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Abstract
We consider a game-theoretic model of a market where investors compete for payoffs
yielded by several assets. The main result consists in a proof of the existence and
uniqueness of a strategy, called relative growth optimal, such that the logarithm of
the share of its wealth in the total wealth of the market is a submartingale for any
strategies of the other investors. It is also shown that this strategy is asymptotically
optimal in the sense that it achieves the maximal capital growth rate when compared to
competing strategies. Based on the results obtained, we study the asymptotic structure
of the market when all the investors use the relative growth optimal strategy.

Keywords Relative growth optimal strategy · Asset market game · Evolutionary
finance · Martingale convergence

JEL Classification C73 · G11

1 Introduction

Growth optimal strategies are a well-studied topic in mathematical finance. However,
the majority of models in the literature assume exogenously specified returns of assets
and consider models with a single investor. In this setting growth optimal strategies
arise as solutions of optimization problems (see Breiman 1961; Algoet and Cover
1988; Platen 2006; Karatzas and Kardaras 2007). In the present paper we study growth
optimality of investment strategies from a game-theoretic perspective and consider
a model of a market (an asset market game), where several investors compete for
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random payoffs yielded by several assets at discrete moments of time on the infinite
time interval. The payoffs are divided between the investors proportionally to shares
of assets they buy at prices determined endogenously by a short-run equilibrium of
supply and demand. As a result, the profit or loss of one investor depends not only on
the realized payoffs, but also on actions of the competitors. In our model we assume
that the assets are short-lived in the sense that they are traded at time t , yield payoffs
at t + 1, and then the cycle repeats. Thus, they can be viewed as some short-term
investment projects rather than, e.g., common stock.

The goal of the paper is to identify an investment strategy, called relative growth
optimal, such that the logarithm of the relative wealth of an investor who uses it is
a submartingale no matter what the strategies of the other investors are (by relative
wealth we mean the share of wealth of one investor in the total wealth of the market).
In conventional (single-investor, i.e. non-game) market models, it is well-known that
the submartingale property implies various asymptotic optimality properties for the
growth rate of wealth (see, e.g., Algoet and Cover 1988; Karatzas and Kardaras 2007).
Results of a similar nature turn out to be true in our model as well, though their
proofs use different ideas. In particular, we show that the relative wealth of an investor
who uses the relative growth optimal strategy stays bounded away from zero with
probability one. We also show that if the representative strategy of the other investors
is asymptotically different, then such an investor will dominate in the market—the
corresponding share of wealth will tend to one. In addition, the relative growth optimal
strategymaximizes the growth rate of wealth and forms a symmetric Nash equilibrium
in a game where all investors maximize their expected relative wealth.

Our model extends the model proposed by Amir et al. (2013), who also studied
optimal strategies in an asset market gamewith short-lived assets. Themain difference
between our model and their model is that we assume the presence of a bank account
(or a risk-free asset) with exogenous interest rate. In the simplest form, if the interest
rate is zero, it just gives investors the possibility to put only a part of their wealth in
the assets and to keep a part of wealth in cash. In the model of Amir et al. (2013), it
is assumed that the whole wealth is reinvested in the assets in each time period, and
that model can be obtained from ours if one let the interest rate be −1, so that it is not
reasonable to keep money in the bank. The inclusion of a bank account in the model
leads to a more difficult construction of the optimal strategy. But, at he same time, it
also opens a series of new interesting questions regarding the asymptotic behavior of
the absolute wealth of investors that do not arise in the model where the whole wealth
is reinvested in assets.

Our paper can be reckoned among papers that study long-run performance of
investment strategies from the point of view of evolutionary dynamics, i.e. a mar-
ket is considered as a population of various strategies which compete for capital. This
approach can be used to analyze forces that determine long-run market dynamics
through a process of natural selection of investment strategies, see, e.g., the semi-
nal paper by Blume and Easley (1992), where a model with a discrete probability
space was considered, and its further development (Blume and Easley 2006). In later
works this field is called Evolutionary Finance; for recent literature reviews, see, e.g.,
Evstigneev et al. (2016) and Holtfort (2019).
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The paper is organized as follows. In Sect. 2, we formulate the model and intro-
duce the notion of relative growth optimality of investment strategies. In Sect. 3, we
construct a relative growth optimal strategy in an explicit form and show that it is
unique in a certain sense. Sections 4 and 5 study further optimality properties of this
strategy. Section 6 is devoted to the analysis of the asymptotics of the absolute wealth
of investors when they use the relative growth optimal strategy.

2 Themodel

The market in the model consists of M ≥ 2 investors, N ≥ 1 risky assets, and a bank
account (or cash). The assets yield payoffs which are distributed between the investors
at discrete moments of time t = 1, 2, . . . The investors choose, at every moment of
time, proportions of their wealth they invest in the assets and proportions they keep in
the bank account. The assets live for one period: they are traded at time t , yield payoffs
at t + 1, and then the cycle repeats. Asset prices are determined endogenously by a
short-run equilibrium of supply and demand; in this model, without loss of generality,
we assume that each asset is in unit supply.

Let (�,F ,P) be a probability space with a filtration F = (Ft )
∞
t=0 on which all

random variables will be defined. Payoffs of asset n = 1, . . . , N are specified by a
random sequence Xn

t ≥ 0, t ≥ 1, which is F-adapted (Xn
t is Ft -measurable for all

t ≥ 1). It is assumed that Xn
t are given exogenously, i.e. do not depend on actions of

the investors. Return on the bank account is specified by an exogenous F-predictable
sequence ρt ≥ 0 (i.e. ρt is Ft−1-measurable), such that ρt − 1 is interpreted as spot
interest rate between moments of time t − 1 and t . Note that the interest rate may be
negative. We will assume that

ρt +
∑

n

Xn
t > 0 a.s. for all t ≥ 1 (1)

(otherwise the model may degenerate as will become clear below).
The wealth of investorm is described by an adapted random sequence Ym

t ≥ 0. The
quantity Ym

t is the budget that this investor can allocate at time t for investment in the
assets and the bank account. We assume that the initial budget Ym

0 of each investor is
non-random and strictly positive. The wealth Ym

t at moments of time t ≥ 1 depends
on investors’ strategies and the asset payoffs.

