (total returns including dividends minus risk-free returns) is
Pk(t).

2.2 Beta analysis for price returns

Split T = 1128 months into N = 47 two-year, K = 24-month time periods. For each
period n = 1, . . . , N and each decile k = 1, . . . , 8, except the top one, which we
use as the benchmark (this top decile roughly corresponds to Standard & Poor 500
constituent stocks), regress

Qk(t) = αk(n) + βk(n)Q1(t) + δk(t), k = 2, . . . , 8, (8)

where t is in this period, and αk(n), βk(n) are intercept and slope (excess return and
market exposure), found using ordinary least squares; and δk(t) are residuals. Thus we
compute beta βk(n) for each decile from 2nd to 8th and each of 47 two-year periods.
For size measure of the kth decile vs top decile, take

Ck(n) = ln
S1(Kn)

Sk(Kn)
,

where S1(Kn) and Sk(Kn) are average market capitalizations for the beginning of nth
period. Then we plot βk(n) − 1 vs Ck(n) and (βk(n) − 1)/Ck(n) in Fig. 1. We plot
βk(n) − 1 instead of βk(n) since our benchmark for beta is 1: The beta for the top
decile (which coincides with the benchmark) is 1.
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(a) εk(n) vs Ck(n) (b) εk(n)/Ck(n) vs Ck(n)

Fig. 2 Residual εk (n) vs Ck (n) for top decile benchmark

2.3 Model suggestions for price returns

From Fig. 1(a), we get the suggestion that
βk(n) − 1 is proportional to Ck(n). This is confirmed by Fig. 1(b). This trans-

formation helps make variance constant. We still cannot claim that these normalized
quantities are i.i.d. white noise, since they fail white noise tests. Still, let us extract the
trend in βk(n) by replacing it with 1+ γCk(n) for some coefficient. Next, comparing
with (8), consider the residual Qk(t)− (1+ γCk(n))Q1(t). We make it dependent on
n (the overall two-year period), not individual months t in this period, by taking the
sum of geometric price returns Qk(t) over t in this two-year period. This sum is equal
to overall price returns Qk(t) in this two-year period. Then we let:

εk(n) := Qk(n) − (1 + γCk(n))Q1(n), k = 2, . . . , 8; n = 1, . . . , N . (9)

We then plot εk(n) vs Ck(n) in Fig. 2(a), together with εk(n)/Ck(n) vs Ck(n)

in Fig. 2(b). We see again in Fig. 2(a) that εk(n) depends on Ck(n) linearly, and in
Fig. 2(b) that the variance becomes constant. Again, we cannot claim that εk(n)/Ck(n)

are i.i.d. since white noise tests fail. But if we model this as i.i.d. N (μ, ρ2), we get:

εk(n)

Ck(n)
= μ + ρZk(n), (10)

where Zk(n) are i.i.d. standard normal randomvariables. A generalization of this could
be:

(Z2(n), . . . , Z8(n)) ∼ N7(0, 	) (11)

i.i.d. multivariate normal with mean zero vector and (not identity) covariance matrix
with units on the main diagonal (that is, E[Zk(n)] = 0 and E[Z2

k (n)] = 1). Combin-
ing (9) and (10), we get:

Qk(n) = (1 + γCk(n))Q1(n) + μCk(n) + ρCk(n)Zk(n). (12)
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(a) βk(n)− 1 vs Ck(n) (b) εk(n)/
√|Ck(n) vs Ck(n)

Fig. 3 8th decile (bottom) benchmark

We can estimate γ = 0.0045, μ = 0.0069, ρ = 0.052. This gives us (7), the top row.

