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Abstract We show that the absence of arbitrage in a model with both fixed and
proportional transaction costs is equivalent to the existence of a family of absolutely
continuous single-step probability measures, together with an adapted process with
values within the bid-ask intervals that satisfies the martingale property with respect
to each of the measures. This extends Harrison and Pliska’s classical Fundamental
Theorem of Asset Pricing to the case of combined fixed and proportional transaction
costs.
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1 Introduction

The Fundamental Theorem of Asset Pricing (FTAP), characterising the absence of
arbitrage opportunities as equivalent to the existence of a risk neutral probability
measure, has been studied for a large variety of financial market models. The first to
establish the result for discrete time models with finite state space were Harrison and
Pliska (1981). Dalang et al. (1990) extended the theorem to the case of infinite state
space, and Delbaen and Schachermayer (1994, 2006) to continuous-time models.
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The above classical results apply to frictionless models. Harrison and Pliska’s result
was extended tomodelswith proportional transaction costs by Jouini andKallal (1995),
Kabanov and Stricker (2001) and Ortu (2001). Furthermore, Roux (2011) included
interest rate spreads in addition to proportional transaction costs. Similarly, the result
by Dalang et al. (1990) involving an infinite state space was extended to models
with proportional transaction costs by Zhang and Deng (2002), Kabanov et al. (2002)
and Schachermayer (2004). Important milestone achievements concerning the Funda-
mental Theorem of Asset Pricing in the presence of proportional transaction costs also
include, in chronological order, Kabanov (1999), Grigorev (2005), Bouchard (2006),
Guasoni (2006), Cherny (2007), Kabanov and Safarian (2009), Guasoni et al. (2010,
2012), Denis and Kabanov (2012), Dolinsky and Soner (2014), Rola (2015), Lépinette
and Tran (2016, 2017) and Zhao and Lépinette (2018), among others.

Under fixed transaction costs, to our best knowledge, the equivalence between the
absence of arbitrage and the existence of risk neutral measures has so far been studied
in just one paper, by Jouini et al. (2001). Moreover, characterizations of no-arbitrage
conditions for fixed-cost models in terms of separating risk measures (rather than risk
neutral measures) are contained as special cases in the work of Lépinette and Tran
(2016, 2017).

The long-standing question of extending the Fundamental Theorem of Asset Pric-
ing to cover the situation when both fixed and proportional transaction costs apply
simultaneously is addressed in the present paper. We use the term ‘combined costs’ as
shorthand when referring to this case. Such costs are ubiquitous in the markets, hence
it is important to be able to characterise the absence of arbitrage in their presence. In
Theorem 1 we show that the absence of arbitrage in a market with combined costs is
equivalent to the existence of a family of single-step probability measures absolutely
continuous with respect to (but not necessarily equivalent to) the physical probabil-
ity, along with a martingale with respect to such a family of measures (as defined in
Sect. 2) and taking values between the bid and ask prices. By doing so, we extend
the classical result of Harrison and Pliska (1981) for a finite state space to the case
of combined costs. Later on, in Corollary 2 we provide another equivalent condition
for the absence of combined-cost arbitrage, namely the existence of an embedded
arbitrage-free model with fixed costs.

The technical difficulties inherent in the problem solved here are due to a combina-
tion of two factors. On the one hand, under proportional costs, the absence of arbitrage
in the full multi-step model is not equivalent to the condition that every single-step
submodel should be arbitrage free (even though such an equivalence holds in friction-
less models as well as under fixed costs), preventing an argument by reduction to a
single step. On the other hand, fixed costs imply that the set of solvent portfolios suf-
fers from the lack of convexity.While these difficulties have been tackled separately in
the context of proportional costs and, respectively, fixed costs only, they require fresh
ideas to handle their compounded effect. This is achieved in the proof of Theorem 1.

Finally, we refer to the recent work by Lépinette and Tran (2016, 2017), in which
arbitrage in a non-convex market model with friction (including the case of simultane-
ous fixed and proportional costs) has been considered, and the absence of asymptotic
arbitrage has been characterised by the existence of a so-called equivalent separating
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probability measure. However, no link has been made with risk neutral probabilities,
by contrast to the present paper.