A strategy of investor m consists of vectors of investment proportions λmt =
(λ

m,1
t , . . . , λ

m,N
t ), t ≥ 1, according to which this investor allocates available bud-

get towards purchase of assets at time t − 1. The proportion 1− ∑
n λ

m,n
t is allocated

in the bank account. We assume that short sales and borrowing from the bank account
are not allowed, so vectors λt = (λ

m,n
t ) belong to the set� = {λ ∈ R

MN+ : ∑
n λm,n ≤

1 for each m}.
At eachmoment of time, investment proportions are selected by the investors simul-

taneously and independently, so the model represents a simultaneous-move N -person
dynamic game, and the proportion vectors λmt represent the investors’ actions. These
actions may depend on the game history, and we define a strategy �m of investor m
as a sequence of functions
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�m
t (ω, y0, λ1, . . . , λt−1) : � × R

M+ × �t−1 → [0, 1]N , t ≥ 1,

which areFt−1⊗B(R+ ×�t−1)-measurable and for all ω, t, y0, λ1, . . . , λt−1 satisfy
the condition

∑

n

�
m,n
t (ω, y0, λ1, . . . , λt−1) ≤ 1.

The argument y0 ∈ R
M+ corresponds to the vector of initial capitalY0 = (Y 1

0 , . . . ,Y M
0 ).

The argumentsλs = (λ
m,n
s ),m = 1, . . . , M , n = 1, . . . , N are investment proportions

selected by the investors at past moments of time (for t = 1, the function �m
t (ω, y0)

does not depend on λs). The value of the function �m
t corresponds to the vector of

investment proportions λmt . The measurability of �m
t in ω with respect toFt−1 means

that future payoffs are not known to the investors at the moment when they decide
upon their actions.

After selection of investment proportions by the investors at time t −1, equilibrium
asset prices pnt−1 are determined from the market clearing condition that the aggregate
demand of each asset is equal to the aggregate supply, which is assumed to be 1. Since
investor m can purchase xm,n

t = λ
m,n
t Ym

t−1/p
n
t−1 units of asset n, the asset prices at

time t − 1 should be equal
pnt−1 =

∑

m

λ
m,n
t Ym

t−1.

If
∑

m λ
m,n
t = 0, i.e. no one invests in asset n, we put pnt−1 = 0 and xm,n

t = 0 for
all m.

Thus, investor m’s portfolio between moments of time t − 1 and t consists of xm,n
t

units of asset n and cmt := (1− ∑
n λ

m,n
t )Ym

t−1 units of cash held in the bank account.
At moment of time t , the total payoff received by this investor from the assets in her
portfolio will be equal to

∑
n x

m,n
t Xn

t and the (gross) return on the bank account will
be ρt cmt . Consequently, her wealth is determined by the recursive relation

Ym
t = ρt

(
1 −

∑

n

λ
m,n
t

)
Ym
t−1 +

∑

n

λ
m,n
t Ym

t−1∑
k λ

k,n
t Y k

t−1

Xn
t , t ≥ 1 (2)

(with 0/0 = 0 in the right-hand side). Here and in what follows, Ym
t , Ym

t−1, ρt , X
n
t are

functions of ω only, and by λ
m,n
t we denote the realization of investor m’s strategy in

this market, which is defined recursively as the predictable sequence

λ
m,n
t (ω) = �

m,n
t (ω,Y0, λ1(ω), . . . , λt−1(ω)). (3)

Note that in our model investors’ actions precede asset prices, so investors first
“announce” how much they allocate in each asset, and then the prices are adjusted to
clear the market. This modeling approach is analogous to market games of Shapley–
Shubik type. Although it is a simplification of a real market, such an approach is
economically reasonable (see Shapley and Shubik 1977 for details and justifica-
tion).
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We call (2) the wealth equation, and it is the principal equation in our model.
Mainly, we will be interested not in the absolute wealth Ym

t , but in the relative wealth,
i.e. the proportion of wealth of one investor in the total wealth of all investors. The
total wealth is defined as

Wt =
∑

m

Ym
t ,

and the relative wealth of investor m is defined as

rmt = Ym
t

Wt

(when Wt = 0, we put rmt = 0).

Definition 1 We call a strategy �m of investor m relative growth optimal if for any
vector of initial capital Y0 (with Y k

0 > 0 for all k) and strategies �k of the other
investors k �= m,

ln rmt is a submartingale.

Such a strategy is optimal in several aspects. First, observe that if a strategy is
relative growth optimal, then also rmt is a submartingale by Jensen’s inequality. As
a corollary, it is not hard to see that a strategy profile in which every investor uses a
relative growth optimal strategy is a Nash equilibrium in the game where investors
maximize Ermt at a fixed moment of time t . This follows from the fact that if the
strategies of investors k �= m are relative growth optimal, then rmt = 1 − ∑

k �=m rkt is
a supermartingale. As we will show in Sect. 3, a relative growth optimal strategy is
unique, so when every investor uses it, their relative wealth will remain constant.

Second, as will be shown in Sect. 5, an investor who uses a relative growth optimal
strategy achieves the highest growth rate of wealth compared to the other investors
in the market. This property is analogous to the growth optimality property in single-
investor market models (Breiman 1961; Algoet and Cover 1988; Kelly 1956; and
others). However, it is essential that we require the logarithm of relative wealth ln rmt
to be a submartingale; the logarithm of wealth ln Ym

t may be not a submartingale (see
Sect. 6).

Also, a relative growth optimal strategy belongs to the class of survival strategies,
which plays the central role in Evolutionary Finance (see Evstigneev et al. 2016) and
is defined as follows.

