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Abstract We study several optimal stopping problems that arise from trading amean-
reverting price spread over a finite horizon. Modeling the spread by the Ornstein–
Uhlenbeck process, we analyze three different trading strategies: (i) the long-short
strategy; (ii) the short-long strategy, and (iii) the chooser strategy, i.e. the trader can
enter into the spread by taking either long or short position. In each of these cases, we
solve an optimal double stopping problem to determine the optimal timing for starting
and subsequently closing the position. We utilize the local time-space calculus of
Peskir (J Theor Probab 18:499–535, 2005a) and derive the nonlinear integral equations
of Volterra-type that uniquely characterize the boundaries associated with the optimal
timing decisions in all three problems. These integral equations are used to numerically
compute the optimal boundaries.
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1 Introduction

Spread trading is a common strategyusedbymany traders in variousmarkets, including
equity, fixed income, currency, and futures markets. In a spread trade, traders construct
a mean-reverting spread by simultaneously taking positions in two or more highly
correlated or co-moving assets. The proliferation of exchange-traded funds (ETFs) has
further popularized spread trading as some ETFs are designed to replicate identical
or similar assets. The strategy involves opening and subsequently closing a position
based on the sign and magnitude of the spread. Therefore, the risk of trading changes
from the directional price movements of each asset to the fluctuation of the spread
over time.

The core of the spread trading strategies lies in the timing to enter and exit the
market. For example, Gatev et al. (2006) examined the historical returns from the buy-
low-sell-high strategy where the entry and exit levels are set as ±1 standard deviation
from the long-run mean. Similarly, Avellaneda and Lee (2010) considered starting
and ending a pairs trade based on a fixed distance of the spread from its mean. In
Elliott et al. (2005), the market entry timing is modelled by the first passage time of an
Ornstein–Uhlenbeck (OU) process, followed by an exit on a fixed future date. In these
studies, the trading rules are not derived endogenously based on a given objective but
are prescribed in an ad hocmanner.While these naive trading rules have the advantage
of being very simple and explicit, their common drawback is the lack of optimality
justification.

Alternatively, a host of related studies apply stochastic optimal control and optimal
stopping techniques to determine the optimal timing strategies for an OU price spread.
Ekström et al. (2010) analyzed a optimal single stopping problem for liquidating a
spread position on an infinite horizon under the OU model with no transaction costs.
Song and Zhang (2013) considered an optimal switching approach for trading a spread
repeated over an infinite horizon with transaction costs, and solved for the optimal
entry and exit thresholds. Also over an infinite horizon, Leung and Li (2015), Leung
et al. (2015), Leung and Li (2016), solved analytically and numerically a number of
optimal double stopping problems to determine the entry and exit levels for trading
under the OU and exponential OU models with transaction costs. Also, Song et al.
(2009) proposed and implemented a numerical stochastic approximation scheme to
solve for the optimal buy-low-sell-high strategies over a finite horizon.

In this paper, we study several optimal stopping problems that arise from trading
a mean-reverting price spread over a finite horizon. We model the stochastic spread
directly by an OU process, and analyze three different trading strategies. The first
one involves starting by going long on the spread and reverse the position to close,
and the second represents the opposite sequence of trades—short to open, long to
close. Moreover, as the trader ponders when to enter the market, he/she can enter by
starting either with a long or short position. This gives the trader a chooser option to
be exercised upon market entry. Once the first position is committed, the trader faces
an optimal timing problem to exit the market. For each of these strategies, we solve
an optimal double stopping problem to determine the optimal timing for starting and
subsequently closing the position.
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Optimal mean-reverting spread trading: nonlinear… 183

Ourmethod of solution utilizes local time-space calculus of Peskir (2005a) to derive
the Volterra-type integral equations that uniquely characterize the boundaries associ-
ated with the optimal timing decisions in all three trading problems. The nonlinear
equations are useful not only for the analytical representation but also numerical com-
putation of the value functions and optimal boundaries. Unlike its perpetual analogue
(see e.g. Cartea et al. (2015), and Leung and Li (2015)), the finite-horizon trading prob-
lems studied herein do not admit closed-form expressions for the value functions or
optimal boundaries. Nevertheless, our application of local time-space calculus allows
us to express the optimal enter and exit boundaries as unique solutions to recursive inte-
gral equations. We provide illustrations of the boundaries and discuss their properties
and financial implications.