2 Notation and preliminaries

Let T be a positive integer and let (Ω,Σ,P) be a finite probability space equippedwith
a filtration F = (Ft )

T
t=0. We assume (without loss of generality) that the physical

measure P satisfies the condition P(A) > 0 for each non-empty A ∈ FT , and the
sigma-fieldF0 has a single atom, that is,F0 = {∅,Ω}. We refer to the atoms ofFt as
the nodes at time t = 0, . . . , T , and writeΛt for the set of nodes at time t = 0, . . . , T .
For any non-terminal node λ ∈ Λt , where t = 0, . . . , T − 1, we denote by succ(λ)

the set of successor nodes of λ, that is, nodes μ ∈ Λt+1 such that μ ⊂ λ.
For each t = 0, . . . , T , we can identify any Ft -measurable random variable X

with a function on Λt , and will write Xλ for the value of X at a node λ ∈ Λt .
We shall say that

Q := {Qλ
t | t = 0, . . . , T − 1, λ ∈ Λt }

is a family of absolutely continuous single-step probabilitymeasureswhenever Qλ
t

is a probability measure defined on the sigma-field

λ ∩ Ft+1 := {λ ∩ A | A ∈ Ft+1}

for each t = 0, . . . , T −1 and λ ∈ Λt . Note that absolute continuity of these measures
with respect to P is automatically ensured by the assumption that P(A) > 0 for each
non-empty A ∈ FT . Such a family of measures gives rise to a unique probability
measure Q defined on the sigma-field FT by

Q(λ) :=
T−1∏

t=0

Qλt
t (λt+1) (1)

for any λ ∈ ΛT , where λt ∈ Λt for t = 0, . . . , T is the unique sequence of nodes
such that λ0 ⊃ · · · ⊃ λT = λ. In general, the family Q is a richer object than the
corresponding measure Q in that it carries more information at those nodes λ where
Q(λ) = 0.

Furthermore, we shall say that an adapted process S is a martingale with respect
to the family of measures Q if

Sλ
t =

∑

μ∈succ(λ)

Qλ
t (μ)Sμ

t+1 (2)

for each t = 0, . . . , T − 1 and λ ∈ Λt . This condition implies that, in particular,
S is a martingale (in the usual sense) under the probability measure Q related to the
family Q by (1). In the case whenQ is equivalent to the physical probability P, Eq. (2)
is the standard martingale property expressed in terms of the conditional probabilities
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Q(μ|λ) = Qλ
t (μ). However, whenQ(λ) = 0 for some node λ at time t (in which case

Q is absolutely continuous with respect to P, but not equivalent to P), the conditional
probabilityQ(μ|λ) is notwell defined.Nonetheless, (2) still applieswith Qλ

t (μ) taking
over the role of the conditional probability.

Families of absolutely continuous single-step probability measures andmartingales
with respect to such families of measures will be used to characterise the absence of
arbitrage in a market model with combined (fixed and proportional) transaction costs;
see Theorem 1.

3 Model with fixed and proportional costs

Let A, B and C be R-valued processes adapted to the filtrationF such that 0 < B ≤
A < ∞ and 0 < C < ∞. We refer to this collection of processes together with the
filtration as a combined-cost model, in which A, B play the respective roles of ask
and bid stock prices, with C representing fixed transaction costs.

The notions of solvency and self-financing can be formalised as follows in the
combined-cost model.

Definition 1 (1) We say that a portfolio (x, y) ∈ R
2 of cash and stock is combined-

cost solvent at time t = 0, . . . , T and node λ ∈ Λt when liquidating the stock
position leaves a non-negative cash amount

x + Bλ
t y

+ − Aλ
t y

− − Cλ
t ≥ 0

after the fixed transaction costCλ
t is met, or when both the cash and stock positions

are non-negative to begin with, that is,

x, y ≥ 0.

We denote by G λ
t the set of such portfolios (x, y).

(2) We define a combined-cost self-financing strategy as an R
2-valued F -

predictable process (X,Y ) = {(Xt ,Yt )}T+1
t=0 such that

(Xλ
t − Xλ

t+1,Y
λ
t − Y λ

t+1) ∈ G λ
t

for each t = 0, . . . , T and λ ∈ Λt .