Definition 2 A strategy �m of investor m is called survival if for any strategies of the
other investors

inf
t≥0

rmt > 0 a.s.

An investor using a survival strategy cannot be driven out of the market (even
asymptotically) in the sense that her relative wealth always stays bounded away from
zero. In this definition, we use the terminology of Amir et al. (2013); note that, for
example, Blume and Easley (1992) use the term “survival” in a somewhat different
meaning. The fact that a relative growth optimal strategy is survival readily follows
from that ln rmt is a non-positive submartingale, and hence it has a finite limit l =
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limt→∞ ln rmt a.s. (see, e.g., Chapter 7 of Shiryaev 2019 for this and other results from
the theory of discrete-time martingales used in this paper). Therefore, limt→∞ rmt =
el > 0 a.s.

Remark 1 (Relation to the Amir–Evstigneev–Schenk-Hoppé model) Our model gen-
eralizes the model of Amir et al. (2013), where it was assumed that investors reinvest
their whole wealth in assets in each time period. That model can be obtained as a
particular case of our model by taking ρt ≡ 0, so that it is never reasonable to keep
money in the bank account.

However, despite similarity, construction of the optimal strategy in our model turns
out to be more difficult. In particular, the optimal strategy of Amir et al. (2013) is basic
in the sense that its investment proportions do not depend on past actions of investors,
while, as we will see in the next section, in our model they depend on current wealth
of all investors, which depends on their past actions. Moreover, our model opens
interesting questions about the asymptotic behavior of the total wealth of investors,
which do not arise when the whole wealth is reinvested in assets. We consider these
questions in Sect. 6.

Another model of this kind with short-lived assets and a risk-free asset was consid-
ered by Belkov et al. (2017), where the existence of a survival strategywas established,
and it was also shown that all basic survival strategies are asymptotically equal. How-
ever, in that model asset payoffs depend on “money supply” (amount of capital not
invested in assets) in a special way, which allows to reduce that model to the one of
Amir et al. (2013).

3 Existence and uniqueness of a relative growth optimal strategy

Let us first introduce auxiliary notation and definitions.
We will use the following convenient notation for vectors. If x, y ∈ R

N , we will
denote their scalar product by xy = ∑

n x
n yn , the L1-norm by |x | = ∑

n |xn|, and
the L2-norm by ‖x‖ = √

xx . If f : R → R is a function, then f (x) denotes the vector
( f (x1), . . . , f (xN )). By a ∨ b we will denote the maximum of variables a, b, and by
a ∧ b the minimum.

The realization of investorm’s strategy, defined in (3),will be denoted byλmt (ω), and
when it is necessary to emphasize that it depends on the initial capital and strategies of
the other investors we will use the notation λmt (ω; Y0, L), where L = (�1, . . . , �M )

stands for a strategy profile; the argument ω will be often omitted for brevity.
Let us introduce the notion of equality of strategies that will be used to state that

the relative growth optimal strategy is unique. Suppose τ(ω; Y0, L) denotes a family
of random variables, i.e. for any fixed vector of initial capital Y0 and a strategy profile
L = (�1, . . . , �M ), the functionω �→ τ(ω; Y0, L) isF-measurable (andmay assume
the value +∞).

Definition 3 We say that two strategies �m and �̃m of investor m are equal in real-
ization until τ if for any vector of initial capital Y0 and any strategies of the other
investors �k , k �= m, we have the equality of realizations (a.s. for all t ≥ 1)
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(λmt (ω; Y0, L) − λmt (ω; Y0, L̃))I(t ≤ τ(ω; Y0, L) ∧ τ(ω; Y0, L̃)) = 0,

where L = (�1, . . . , �m, . . . , �M ), L̃ = (�1, . . . , �̃m, . . . , �M ) are the strategy
profiles which differ only in the strategy of investor m.

For example, in Theorem 1 below, we will consider equality until τ = inf{t ≥
0 : rmt = 1}—the first moment of time when the relative wealth of an investor
reaches 1 (with τ(ω) = ∞ if rmt (ω) < 1 for all t), which, considered as a function
ω �→ τ(ω; Y0, L), is a stopping time for any fixed Y0 and L .

The reason why we need to work with equality until τ is that when the relative
wealth of an investor becomes 1 (and the wealth of the competitors becomes zero),
she may choose any investment proportions and her relative wealth will always remain
1 (provided that she does not invest in a “bad way” losing all her wealth). Hence, it is
not possible to speak about uniqueness after this moment.

Now we can proceed to the construction of the relative growth optimal strategy.
Let Kt (ω, A) : �×B(RN+) → [0, 1] denote the regular conditional distribution of the
payoff vector Xt = (X1

t , . . . , X
N
t ) with respect to Ft−1, so that for each t and fixed ω

the function A �→ Kt (ω, A) is a probability measure on the Borel σ -algebra B(RN+),
and for fixed A ∈ B(RN+) the function ω �→ Kt (ω, A) is a version of the conditional
probability P(Xt ∈ A | Ft−1).

Define the sequence of sets 
t ∈ Ft−1 ⊗ B(R+),


t =
{
(ω, c) :

∫

R
N+

cρt (ω)

|x | Kt (ω, dx) > 1

}
, t ≥ 1,

with the following convention: cρt (ω)/|x | = 0 if cρt (ω) = |x | = 0 and cρt (ω)/|x | =
+∞ if cρt (ω) > 0 but |x | = 0.

The following lemma will play an auxiliary role in construction of the relative
growth optimal strategy.

Lemma 1 For all t ≥ 1 and (ω, c) ∈ 
t , there exists a unique solution z ∈ (0, c] of
the equation ∫

R
N+

cρt (ω)

zρt (ω) + |x |Kt (ω, dx) = 1. (4)

The function ζt (ω, c) defined to be equal to this solution on 
t and equal to zero
outside 
t is Ft−1 ⊗ B(R+)-measurable.