2.4 Bottom decile as benchmark

If we repeat this analysis in previous subsection with benchmark 8th decile (which in
our research is the bottom decile since we ignore the 9th and 10th deciles), we get: For
βk(n) in (8), we plot βk(n) − 1 vs Ck(n) in Fig. 3(a). In this case, dependence is also
linear. Next, take γ , the mean of these quantities. Create residuals similarly to (9):

εk(n) = Qk(n) − (1 + γ
√|Ck(n)|)Q8(n), k = 1, . . . , 7, n = 1, . . . , N . (13)

The plot of these residuals vsCk(n), normalized by dividing by
√|Ck(n)|, is shown in

Fig. 3(b). Making white noise test for εk(n), we fail to reject this hypothesis. Assume
εk(n) ∼ N (μ, ρ2). Combining this with (13), we get:

Qk(n) = (1 + γ
√|Ck(n)|)Q8(n) + μ

√|Ck(n)| + ρ
√|Ck(n)|Zk(n),

k = 1, . . . , 7, n = 1, . . . , N ;
Zk(n) = (εk(n) − μ)/ρ ∼ N (0, 1) i.i.d.

(14)

This verifies (7), the bottom row. From (14), we see that linear functions from (12)
are not the only possible and reasonable functions for β. In Sect. 4, we state and prove
results for general α, β, ρ. Our coefficients are γ = 0.12, μ = 0.0055, ρ = 0.090.

2.5 Data analysis for equity premia

Repeating similar analysis for equity premia instead of price returns, we get similar
functions for both cases: top and bottom deciles as benchmarks. Moreover, point
estimates for price returns and equity premia are close; γ = 0.045, μ = 0.0017, ρ =
0.052 for the top decile benchmark, and γ = 0.12, μ = 0.0024, ρ = 0.088 for the
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8th decile benchmark. Thus functions β and σ for price returns and equity premia
are the same. Unfortunately, for α this is not true. We will have separate functions
for price returns and equity premia. As noted in Sect. 1, white noise terms Zk(n)

for price returns and equity premia are almost perfectly correlated, since the Pearson
correlation coefficient is greater than 99%. However, price returns and equity premia
for the benchmark are not perfectly correlated. Thus noise terms for size and wealth
processes are different.

2.6 Conclusions

Data analysis in previous subsections implies that excess return for small stocks is
positive, and market exposure for small stocks is greater than 1. Large stocks have
negative excess return and market exposure less than 1. In other words, small stocks
are riskier than larger stocks, but they have higher returns even after adjusting for
market exposure. We will accommodate this for continuous time in the next section.

3 A continuous-timemodel

3.1 Model description

Take a filtered probability space (
,F , (Ft )t≥0,P) with the filtration satisfying the
usual conditions (each Ft contains all P-null sets; that is, A ∈ Ft with P(A) = 0 and
B ⊆ A implies B ∈ Ft ; and the filtration is right-continuous, that is,Ft = ∩s>tFs for
all t ≥ 0). All stochastic processes X = (X(t), t ≥ 0) below are adapted, that is, X(t)
is Ft -measurable for every t ≥ 0. We say that a stochastic process B = (B(t), t ≥ 0)
is a standard Brownian motion if B(t)− B(s) ∼ N (0, t − s) is independent of Fs for
every 0 ≤ s < t .

Replace white noise terms Zk(n) in (12) or (14) by standard Brownian motions
Wk(t), or, more exactly, its differential dWk(t). Replace price returns Qk(n) by
d ln Sk(t). Recall that Sk(t) is the average market capitalization of the kth portfo-
lio at time t . Replace equity premia Pk(n) with d ln Vk(t), where Vk(t) is the wealth
(including reinvested dividends) of the kth decile, starting from Vk(0) = 1, divided by
wealth similarly computed from risk-free returns. Set three functions: α, β, σ ofCk(t)
(alpha, beta, and standard deviation of unsystematic risk). Set a separate function α∗
of Ck(t) for equity premia instead of price returns. We shall not set separate functions
for β and σ since from our data analysis we found that these functions are the same
for price returns and equity premia. We have n portfolios indexed by 1, . . . , n, and
the benchmark indexed with 0 (that is, total n + 1 portfolios). We write separate func-
tions for price returns and equity premia (which we denote by asterisks). Consider the
following system of SDE:

d ln Sk(t) = α(Ck(t)) dt + β(Ck(t)) d ln S0(t) + σ(Ck(t)) dWk(t), (15)

d ln Vk(t) = α∗(Ck(t)) dt + β(Ck(t)) d ln V0(t) + σ(Ck(t)) dWk(t), (16)
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where Ck(t) is the relative size measure defined in the Introduction:

Ck(t) = ln
S0(t)

Sk(t)
. (17)

We also model (S0, V0) using two-dimensional geometric Brownian
motion: (ln S0, ln V0) has drift vector (gS, gV ) and covariance matrix

�(S,V ) =
[

σ 2
S ρ0σSσV

ρ0σSσV σ 2
V

]

That is, for t > s we have: ln S0(t) − ln S0(s) ∼ N (gS(t − s), σ 2
S (t − s)) and

ln V0(t) − ln V0(s) ∼ N (gV (t − s), σ 2
V (t − s)); here, ρ0 is the correlation between

these two increments. Thus

ln S0(t) = ln S0(0) + gSt + σSWS(t),

ln V0(t) = ln V0(0) + gV t + σVWV (t),
(18)

where WS and WV are (correlated) standard Brownian motions. We assume
W1, . . . ,Wn are independent of (BS, BV ). Note that W1, . . . ,Wn can be dependent
of each other standard Brownian motions. We assume that W = (W1, . . . ,Wn) is
an n-dimensional Brownian motion with zero drift vector and covariance matrix �W

with units on the main diagonal.

Definition 1 For functions α, β, σ : R → R, real numbers gS, gV , 2 × 2 covariance
matrix�(S,V ), and n×n correlationmatrix�W , the systemofEqs. (15), (16), (17), (18)
is called a CAPM-size market model of N + 1 portfolios, indexed by 0, . . . , N . The
process Sk is called market size, or market cap, of the kth portfolio; and the process
Vk is called the wealth process for this kth portfolio. The portfolio indexed by k = 0
is called the benchmark. The functions α and β are called by their Greek names. The
function σ is called the standard error (of the diversifiable risk).

3.2 Existence and uniqueness

We can rewrite (15) using (17):

dCk(t) = −α(Ck(t)) dt + (1 − β(Ck(t)) d ln S0(t) + σ(Ck(t)) dWk(t). (19)

Remark 1 Each kth Eq. (15) is independent of other equations: Does not contain Sl
for other l = 1, . . . , n. It depends only on Sk and S0.

Definition 2 Define the explosion time as follows:

T := T1 ∧ . . . ∧ Tn, (20)

where Tk is the explosion time for (15), or, equivalently, for (19).
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On [0, T ), Eqs. (15) and (16) have a unique solution.

Theorem 1 (a) If α, β, σ, α∗ : R → R are measurable and locally bounded, there
exists a unique strong solution to the system of SDE (15), (16), (17), until the
explosion time T .

(b) If, in addition, we have the following linear bound:

|α(c)| + |β(c)| + |σ(c)| + |α∗(c)| ≤ K (1 + |c|),

then the explosion time is infinite: T = ∞.

Proof (a) First, let us show existence and uniqueness in (19). The diffusion part in this
equation is given by σ̃ (Ck(t)) dW̃k(t), where

σ̃ 2(c) := σ 2
S (1 − β(c))2 + σ 2(c),

and W̃k is a standard Brownian motion which is a combination of WS and Wk . The
drift part is given by γ̃ (Ck(t)) dt , where

γ̃ (c) := −α(c) + gS(1 − β(c)). (21)

Thus we can rewrite (19) as follows:

dCk(t) = γ̃ (Ck(t)) dt + σ̃ (Ck(t)) dW̃k(t). (22)