Our paper contributes to the literature of optimal spread trading by providing an
optimal double stopping approach together with Volterra-type integral equations for
determining and analyzing the optimal boundaries over a finite horizon. It also intro-
duces a number of new Volterra-type integral equations based on an OU underlying
process. To the best of our knowledge, the integral equations and analytical results for
optimal pair trading herein are new. Our integral equation approach has been recently
applied to the valuation of swing options with multiple stopping opportunities, see De
Angelis and Kitapbayev (2016). Modeling the spread between the futures and spot by
a Brownian bridge, Dai et al. (2011) also consider a chooser option embedded in the
trader’s timing to enter the market.

The paper is organized as follows. We formulate the optimal trading problem in
Sect. 2. The solutions for the three trading problems and analyses of the optimal timing
strategies are presented in Sects. 3, 4, and 5, respectively. Section6 is included to
discuss the incorporation of transaction costs and associated challenges.

2 Problem overview

We fix a finite trading horizon [0, T ], and filtered probability space (Ω,F , (Ft ),P),
where P is a subjective probability measure held by the trader, and (Ft )0≤t≤T is the
filtration to which every process defined herein is adapted.

We model the price spread X by the Ornstein–Uhlenbeck (OU) process introduced
by Ornstein and Uhlenbeck (1930):

dXt = μ(θ−Xt )dt + σdBt , X0 = x, (1)

where B is a standard Brownian motion, and the parameters μ, σ > 0, and θ ∈ R,
represent the speed of mean reversion, volatility, and long-run mean of the process,
respectively. We refer the reader to, e.g., Section 2.1 of Leung and Li (2015), for the
detailedmaximum likelihood procedure to estimate the parameters for this model with
backtested examples of spread trading.

The solution to (1) is well-known as

Xt = xe−μt + θ(1−e−μt ) + σ

∫ t

0
e−μ(t−s)dBs, t ≥ 0. (2)
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At any fixed time t , the random variable Xt has a normal distribution with the proba-
bility density function

p(̃x; t, x) = 1√
2π var(t, x)

e− (̃x−m(t,x))2

2 var(t,x) , (3)

where the mean m(t, x) and variance var(t, x) functions are given by

m(t, x) = xe−μt + θ(1−e−μt ), (4)

var(t, x) = σ 2

2μ
(1 − e−2μt ), (5)

for (t, x) ∈ R+ × R. The infinitesimal operator of X is given as

LX F(x) = μ(θ−x)F ′(x) + σ 2

2
F ′′(x) (6)

for x ∈ R and F ∈ C2(R).
The trader seeks to establish a position and subsequently closes it by time T > 0.

We analyze three trading strategies: (i) the long-short strategy, whereby the trader
longs the spread first and later reverses the position to close (see Sect. 3); (ii) short-
long strategy, whereby the trader shorts the spread to start and then close by taking
the opposite (long) position (see Sect. 4), and (iii) the chooser strategy, i.e. the trader
can take either a long or short position in the spread when entering the market (see
Sect. 5), and subsequently liquidates by taking the opposite position. For each trading
problem, if it is optimal for the trader not to trade at all, then in the absence of trading
fees we represent it as if she/he enters and exits simultaneously at T , giving a zero
return. In other words, the trader must enter and exit by time T . In the presence of
transaction costs, simultaneous entry and exit will generate a strictly negative return,
so the problem is more delicate and difficult (see Sect. 6).

3 Optimal long-short strategy

The trader who enters the market by taking a long position and subsequently closes it
before time T faces the following optimal double stopping problem:

V 1(t, x) = sup
0≤τ≤ζ≤T−t

E
[
e−rζ Xx

ζ −e−rτ Xx
τ

]
, (7)

defined at current time t ∈ [0, T ) and spread value x ∈ R. Here, Xx represents the
process X starting at Xx

0 = x , r > 0 is the trader’s discount rate, and the supremum is
taken over all pairs of F X - stopping times (τ, ζ ) such that τ ≤ ζ ≤ T − t . The time
τ represents the strategy for buying the spread and ζ is the liquidation time.