Proof The existence and uniqueness of the solution for each (ω, c) ∈ 
t is straight-
forward: the left-hand side of (4) is a continuous and strictly decreasing function in
z ∈ (0, c] which assumes a value greater than 1 for z = 0 and a value not greater than
1 for z = c.

To prove the measurability, consider the function f : � × R+ × R+ → R,

f (ω, c, z) =
(
2 ∧

∫

R
N+

cρt (ω)

zρt (ω) + |x |Kt (ω, dx) − 1

)
I((ω, c) ∈ 
t ).
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Observe that f is a Carathéodory function, i.e.Ft−1⊗B(R+)-measurable in (ω, c) and
continuous in z. ThenbyFilippov’s implicit function theorem (see, e.g., Theorem18.17
in Aliprantis and Border 2006), the set-valued function

φ(ω, c) = {z ∈ [0, c] : f (ω, c, z) = 0}

admits a measurable selector. Since φ on 
t is single-valued (we have φ(ω, c) =
{ζt (ω, c)}), this implies that ζt is Ft−1 ⊗ B(R+)-measurable. ��

In what follows, we will use the notation χt = (y0, λ1, . . . , λt ) ∈ R
M+ × �t for

history of the market until time t . Denote by Ct (ω, χt ) = Wt (ω) = |Yt (ω)| the total
wealth of all investors at time t , where Yt is defined recursively by relation (2) with
the given initial wealth Y0 = y0 and investment proportions λ

m,n
s , which form the

history χt .

Theorem 1 The strategy �̂ with investment proportions defined by the relation

�̂n
t (ω, χt−1) =

∫

R
N+

xn

ζt (ω,Ct−1(ω, χt−1))ρt (ω) + |x |Kt (ω, dx) (5)

is relative growth optimal (0/0 = 0 in (5)).
Moreover, �̂ is the unique relative growth optimal strategy in the sense that if �

is another strategy for investor m such that its relative wealth rmt is a submartingale
for any initial capital and strategies of the other investors, then �̂ and � are equal in
realization until the time τ = inf{t ≥ 0 : rmt = 1}.

It is easy to see that the proportion of wealth that �̂ keeps in the bank account is
1 − |�̂(χt−1)| = ζt (Ct−1(χt−1))/Ct−1(χt−1). In particular, if ρt = 0 for all t , then

t = ∅ and ζt = 0. In this case we obtain the same strategy that was found by Amir
et al. (2013) – it divides the available budget between the assets proportionally to their
expected relative payoffs

∫
R
N+ xn/|x |Kt (dx) = E(Xn

t /|Xt | | Ft−1). When ζt �= 0, the

strategy �̂ still divides the budget between the assets proportionally to their payoffs
but the proportions are adjusted for the amount of capital kept in the bank account.

Before we proceed to the proof of Theorem 1, let us state one auxiliary inequality
that we will use (it generalizes Gibbs’ inequality).

Lemma 2 Suppose α, β ∈ R
N+ are two vectors such that |α|, |β| ≤ 1 and for each n it

holds that if βn = 0, then also αn = 0. Then

α(ln α − ln β) ≥ ‖α − β‖2
4

+ |α| − |β|, (6)

where we put αn(ln αn − ln βn) = 0 if αn = 0.

Proof We follow the lines of the proof of Lemma 2 in Amir et al. (2013), which
establishes the above inequality in the case |α| = |β| = 1. Using that ln x ≤ 2(

√
x−1)

for any x > 0, we obtain
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α(ln α − ln β) = −
∑

n :αn �=0

αn ln(βn/αn) ≥ 2
∑

n

(αn − √
αnβn)

=
∑

n

(
√

αn − √
βn)2 + |α| − |β|.

Then we can use the inequality (
√
x − √

y)2 ≥ (x − y)2/4, which is true for any
x, y ∈ [0, 1], and obtain (6). ��

Proof (Proof of Theorem 1) Without loss of generality, assume that the strategy �̂ is
used by investor 1. Let λt denote the realization of this strategy, and λ̃t the realization
of the representative strategy of the other investors, which we define as the following
weighted sum of the realizations of their strategies:

λ̃nt =
∑

m≥2

rmt−1

1 − r1t−1

λ
m,n
t , (7)

where λ̃t = 0 if r1t−1 = 1. By Yt we will denote the wealth of investor 1, by
Ỹt := ∑

m≥2 Y
m
t the total wealth of the other investors, and by rt = Yt/(Yt + Ỹt ) the

relative wealth of investor 1. Then Yt satisfies the following relation, which follows
from (2):

Yt = ρt (1 − |λt |)Yt−1 +
∑

n

λnt Yt−1

λnt Yt−1 + λ̃nt Ỹt−1
Xn
t . (8)

Observe that from the definition of �̂ and condition (1), it follows that for each t and
almost all ω we have

Kt (ω, {x : ρt (ω)(1 − |λt (ω)|) + xλt (ω) = 0}) = 0. (9)

In particular, this implies that Yt > 0 a.s. for all t .
Introduce the predictable sequence of random vectors Ft with values in RN+ which

have the components

Fn
t = λnt

rt−1λ
n
t + (1 − rt−1)̃λ

n
t
,

where 0/0 = 0. Denoting the total wealth of the investors by Wt = Yt + Ỹt , the Eq.
(8) can be rewritten as

Yt =
(

ρt (1 − |λt |) + Ft Xt

Wt−1

)
Yt−1. (10)

A similar equation is true for Ỹt , namely, Ỹt = (ρt (1 − |̃λt |) + F̃t Xt
Wt−1

)Ỹt−1, where

F̃n
t = λ̃nt /(rt−1λ

n
t + (1 − rt−1)̃λ

n
t ). Using this, we obtain
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Wt =
(

ρt (1 − rt−1|λt | − (1 − rt−1)|̃λt |) + |Xt |
Wt−1

)
Wt−1. (11)

In this equation we used the equality (rt−1Fn
t + (1 − rr−1)F̃n

t )Xn
t = Xn

t : on the set
{λnt > 0} this is clear from the definition of Fn

t and F̃n
t , while on the set {λnt = 0} we

have Xn
t = 0 a.s., which follows from the construction of �̂.