These functions γ̃ and σ̃ are measurable, and we apply Zvonkin (1974) to prove strong
existence and pathwise uniqueness of the solution Ck to this SDE, at least until the
explosion time Tk . Here we use Remark 1: the system of n equations C1, . . . ,Cn

consists of n independent one-dimensional SDE. Next, we can reconstruct S1, . . . , Sn
from C1, . . . ,Cn and S0: Sk(t) = S0(t)e−Ck (t). Since S0 is well-defined for infinite
time horizon (as geometric Brownianmotion), the strong solution Sk for (15) exists and
is pathwise unique, too, at least until the explosion time Tk . Finally, strong existence
and pathwise uniqueness for (16) can be shown as follows. Let

Tk,m := inf{t ≥ 0 | |Ck(t)| = m}, k = 1, . . . , n; m = 1, 2, . . .

Since α∗, β, σ are locally bounded, they are bounded on [−m,m]. We can rewrite (16)
as

d ln Vk(t) = γ (Ck(t)) dt + σ(Ck(t)) dWk(t), (23)

with Wk a standard Brownian motion, and

γ (c) := α∗(c) + gVβ(c), σ 2(c) := σ 2
Vβ2(c) + σ 2(c). (24)
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These two functions from (24) are bounded on [−m,m]. Rewriting (23) as

ln Vk(t) =
∫ t

0
γ (Ck(s)) ds +

∫ t

0
σ(Ck(s)) dWk(s),

we see that (strong) solution until t < Tk,m is well-defined and pathwise unique,
because the integrals (both usual and stochastic) are finite. As m → ∞, we have:
Tk,m ↑ Tk almost surely. Thus (16) have a pathwise unique strong solution until Tk .
Combining this with (20), we complete the proof of (a).

Next, (b) follows from (19) and (23) and estimates of linear growth for γ̃ and σ̃ :

|γ̃ (c)| + |σ̃ (c)| ≤ K∗(1 + |c|),

following from similar estimates for α, α∗, β, σ . ��

4 Main results

4.1 Long-term stability results

Recall the definition of market weights.

Definition 3 For the market model in (15), we define market weights as follows:

μi (t) = Si (t)

S0(t) + · · · + Sn(t)
, i = 0, . . . , n, t ≥ 0.

These market weights sum up to 1 for every t ≥ 0, and are in one-to-one cor-
respondence with C1(t), . . . ,Cn(t): There exists a bijection � : �n → R

n such
that

� : (m0, . . . ,mn) �→
(
ln

m0

m1
, . . . , ln

m0

mn

)
.

The processC = (C1, . . . ,Cn), as its each component, is aMarkov process. The same
is true for the market weight vector μ = (μ0, . . . , μn).

Definition 4 We call a probability measure πμ on �n a stationary distribution if
μ(0) ∼ πμ implies μ(t) ∼ πμ for all t ≥ 0. The market is called stable if this market
weight vector has a unique stationary distribution πμ, and when we start from another
initial distribution μ(0), then the distribution of μ(t) converges to πμ as t → ∞ in
the total variation (TV) norm:

sup
D⊆�n

|P(μ(t) ∈ D | μ(0) = x) − πμ(D)| → 0 as t → ∞.
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We can similarly (and equivalently) define stability for the process C =
(C1, . . . ,Cn), which is Rn-valued. These definitions of stability are equivalent, since
there is a one-to-one continuous mapping between C and μ.

Theorem 2 Under assumptions of Theorem 1, suppose

lim
c→∞

[α(c) + gS(β(c) − 1)] > 0 and lim
c→−∞ [α(c) + gS(β(c) − 1)] < 0. (25)

Then the market system is stable.

Proof We apply the method of Lyapunov functions. As a Lyapunov function, take the
following infinitely differentiable function V : R → [0,∞):

V (c) :=
{

|c|, c ≥ 2;
0, c ≤ 1.

This function can be constructed by smoothing kernel and convolution. The generator
for each Ck in (15) is given by

L{(c) := γ̃ (c) f ′(c) + 1

2
σ̃ 2(c) f ′′(c).