Remark 1 We can also consider the combined-cost liquidation value

Lλ
t (x, y) := x + (Bλ

t y
+ − Aλ

t y
− − Cλ

t )1y /∈[0,Cλ
t /Bλ

t ]

of a portfolio (x, y) ∈ R
2 at time t = 0, . . . , T and node λ ∈ Λt . Observe that

(x, y) ∈ G λ
t is equivalent to Lλ

t (x, y) ≥ 0. Figure 1 shows a typical set G λ
t of

combined-cost solvent portfolios.
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Fig. 1 Set G λ
t of combined-cost

solvent portfolios (x, y) with
Aλ
t = 1.5, Bλ

t = 0.5, Cλ
t = 1.0

4 Fundamental Theorem of Asset Pricing under fixed and proportional
costs

Definition 2 A combined-cost self-financing strategy (X,Y ) will be referred to as a
combined-cost arbitrage opportunity whenever the following conditions hold:

(1) (X0,Y0) = (0, 0),
(2) XT+1 ≥ 0 and YT+1 ≥ 0,
(3) Xλ

T+1 > 0 for some λ ∈ ΛT .

Remark 2 The absence of combined-cost arbitrage can be described in terms of the
liquidation value introduced in Remark 1. Namely, there is no combined-cost arbitrage
opportunity if and only if LT (XT ,YT ) = 0 for every combined-cost self-financing
strategy (X,Y ) such that (X0,Y0) = (0, 0) and LT (XT ,YT ) ≥ 0. This is a direct
extension of the classical no-arbitrage (NA) condition studied byKabanov and Stricker
(2001), Schachermayer (2004) and others.

The Fundamental Theorem of Asset Pricing extends to the case of a combined-cost
model as follows.

Theorem 1 The following conditions are equivalent:

(1) There is no combined-cost arbitrage opportunity in the model with ask and bid
prices A, B and fixed costs C;

(2) There exist an adapted process S and a family of absolutely continuous single-step
probability measures Q such that S is a martingale with respect to the family Q
and B ≤ S ≤ A.

Proof To prove the implication (1) ⇒ (2), assume that there is no combined-cost
arbitrage opportunity. We begin by constructing two adapted processes U and V by
backward induction:

Uλ
T := Aλ

T , V λ
T := Bλ

T
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for each λ ∈ ΛT , and

Uλ
t−1 := max

μ∈succ(λ)
(Uμ

t ∧ Aμ
t ), V λ

t−1 := min
μ∈succ(λ)

(Vμ
t ∨ Bμ

t )

for each t = 1, . . . , T and λ ∈ Λt−1.
Having constructed the processesU and V , we claim that for each t = 0, . . . , T −1

there exist stopping times σ, τ > t such that

Ut ≥ Aσ , Vt ≤ Bτ .

We prove the existence of σ by backward induction. For τ the argument is similar and
will be omitted for brevity. For t = T − 1 we get UT−1 ≥ Aσ by putting σ := T .
Now suppose that for some t = 1, . . . , T − 1 we have already established that there
is a stopping time η > t such that Ut ≥ Aη. Let us put

σ := η1{At>Ut } + t1{At≤Ut }.

It follows that

Ut−1 ≥ Ut ∧ At = Ut1{At>Ut } + At1{At≤Ut } ≥ Aη1{At>Ut } + At1{At≤Ut } = Aσ ,

completing the proof of the claim.
Next we show that

Vt ∨ Bt ≤ Ut ∧ At (3)

for each t = 0, . . . , T . Suppose that this were not so, and take the largest t = 0, . . . , T
such that (3) is violated. Since UT = AT , VT = BT and BT ≤ AT , it follows that
t < T , and we have Vt+1 ∨ Bt+1 ≤ Ut+1 ∧ At+1, which implies that Vt ≤ Ut .
Moreover, we know that Bt ≤ At . Hence, for (3) to be violated, at least one of the
following two inequalities would have to hold at some node λ ∈ Λt :

(a) V λ
t > Aλ

t . We know that there is a stopping time τ > t such that Bτ ≥ Vt ,
so Bτ > At on λ. In this case the strategy to buy a large enough position in
stock for Aλ

t at time t and node λ, and to sell it for Bτ at time τ for any scenario
belonging to λ (and otherwise to do nothing) would be a combined-cost arbitrage
opportunity. To be precise, such a strategy (X,Y ) could be defined as