Let ζt (ω) denote the predictable sequence ζt (ω,Wt−1(ω)). As follows from the
definition of �̂, we have |λt | = 1− ζt/Wt−1. Let ζ̃t = (1− |̃λt |)Wt−1. Then dividing
(10) by (11) we find that ln rt − ln rt−1 = ft (Xt ), where ft = ft (ω, x) is the Ft−1 ⊗
B(RN+)-measurable function

ft (x) = ln

(
ζtρt + Ft x

rt−1ζtρt + (1 − rt−1)̃ζtρt + |x |
)

(for brevity, the argument ω will be omitted). Note that (9) implies ζtρt + Ft Xt > 0
a.s., hencewe can define the value of ft (ω, x) for x such that ζt (ω)ρt (ω)+Ft (ω)x = 0
in an arbitrary way. It will be convenient to put ft (ω, x) = 0 for such x .

To show that ln rt is a submartingale, it will be enough to show that∫
R
N+ ft (x)Kt (dx) ≥ 0, i.e. E( ft (Xt ) | Ft−1) ≥ 0. Indeed, then ln rt will be a gener-

alized submartingale1, but since it is bounded from above (by 0), this will also imply
that ln rt is a usual submartingale (see Chapter 7.1 in Shiryaev 2019).

Suppose for some t, ω, a vector x is such that ζt (ω)ρt (ω) + Ft (ω)x > 0, and, for
each n, the equality Fn

t (ω) = 0 implies xn = 0. Then we have the bound

ft (x) = ln

(
ζtρt+Ft x
ζtρt+|x |

)
+ ln

(
ζtρt+|x |

rt−1ζtρt+(1−rr−1 )̃ζtρt+|x |

)

≥ x ln Ft
ζtρt+|x | + (1−rt−1)(ζt−ζ̃t )ρt

ζtρt+|x | := gt (x) + ht (x),

wherewe put xn ln Fn
t = 0 if Fn

t = 0.Here, for the first term in the second linewe used
the concavity of the logarithm, and for the second term the inequality ln a ≥ 1− a−1.

For each t , we have Kt ({x : ζtρt + xFt = 0}) = 0 a.s. by (9), and also Kt ({xn =
0}) = 1 a.s. on the set {Fn

t = 0} by the definition of �̂. Hence

∫

R
N+
ft (x)Kt (dx) ≥

∫

R
N+
gt (x)Kt (dx) +

∫

R
N+
ht (x)Kt (dx) := I gt + I ht . (12)

For the integral I gt , using Lemma 2, we find

I gt = λt ln Ft = λt (ln λt − ln(rt−1λt + (1 − rt−1)̃λt ))

≥ 1

4
(1 − rt−1)

2‖λt − λ̃t‖2 + (1 − rt−1)(|λt | − |̃λt |). (13)

1 Recall that a sequence St is called a generalized submartingale if E|S0| < ∞ and E(St | Ft−1) ≥ St−1
for all t ≥ 1 (but not necessarily E|St | < ∞). It is easy to show that if St ≤ Ct for all t with some integrable
random variables Ct , then St is integrable, and hence a usual submartingale.

123



Relative growth optimal strategies in an asset market game 539

For the integral I ht , on the set {ω : (ω,Wt−1(ω)) ∈ 
t } we can use the equality∫
R
N+ ρtWt−1/(ζtρt + |x |)Kt (dx) = 1, and on its complement the equality ζt = 0 and

inequality
∫
R
N+ ρtWt−1/|x |Kt (dx) ≤ 1, which result in

I ht ≥ (1 − rt−1)(ζt − ζ̃t )/Wt−1 = (1 − rt−1)(|̃λt | − |λt |). (14)

Relations (12)–(14) imply
∫
R
N+ ft (x)Kt (dx) ≥ 0, so ln rt is a submartingale, which

proves that λ̂ is relative growth optimal.
In order to prove the statement about uniqueness, suppose there exists another

strategy �′ (without loss of generality, assume this is a strategy of investor 1) with
relative wealth r1t being a submartingale for any initial capital and strategies of the
other investors, and there exist strategies �2, . . . , �M and a vector of initial capital
Y0 such that the realizations of �̂ and �′ are different for the strategy profiles L̂ =
(�̂,�2, . . . , �M ) and L ′ = (�′,�2, . . . , �M ), i.e. P(̂λt �= λ′

t ) > 0 for some t , where
λ̂t (ω), λ′

t (ω) are the realizations of the strategy of the first investor in the markets L̂
and L ′, respectively.

Consider the predictable stopping time σ = inf{t ≥ 1 : λ̂t �= λ′
t } and define the

new strategies �̃m , m ≥ 2, by

�̃m
t (ω, χt−1) = (�′)mt (ω, χt−1)I(t < σ(ω)) + �̂m

t (ω, χt−1)I(t ≥ σ(ω)),

where χt−1 = (y0, λ1, . . . , λt−1) denotes history of the market until t − 1. Observe
that since {σ ≤ t} ∈ Ft−1, the strategies are well-defined (i.e.Ft−1⊗B(RM+ ×�t−1)-
measurable).