Recall (21): lim
c→∞ γ̃ (c) < 0 and lim

c→−∞
γ̃ (c) > 0. Combining this with (25), we get:

lim|c|→∞LV (c) < 0.

From the articles Meyn and Tweedie (1993a, b), we get tightness of each Ck . That
is, supt≥0 P(|Ck(t)| ≥ c) → 0 as c → ∞. The same is true for the vector C =
(C1, . . . ,Cn). Combining this observation with the following property: for each i ,
P(a < Ci (t) < b | Ci (0) = x) > 0, x, a, b ∈ R, we complete the proof. ��
Remark 2 We also have convergence

sup
g∈G

|E[g(Ck(t))] − (πC , g)| → 0, t → ∞,

G := {g : R → R | sup
z∈R

|g(z)|
1 + |z| < ∞}.

In particular, we have E[Ck(t)] → mC , where mC is the mean of the distribution πC .

Example 1 If β(c) = 1 + γ c, α(c) = μc, then α(c) + gS(β(c) − 1) = (μ + gSγ )c,
and (25) is equivalent to

Γ := μ + gSγ > 0. (26)
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Example 2 From the data analysis in Sect. 2, let

α(c) :=
{

α+|c|γ+ , c ≥ 0;
−α−|c|γ− , c ≤ 0; β(c) := 1 +

{
β+c, c ≥ 0;
β−c, c ≤ 0; σ(c) :=

{
σ+|c|γ+ , c ≥ 0;
σ−|c|γ− , c ≤ 0.

Here, α±, β±, γ±, σ± > 0. Let us find conditions for (25): For the first condition, if
γ+ < 1, we have gSβ+ > 0; if γ+ = 1, we have α+ + gSβ+ > 0; if γ+ > 1, we have
α+ > 0. Similarly for the second condition in (25). The actual estimates from Sect. 2
satisfy these conditions.

4.2 Hitting times

We wish to allow Si and S0 to exchange ranks. That is, we want to allow for Si (0) <

S0(0) but Si (t) > S0(t) for some t > 0, or vice versa. This is consistent with real world
market behavior,when portfolios exchange ranks based on size. In terms of relative size
measures Ci , we wish that Ci can move from positive half-line to negative half-line.
In particular, it must hit zero with positive probability.

This is not true for Example 1 if σ(c) = ρc for ρ > 0. Indeed, then Ci is a
geometric Brownian motion with drift −Γ and thus converges to 0 almost surely as
t → ∞. Thus the limiting stationary distribution is the delta measure at the origin,
δ(0,...,0). The corresponding limiting distribution for μ, the market weight vector is
δ(1/(n+1),...,1/(n+1)). If σ(c) is bounded away from zero, this changes the behavior of
C.

Theorem 3 Under conditions of Theorem 2, assume

σ(c) ≥ σ∗ > 0 for all c ∈ R. (27)

(a) For every c ∈ R with positive probability there exists a t > 0 such that Ci (t) = c.
(b) The stationary distribution πC for C = (C1, . . . ,Cn) has support on R

n. The
stationary distribution πμ for μ has support on �n.

Proof Return again to the Eq. (22), which is a simplified Eq. (19).

(a) Compute the scale function s for the diffusion Ck : Its derivative is

s′(c) = exp

[
−2

∫ c

0

γ̃ (u)

σ̃ 2(u)
du

]
.

There exist γ∗ > 0 and c∗ > 0 such that

γ̃ (u) ≤ −γ∗, c ≥ c∗; γ̃ (u) ≥ γ∗, c ≤ −c∗.

Moreover, σ̃ (u) ≥ σ(u) ≥ σ∗ for all u ∈ R. Thus for c ≥ c∗,

s′(c) ≥ s′(c∗) exp
[
2

∫ c

c∗

γ∗
σ 2∗

dc

]
= s′(c∗) exp

[
2(c − c∗)

γ∗
σ 2∗

]
. (28)
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A similar estimate is true for c ≤ −c∗:

s′(c) ≤ s′(−c∗) exp
[
2(|c| − c∗)

γ∗
σ 2∗

]
. (29)

The speed measure has bounded Lebesgue density 1/(s′(c)σ 2(c)), as shown
in (28), (29), (27). Apply Feller’s test from Karatzas and Shreve (1998), Chapter
5, Section 5 to complete the proof.