(Xs,Ys) :=
⎧
⎨

⎩

(0, 0) for s = 0, . . . , t,
1λ(−At z − Ct , z) for s = t + 1, . . . , τ,
1λ(−At z + Bτ z − Ct − Cτ , 0) for s = τ + 1, . . . , T + 1,

for a large enough number z > 0 such that (−At + Bτ ) z > Ct+Cτ on λ. This can
be done because, on a finite probability space, the random variables−At +Bτ > 0
and Ct + Cτ take only finitely many values, hence there are constants m, M > 0
such that −At + Bτ > m and Ct + Cτ < M , and we can put z := M/m.
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(b) Uλ
t < Bλ

t . We know that there is a stopping time σ > t such that Aσ ≤ Ut , so
Aσ < Bt on λ. The strategy (X,Y ) defined as

(Xs,Ys) :=
⎧
⎨

⎩

(0, 0) for s = 0, . . . , t,
1λ(Bt z − Ct ,−z) for s = t + 1, . . . , σ,

1λ(Bt z − Aσ z − Ct − Cσ , 0) for s = σ + 1, . . . , T + 1,

would be a combined-cost arbitrage opportunity when z > 0 is large enough so
that (Bt − Aσ ) z > Ct + Cσ on λ. Such a number z can be found in a similar
manner as in (a).

This contradicts the assumption that there is no combined-cost arbitrage opportunity.
Claim (3) has therefore been proved.

We are ready to construct a process S and a family of single-step probability mea-
sures Q by induction. At time t = 0 we take any value

S0 ∈ [V0 ∨ B0,U0 ∧ A0].

Now suppose that an Ft -measurable random variable St ∈ [Vt ∨ Bt ,Ut ∧ At ] has
already been constructed for some t = 0, . . . , T − 1. For each λ ∈ Λt we have

V ν
t+1 ∨ Bν

t+1 = V λ
t ≤ Sλ

t ≤ Uλ
t = Uμ

t+1 ∧ Aμ
t+1

for some μ, ν ∈ succ(λ). If μ = ν, we put

Sμ
t+1 := Uμ

t+1 ∧ Aμ
t+1, Sν

t+1 := V ν
t+1 ∨ Bν

t+1

and, for any η ∈ succ(λ) other than μ or ν, we take as Sη
t+1 any value

Sη
t+1 ∈ [V η

t+1 ∨ Bη
t+1,U

η
t+1 ∧ Aη

t+1].

This means that

min
μ∈succ(λ)

Sμ
t+1 ≤ Sλ

t ≤ max
μ∈succ(λ)

Sμ
t+1,

so there is a probability measure Qλ
t on the sigma-field λ ∩Ft+1 such that (2) holds.

But if μ = ν, then we put

Sμ
t+1 := Sλ

t

and, for any η ∈ succ(λ) other than μ, we take as Sη
t+1 any value

Sη
t+1 ∈ [V η

t+1 ∨ Bη
t+1,U

η
t+1 ∧ Aη

t+1].

Moreover, we put Qλ
t (μ) := 1 and Qλ

t (η) := 0 for any η ∈ succ(λ) other than μ,
which defines a probability measure Qλ

t on the sigma-field λ ∩ Ft+1 such that (2)
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holds. This construction produces an adapted process S such that B ≤ S ≤ A, and a
family of absolutely continuous single-step probability measures Q such that S is a
martingale with respect to the family Q. The implication (1) ⇒ (2) has been proved.

Conversely, to verify that (2) ⇒ (1), we assume that condition (2) holds and,
to argue by reductio ad absurdum, suppose that there is a combined-cost arbitrage
opportunity (X,Y ). Condition (2) implies that

Xλ
t + Sλ

t−1Y
λ
t ≥ min

μ∈succ(λ)
(Xλ

t + Sμ
t Y

λ
t ) (4)

for each t = 1, . . . , T and λ ∈ Λt−1. Next, since (X,Y ) is a combined-cost self-
financing strategy, it follows that, for each t = 0, . . . , T and λ ∈ Λt ,

Xλ
t − Xλ

t+1 + Sλ
t (Y λ

t − Y λ
t+1)

≥ Xλ
t − Xλ

t+1 + Bλ
t (Y λ

t − Y λ
t+1)

+ − Aλ
t (Y

λ
t − Y λ

t+1)
−

≥ Cλ
t > 0 (5)

or
Xλ
t ≥ Xλ

t+1, Y λ
t ≥ Y λ

t+1. (6)