Let rt (ω) denote the realization r1t (ω,Y0, L̃) of the relative wealth of investor 1
when the investors use the strategy profile L̃ = (�′, �̃2, . . . , �̃M ). Then, on one hand,
on the set {σ < ∞} we have E(rσ | Fσ−1) ≥ rσ−1 by the choice of �′, and hence
E(ln(1 − rσ ) | Fσ−1) ≤ ln(1 − rσ−1) by Jensen’s inequality. On the other hand,
E(ln(1 − rσ ) | Fσ−1) ≥ ln(1 − rσ−1) since investors m ≥ 2 use the strategy �̂ after
σ . Hence, on the set {σ < ∞, rσ−1 < 1} we have

0 = E

(
ln

1 − rσ
1 − rσ−1

∣∣∣∣ Fσ−1

)
≥ 1

4
r2σ−1‖λσ − λ̃σ ‖2, (15)

where the inequality can be obtained from (13) and (14). In this formula, λσ and λ̃σ are
the realizations of investor 1’s strategy �′ and the representative strategy of investors
m ≥ 2 at time σ in the market with the strategy profile L̃ . It is not hard to see that
on the set {σ < ∞} they are equal, respectively, to λ′

σ and λ̂σ . Consequently, (15)
and the choice of σ imply that if the set {σ < ∞, rσ−1 < 1} had positive probability,
then rσ−1 = 0 a.s. on it. But this is impossible since up to σ − 1 the realization of
the strategy �′ coincides with the realization of �̂, and hence its relative wealth stays
positive. Thus, P(σ < ∞, rσ−1 < 1) = 0, which proves the claimed uniqueness. ��
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4 The dominance property of a relative growth optimal strategy

The next short result shows that the relative wealth of the relative growth optimal strat-
egy tends to 1 on the set of outcomesω for which the realization λ̃ of the representative
strategy of the other investors is asymptotically different from the realization of �̂ in
a certain sense (̃λ is defined in (7) above). This result can be viewed as asymptotic
uniqueness of a survival strategy.

Theorem 2 Suppose investor 1 uses the relative growth optimal strategy. Let λ̂t denote
its realization, λ̃t denote the realization of the representative strategy of the other
investors, and �′ ∈ F be the set

�′ =
⎧
⎨

⎩ω :
∑

t≥1

‖̂λt (ω) − λ̃t (ω)‖2 = ∞
⎫
⎬

⎭ .

Then r1t (ω) → 1 a.s. on �′. In particular, ‖̂λt (ω) − λ̃t (ω)‖ → 0 a.s. on the set
{ω : limt→∞ r1t (ω) < 1}.
Proof We will use the same notation as in the proof of Theorem 1. Since ln rt is a
non-positive submartingale, it converges a.s. and its compensator Ct converges a.s. as
well. From the proof of Theorem 1, it follows that

Ct − Ct−1 =
∫

R
N+
ft (x)Kt (dx) ≥ 1

4
(1 − rt−1)

2‖̂λt − λ̃t‖2.

Then on the set�′ we necessarily have rt → 1 a.s., since otherwise Ct would diverge.
��

5 Maximization of the growth rate of wealth

Recall that in a single-investor market model a numéraire portfolio is a strategy such
that the ratio of the wealth of any other strategy to the wealth of this strategy is a
supermartingale. The term “numéraire portfolio” was introduced by Long (1990);
often it is also called a growth optimal strategy, or a benchmark portfolio (see Hakans-
son and Ziemba 1995; Karatzas and Kardaras 2007; Platen 2006). It is well-known
that numéraire portfolios have a number of optimality properties: they maximize the
asymptotic growth rate of wealth, maximize the expected logarithmic utility, minimize
the time to reach a given wealth level, etc. (see, e.g., Breiman 1961; Algoet and Cover
1988 for results in discrete time, and Karatzas and Kardaras (2007) for results in a
general semimartingale model, including a connection with the arbitrage theory). In
this section we will show that the relative growth optimal strategy in our model has
similar properties.

By the asymptotic growth rate of the wealth Yt we call lim supt→∞ 1
t ln Yt (see,

e.g., Chapter 3.10 in Karatzas and Shreve 1998), and the t-step growth rate at time s
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can be defined as 1
t E(ln Ys+t

Ys
| Fs). These notions have especially clear interpretation

in a single-investor model with i.i.d. asset returns: then the log-returns of a growth
optimal strategy are i.i.d. as well, and the asymptotic growth rate and the t-step growth
rate are equal and non-random.

Theorem 3 Suppose investor 1 uses the relative growth optimal strategy and the other
investors use arbitrary strategies. Then for any vector of initial capital Y0 the following
claims are true.

1) Investor 1 maximizes the asymptotic growth rate of wealth: for any m

lim sup
t→∞

1

t
ln Y 1

t ≥ lim sup
t→∞

1

t
ln Ym

t a.s. (16)

2) Suppose there are only two investors (M = 2) and E|Xt | < ∞ for all t . Then
investor 1 maximizes the t-step growth rate of wealth: for any t, s ≥ 0

E

(
ln

Y 1
s+t

Y 1
s

∣∣∣∣ Fs

)
≥ E

(
ln

Y 2
s+t

Y 2
s

∣∣∣∣ Fs

)
a.s. (17)

(In inequalities (16), (17), the both sides may assume the values ±∞; in (17) we
put ln 0/0 = −∞.)

Proof 1) As was noted above, if investor 1 uses the relative growth optimal strategy,
then inf t r1t > 0 a.s., and hence supt Wt/Y 1

t < ∞. Therefore, supt Y
m
t /Y 1

t < ∞
for any m. This implies that for any sequence Tt such that limt→∞ Tt = +∞ (in
particular, for Tt = t) we have the inequality

lim sup
t→∞

1

Tt
ln

Ym
t

Y 1
t

≤ 0 a.s.

From here, one can obtain (16).
2) From the condition E|Xt | < ∞, it follows that E lnWt < +∞ for all t . On the set

{ω : E(lnWs+t | Fs)(ω) = −∞} we have E(ln Y 1
s+t | Fs) = E(ln Y 2

s+t | Fs) = −∞,
so inequality (17) holds on this set. On the set {ω : E(lnWs+t | Fs)(ω) > −∞}, use
the submartingale property of ln r1t , which implies

E

(
ln

Y 1
s+t

Y 1
s

∣∣∣∣ Fs

)
≥ E

(
ln

Ws+t

Ws

∣∣∣∣ Fs

)
.