(b) The statement forπC follows fromellipticity of the elliptic partial differential equa-
tion governing the Lebesgue density of this stationary distribution. The statement
for πμ follows from one-to-one mapping between C and μ.

��

It seems to us that (27) is a reasonable assumption, since we would want to allow
for exchange of ranks of portfolios. This does not contradict our statistical analysis,
since we can observe only Ci (t) > c+ or Ci (t) < −c−. Our suggested functions σ(c)
do give σ(0) = 0 if we extend them to [−c−, c+] as is. But we could not observe
Ci (t) in a neighborhood of zero, thus we can extend it as a piecewise function.

Under assumptions of Theorem 3, the stationary distribution for each Ci has (after
normalization) density as above: 1/(s′σ 2),which is supported on thewhole real line but
is bounded. This is different from the case σ(c) = σ0c discussed above in Example 1,
when the stationary distribution is concentrated at one point, but the components of
the stationary distribution for the overall vector C are not independent since the SDE
for individual relative size measures are dependent.

4.3 Lack of propagation of chaos

For interacting particle systems, sometimes dependence (as a process itself, or station-
ary distribution) vanishes as the number of particles tends to infinity. This phenomenon
is called propagation of chaos, since the system becomes less interdependent andmore
chaotic. Such results were shown for competing Brownian particles and volatility-
stabilized models (see citations in the Introduction). But it is unreasonable to expect
this for the current system since all particles are dependent. The limiting density, if it
exists, will likely be a solution to a stochastic partial differential equation. To derive
this large system limit is left for future research.

5 Capital distribution curve

5.1 Modified plots

Let us study the capital distribution curve (ln k, lnμ(k)(t)) in this model. We solve the
system of stochastic differential equations explicitly. We use the values of Ck(t) to
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plot the capital distribution curve:

Ck(t) = ln
S0(t)

Sk(t)
= ln

S0(t)

S(t)
− lnμk(t).

Thus the ranking of Ck(t) reverts the ranking of ranked market weights:

0 ≤ C(1)(t) ≤ · · · ≤ C(n)(t).

Thus we can plot the modified curve (ln k,C(k)(t)). If this curve is linear, the same
can be said for the original capital distribution curve. Now we shall study the system
of stochastic differential equations (19) and plot (ln k,C(k)(t)) for fixed t .

5.2 Degenerate case

Even if the system is stable, under conditions of Theorem 2, capital distribution curve
can be degenerate, equal to one point: (1/(n + 1), . . . , 1/(n + 1)). This is the case
when Ck(t) → 0 a.s. as t → ∞ for each k = 1, . . . , n. Indeed, in this case μk(t) →
1/(n + 1) a.s. as t → ∞. In particular, this is true in Example 1 with σ(c) = ρc for
ρ > 0. Below, we consider the case when the capital distribution curve is not trivial.

5.3 Linear case

This is the case when

α(c) = μc, β(c) = 1 + γ c, σ (c) = ρ. (30)

Then the system (19) is linear:

dCk(t) = −μCk(t) dt − γCk(t)(gS dt + σS dWS(t)) + ρ dWk(t).

As shown in Karatzas and Shreve (1998), Chapter 5, Section 6.C we can solve this
system explicitly:

Ck(t) = Z(t)

[
Ck(0) −

∫ t

0
Z−1(u)(ρ dWk(u) − γ σSρ du)

]
;

Z(t) = exp

[
−(μ + γ gS)t − γ σS WS(t) − 1

2
γ 2σ 2

S t

]
.