Hence
Xt + StYt ≥ Xt+1 + StYt+1 (7)

for each t = 0, . . . , T . We can show by backward induction that

Xt+1 + StYt+1 ≥ 0 (8)

for each t = 0, . . . , T . Clearly, (8) holds for t = T , given that XT+1 ≥ 0 and
YT+1 ≥ 0. Now suppose that (8) holds for some t = 1, . . . , T . Take any λ ∈ Λt−1.
Then

Xλ
t + Sλ

t−1Y
λ
t ≥ min

μ∈succ(λ)
(Xλ

t + Sμ
t Y

λ
t ) ≥ min

μ∈succ(λ)
(Xλ

t+1 + Sμ
t Y

λ
t+1) ≥ 0,

where the first inequality holds by (4), the second by (7) and the last one by the
induction hypothesis, completing the backward induction argument.

To proceed further, let us put

t := max{s = 0, . . . , T + 1 | X0 ≥ · · · ≥ Xs and Y0 ≥ · · · ≥ Ys}.

Since (X,Y ) is a combined-cost arbitrage opportunity, we know that X0 = Y0 = 0 and
Xλ
T+1 > 0 for some λ ∈ ΛT . If t = T + 1, it would mean that 0 = X0 ≥ Xλ

T+1 > 0,
a contradiction. On the other hand, if t ≤ T , then there would be a λ ∈ Λt such that
(6) fails, so (5) would have to hold, implying that

Xλ
t + Sλ

t Y
λ
t > Xλ

t+1 + Sλ
t Y

λ
t+1 ≥ 0,
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where the last inequality follows from (8). However, that too is impossible as Xt ≤
X0 = 0 and Yt ≤ Y0 = 0. This contradiction completes the proof.

5 Fixed costs

A fixed-cost model involves two processes S andC adapted to the filtrationF , where
0 < S < ∞ represents the stock prices and 0 < C < ∞ the fixed transaction costs.
This is a special case of the combined-cost model when the ask and bid prices coincide.
Hence, fixed-cost solvent portfolios, fixed-cost self-financing strategies and fixed-cost
arbitrage opportunities are covered by Definitions 1 and 2 with A := B := S. In this
case Theorem 1 reduces to the following result.

Corollary 1 The following conditions are equivalent:

(1) There is no fixed-cost arbitrage opportunity in the model with stock prices S and
fixed costs C;

(2) There exists a family of absolutely continuous single-step probability measures Q
such that S is a martingale with respect to Q.

This version of the Fundamental Theorem of Asset Pricing under fixed costs is
similar to that obtained by Jouini et al. (2001). However, our method of proof (the
proof of Theorem 1) is different. Moreover, the equivalent condition for the absence
of fixed-cost arbitrage is expressed in terms of single-step measures only, whereas that
in Jouini et al. (2001) relies on a larger family of measures.

As a consequence of Theorem 1, together with Corollary 1, we also obtain an
alternative characterisation of the absence of combined-cost arbitrage in terms of an
embedded arbitrage-free fixed-cost model. It resembles earlier results for proportional
transaction costs, which involve embedding an arbitrage-free frictionless model; for
example, see Roux (2011).

Corollary 2 The following conditions are equivalent:

(1) There is no combined-cost arbitrage opportunity in the model with ask and bid
prices A, B and fixed costs C;

(2) There exists a process S adapted to the filtration F such that B ≤ S ≤ A and
the model with stock prices S and fixed costs C admits no fixed-cost arbitrage
opportunity.

6 Concluding remarks

In this work the classical Fundamental Theorem of Asset Pricing due to Harrison
and Pliska (1981) is extended to discrete market models with simultaneous fixed and
proportional transaction costs and finite state space. This also extends later work on
the Fundamental Theorem of Asset Pricing under proportional costs such as Jouini
and Kallal (1995), Kabanov and Stricker (2001), Ortu (2001) and Roux (2011), and
under fixed costs as in Jouini et al. (2001).
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Developments for models with infinite state space and/or continuous time and/or
several assets are likely to follow. Moreover, as the Fundamental Theorem of Asset
Pricing has now been established formarkets with simultaneous fixed and proportional
costs, it will inform research on pricing and hedging derivative securities in this setting.
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