Since r2t = 1 − r1t is a supermartingale, ln r2t is a generalized supermartingale, so, in
a similar way,

E

(
ln

Y 2
s+t

Y 2
s

∣∣∣∣ Fs

)
≤ E

(
ln

Ws+t

Ws

∣∣∣∣ Fs

)
,

which proves (17). ��
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Remark 2 1. It is clear from the proof that (16) holds if investor 1 uses any survival
strategy.

2. Note that the second claimof Theorem3generally does not hold in the caseM ≥ 3.
For example, it can happen that investor 1 uses the strategy �̂, investor 2 acts in an
unoptimal way, and investor 3 manages to find a strategy which is better than �̂.

3. A simple example can be constructed even for a non-random market. Let M = 3,
N = 1, Ym

0 = 1 for m = 1, 2, 3, and ρ1 = 1, X1 = 1. Then we have λ̂1 = 1/3.
However, if λ11 = λ̂1 and λ21 = 1, then the strategy λ31 = 0 turns out to be better
than λ11 after one step: Y

1
1 = 11/12, but Y 3

1 = 1.

6 Growth of wealth when investors use the relative growth optimal
strategy

It is interesting to observe that using the relative growth optimal strategy does not
necessarily imply “favorable” asymptotics of the absolute wealth.

We begin with an example which shows that the wealth of an investor who uses the
strategy �̂ may vanish asymptotically because the other investors use “bad” strategies
such that the total wealthWt vanishes. At the same time, there is a strategy the wealth
of which does not vanish, but it is not relative growth optimal. In the second part of this
section, we investigate the case when all the investors use the relative growth optimal
strategy; in that case their wealth will normally grow.

Example 1 Weconsider a non-randommodelwith two investors andone asset. Suppose
the investors have the initial capital Y 1

0 = Y 2
0 = 1 and use the strategies that invest the

proportions λ1t+1 = 1
2 and λ2t+1 = 1

2 + 1
2t in the asset in each time period. Suppose

ρt = 1 for all t , and the (non-random) payoff sequence Xt is defined by

Xt+1 = Y 1
t + Y 2

t

2
.

This equation together with the wealth Eq. (2) uniquely define the sequences Y 1
t , Y

2
t ,

and Wt = Y 1
t + Y 2

t :

Y 1
t+1 = Y 1

t

(
1

2
+ Xt+1

Y 1
t + (1 + 1

t )Y
2
t

)
, Y 2

t+1 = Y 2
t

(
t − 1

2t
+ (1 + 1

t )Xt+1

Y 1
t + (1 + 1

t )Y
2
t

)
,

Wt+1 = Wt − Y 2
t

2t
. (18)

It is easy to see that we have ζt (Wt−1) = Wt−1/2, and hence λ̂t = 1/2. Thus, the
strategy of the first investor is relative growth optimal.

Let, as always, rmt = Ym
t /Wt , m = 1, 2. According to Theorem 1, there exists

the limit r2∞ = limt→∞ r2t ∈ [0, 1). We will now show that r2∞ > 0 and W∞ = 0.
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From (18), we find

r2t+1 = r2t (1 − αt ), where αt = r2t (1 − r2t )

2t2 + tr2t − (r2t )2
.

It is easy to see that αt ∈ (0, 1) and αt = O(t−2) as t → ∞. Hence, there exists the
limit r2∞ > 0. Also, from (18) we haveWt+1 = Wt (1−r2t /(2t)). Since

∑
t r

2
t /t = ∞,

we have W∞ = 0.
However, there is a trivial strategy that guarantees that the wealth does not vanish:

λt = 0 for all t . ��
Now we turn to analysis of the situation when all the investors use the relative

growth optimal strategy. Obviously, in this case the relative wealth of the investors
will stay constant. Our goal will be to investigate the asymptotics of the total wealth
Wt .

To avoid uninteresting complications, let us assume from now on that ρt (ω) > 0
for all t, ω. Introduce the discounting sequence

Dt = ρ1 · . . . · ρt , D0 = 1,

anddenote byW ′
t = Wt/Dt the discountedwealth of the investors, andby X ′

t = Xt/Dt

the discounted payoffs.
First, we will show that W ′

t does not decrease in the sense that W
′
t is a generalized

submartingale. But then one can ask the question: will W ′
t asymptotically grow to

infinity (provided that
∑

t |Xt | = ∞)? The answer turns out to be quite interesting.
We consider it only in the case when the discounted payoffs X ′

t are i.i.d., and show
thatW ′

t → ∞ if Xt are truly random (i.e. the support of the distribution of Xt contains
more than one point), while W ′

t stays bounded if X ′
t are non-random.

Theorem 4 Suppose all the investors use the strategy �̂. Then the following claims
are true.

1) The sequence 1/W ′
t is a supermartingale, W

′
t is a generalized submartingale, and

there exists the limit W ′∞ := limt→∞ W ′
t ∈ (0,∞] a.s.

2) Assume additionally that ρt = ρ > 0 for all t , where ρ is a constant; X ′
t is

a sequence of i.i.d. random vectors; and the filtration F is generated by Xt , i.e.
Ft = σ(Xs, s ≤ t). If Xt are not equal to a constant vector a.s., then W ′∞ = ∞
a.s.; otherwise W ′

t = W0 ∨ |X1|/ρ for all t ≥ 1.