Below, we show the simulation results for n = 100, with initial conditions Ck(0) = 0,
k = 1, . . . , n. We take estimated values μ = 0.0069, γ = 0.0045. For ρ, we take
the value 0.1, which is consistent with estimates. Finally, estimates for mean gS and
standard deviation σS of monthly price returns for the benchmark (top decile) are
given by gS = 0.0044 and σS = 0.0541. We simulate until t = 100, assuming all
W1, . . . ,Wn,WS are independent Brownian motions.
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Fig. 4 Capital distribution curve (ln k,C(k))

6 Conclusions

We developed a model in this article which can be viewed as an enhancement of the
Capital Asset Pricing Model, which stresses dependence of stock portfolios upon the
overall market. The portfolios are based on size (market cap), and the quantities α,
β, and standard error σ (of diversifiable idiosyncratic risk) depends on size (more
precisely, size of portfolio relative to the size of benchmark). Thus we wrote a system
of stochastic differential equations.

We write separately systems of equations for equity premia (total returns, including
dividends, minus risk-free returns), and for market size (that is, price returns). They
are very similar and the idiosyncratic risk can be taken the same. The equity premium
and price returns of the benchmark are driven by different random processes (although
correlated) (Fig. 4).

Using CRSP 1926–2020 monthly data of size deciles, we find reasonable guesses
for α, β, σ as functions of relative size. Our statistical analysis is not fully rigorous,
because it fails white noise tests. However, we do find some reasonable results.

On the theoretical side, we prove long-term stability results: under some conditions
on α, β, σ , the vector of relative size measures converges as t → ∞ to a stationary
distribution.

Finally, an important feature of real-world markets: stability and linearity of the
capital distribution curve, is reproduced in our model by numerical simulation.
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Future research can include making more sophisticated time series models which
take into account autocorrelations, or non-Gaussian fluctuations of themarket. It seems
important to develop the SPT for the case of dividends, when price and total returns
(and by extension market capitalizations and wealth processes) are different. Finally,
we would like to derive a large system limit.
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Appendix: Statistical analysis of size-based index funds

These size deciles of theCRSP universe are not directly investable. But there exist size-
based funds available for individual investors. Among many of them, let us take JKJ,
JKG,JKD: iSharesMorningstar Small-Cap,Mid-Cap, andLarge-Cap exchange-traded
funds. These are based on largest 70%, next 20%, and next 7% of the total universe
of stocks. In other words, Large-Cap corresponds to Deciles 1–7 weighted by their
market capitalizations, Mid-Cap corresponds to Deciles 8–9 weighted by their market
capitalizations, and Small-Cap corresponds to the top 7% of the bottom Decile 10.

Monthly total arithmetic returns for these funds are taken fromBlackRockweb site,
July 2004 – August 2020. For risk-free returns, we take 1-month Treasury Constant
Maturity Rate from Federal Reserve Economic Data web site, observed at the last
day of each month June 2004 – July 2020. We compute geometric versions of these
returns. From each such rate r , we obtain geometric total monthly returns for the next
month ln(1 + r/1200). Then we compute equity premia PS, PM , PL for these funds.
Regress the first two upon the third:

{
PS(t) = αS + βS PL(t) + εS(t);
PM (t) = αM + βM PL(t) + εM (t);

[
εS(t)
εM (t)

]
∼ N2

([
0
0

]
,Σ

)
. (31)

The quantile–quantile plots, Shapiro–Wilk and Jarque–Bera normality tests, and auto-
correlation function plots allow us to assume that each series of residuals can be
modeled by i.i.d. normal distribution. Thus we can apply standard Student tests for
regression coefficients. The 95% confidence intervals for each of αS and αM contain
zero. Thus we can assume that αS = αM = 0, but the confidence intervals for βS and
βM do not contain 1. Point estimates of these coefficients are: βS = 1.27, βM = 1.15.
Estimates for standard errors for residuals, and cross-correlation between residuals
are: σS = 0.026, σM = 0.019, ρ = 0.83. The R2 values for each regression are 87%
and 80%. Thus we see that the CAPM works for actual traded size-based funds.
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