Proof From (11) we find that W ′
t satisfies the equation

W ′
t = (1 − |̂λt |)W ′

t−1 + |X ′
t | (19)

(here λ̂t denotes the realization of the relative growth optimal strategy).
To simplify the proof, let us first show that it can be reduced to the case when

ρt = 1 for all t . Indeed, consider the two markets: the first one is defined by the
sequences X (1)

t ,ρ(1)
t and initial capitalY (1)

0 > 0,while the second one by the sequences
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X (2)
t = X (1)

t /D(1)
t , ρ

(2)
t = 1, and Y (2)

0 = Y (1)
0 . Assume all the investors in the both

markets use the relative growth optimal strategy. Denote the total wealth in these
markets by W (1)

t and W (2)
t , respectively.

It is not hard to see that 
(2)
t = {(ω, c/D(1)

t−1(ω)) : (ω, c) ∈ 

(1)
t }, and ζ

(2)
t (ω, c) =

ζ
(1)
t (ω, cD(1)

t−1(ω))/D(1)
t−1(ω). From this and (5), by induction, we find that λ̂(2)

t = λ̂
(1)
t

and W (2)
t = W (1)

t /D(1)
t . Thus, the discounted wealth in the original market specified

by Xt and ρt will be the same as the wealth in the market specified by X ′
t and ρ′

t = 1.
So, from now on we may assume ρt = 1 and X ′

t = Xt , W ′
t = Wt for all t .

From (9), it follows that Wt > 0 for all t . Let Vt = 1/Wt . From (19), we find

Vt
Vt−1

= 1

1 − |̂λt | + Vt−1|Xt | = Wt−1

ζt (Wt−1) + |Xt | ,

where we used that 1 − |̂λt | = Vt−1ζt (Wt−1). By the construction of ζt , we have
E(Vt/Vt−1 | Ft−1) ≤ 1, hence Vt is a generalized supermartingale, and, hence, a
usual supermartingale since it is non-negative. This also implies thatWt is a generalized
submartingale (via the identityWt = exp(− ln Vt ) and Jensen’s inequality).Moreover,
since a non-negative supermartingale has a finite limit, there exists V∞ = limt Vt ∈
[0,∞) a.s., and consequently there exists W∞ ∈ (0,∞] a.s. This finishes the proof
of the first claim of the theorem.

To prove the second claim, we will need the following auxiliary result on con-
vergence of positive supermartingales, which is a corollary from Proposition 7.1
in Karatzas and Kardaras (2007). Suppose St is a strictly positive scalar supermartin-
gale, and consider the generalized supermartingale Zt defined by

�Zt := Zt − Zt−1 = St
St−1

− 1, Z0 = 0.

Denote by At the compensator of Zt . Let h(x) = x2∧|x | and introduce the predictable
sequence Ht by

�Ht = E(h(�Zt ) | Ft−1), H0 = 0.

Then we have

{
ω : lim

t→∞ St (ω) = 0
}

=
{
ω : lim

t→∞(At (ω) + Ht (ω)) = ∞
}
a.s.

We will apply this result to St = Vt , so that

�Zt = Wt−1

ζt (Wt−1) + |Xt | − 1.

Observe that since Xt are i.i.d. random vectors, the function ζt (ω, c) and the con-
ditional distribution Kt (ω, dx) can be chosen not depending on ω, t , hence we will
write them simply as ζ(c) and K (dx). Then �Ht = g(Wt−1) with the function
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g(c) =
∫

R
N+
h

(
c

ζ(c) + |x | − 1

)
K (dx), c > 0.

It is not hard to check that g(c) is continuous on (0,∞). Moreover, if Xt are non-
constant (so the support of K (dx) contains more than one point), then g(c) > 0 for all
c > 0.Therefore, g(c) is separated fromzero on any compact set B �� {0}. So, on the set
{ω : limt Wt (ω) < ∞} we have H∞ = ∞ a.s., which implies P(limt Wt < ∞) = 0
in the case when Xt are non-constant.

When Xt are constant, Xt ≡ X ∈ R
N+ , it is easy to see from the definition of ζ that

(1 − |̂λt |)Wt−1 = ζ(Wt−1) = (Wt−1 − |X |)+.

Then (19) implies Wt = Wt−1 ∨ |X |, and, hence, Wt = W0 ∨ |X |. ��
Example 2 The proved result leads to an observation, which at first seems counter-
intuitive: if Xt and X̃t are two sequences of payoffs such that Xt ≥ X̃t for all t , it may
happen that the wealth of investors will grow faster under the smaller sequence X̃t .

As an example, let ρt ≡ 1 and Xt ≡ X ∈ R
N+\{0} be the same constant vector,

while X̃t = Xξt , where ξt ∈ [0, 1] are i.i.d. non-constant random variables. Then,
if all the investors use the relative growth optimal strategy, under the sequence Xt

the wealth becomes W0 ∧ |X | after t = 1 and stop growing, but it grows to infinity
under X̃t .

This can be explained by that the presence of randomness in X̃t prevents the
investors from “betting too much”.

7 Conclusion

We studied amodel of amarket where several investors compete for payoffs yielded by
short-lived assets. Themain result of the paper consists in proving that there exists (and
is unique) an investment strategy—the relative growth optimal strategy—such that the
sequence of its relative wealth is a submartingale for any strategies of competing
investors.

This strategy has a number of other optimality properties. It forms a symmetric
Nash equilibrium when all the investors maximize their expected relative wealth. It is
also a survival strategy in the sense that its relative wealth always stays separated from
zero with probability one on the whole infinite time interval. Moreover, its relative
wealth tends to 1 if the representative strategy of the other investors is asymptotically
different from it. It is also shown that the relative growth optimal strategy posses
properties similar to growth optimal strategies (numéraires) in single-investor market
models, in particular, it maximizes the asymptotic and t-step growth rate of wealth.

Our paper extends themodel ofAmir et al. (2013) to amarketwith a bank account (or
a risk-free asset). Inclusion of a bank account in the model leads to interesting analysis
of the asymptotics of the absolute wealth of investors. In particular, it turns out that
the relative growth optimality (or survival) property of a strategy does not necessarily
imply that its absolute wealth will grow if the competitors use “bad” strategies.
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