Using standard arguments (see e.g. Carmona and Touzi (2008)), the problem (7)
can be reduced to a sequence of two optimal single stopping problems. Precisely, the
optimal liquidation timing problem is represented by
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Optimal mean-reverting spread trading: nonlinear… 185

V 1,L(t, x) = sup
0≤ζ≤T−t

E
[
e−rζ Xx

ζ

]
. (8)

This value function V 1,L represents the maximum expected value of a long position
in the spread X , but the trader will need to pay the spread value for this position.
Therefore, the difference between this value function and the spread value is viewed
as the reward the trader received upon entry. Therefore, the trader’s optimal entry
timing problem is given by

V 1,E (t, x) = sup
0≤τ≤T−t

E
[
e−rτ (V 1,L(t+τ, Xx

τ )−Xx
τ )

]
. (9)

We have the equality: V 1 = V 1,E , and that the optimal stopping times in problems
(8)-(9) are optimal for the original problem in (7). We first solve the problem (8) in
Sect. 3.1 and then the problem (9) in Sect. 3.2.

3.1 Optimal exit problem

We now discuss how to represent the optimal stopping problem (8) as a free bound-
ary problem, which is then analyzed using the local time-space calculus (see Peskir
(2005a)). First, using that the payoff function in (8) is continuous and standard argu-
ments (see e.g. Corollary 2.9 (finite horizon) with Remark 2.10 in Peskir and Shiryaev
(2006)), we define the continuation and exit regions:

C1,L = {(t, x) ∈ [0, T )×R : V 1,L(t, x) > x}, (10)

D1,L = {(t, x) ∈ [0, T )×R : V 1,L(t, x) = x}, (11)

which are linked to the optimal exit time in (8) given by

ζ 1,L∗ = inf {0 ≤ s ≤ T−t : (t+s, Xx
s ) ∈ D1,L}. (12)

Let us define the function

K1,L(u, x, z) := − e−ruE
[
H1,L(Xx

u )I (X
x
u ≥ z)

]
(13)

= − e−ru
∫ ∞

z
H1,L (̃x) p(̃x; u, x) dx̃ (14)

for u ≥ 0 and x, z ∈ R, where the normal density p is given in (3) and the function
H1,L is an affine function in x defined by

H1,L(x) = −(μ+r)x + μθ. (15)

The main result of this section is the integral equation representation of the free
boundary associated with the optimal exit time ζ

1,L∗ .
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Theorem 1 The optimal stopping time for (8) is given by

ζ 1,L∗ = inf {0 ≤ s ≤ T−t : Xx
s ≥ b1,L(t+s)}. (16)

The function b1,L(·) is the optimal exit boundary corresponding to (8), and it can be
characterized as the unique solution to a nonlinear integral equation of Volterra type,
that is,

b1,L(t) = e−r(T−t)m(T−t, b1,L(t)) +
∫ T−t

0
K1,L(u, b1,L(t), b1,L(t+u))du (17)

for t ∈ [0, T ] in the class of continuous decreasing functions t 	→ b1,L(t) with
b1,L(T ) = x∗ = μθ/(μ+r). The value function V 1,L in (8) admits the representation

V 1,L(t, x) = e−r(T−t)m(T−t, x) +
∫ T−t

0
K1,L(u, x, b1,L (t+u))du (18)

for t ∈ [0, T ] and x ∈ R.

Proof The proof is provided in several steps.

1. Continuity of V 1,L . Here we show that the price function V 1,L is continuous on
[0, T ) × R. For this, let t ∈ [0, T ] and x > y ∈ R be given and fixed. We let ζx
denote the optimal stopping time for V 1,L(t, x). We then have

0 ≤ V 1,L(t, x) − V 1,L(t, y) ≤ E
[
e−rζx (Xx

ζx
− X y

ζx
)
]

= E
[
e−(r+μ)ζx (x − y)

]
≤ x − y (19)

wherewe used (2). Thus,we see that x 	→ V 1,L(t, x) is continuous onR uniformly
over t ∈ [0, T ] since the right-hand side of (19) does not depend on t . It is therefore
enough to show that t 	→ V 1,L(t, x) is continuous on [0, T ] for each x ∈ R

given and fixed. For this, fix arbitrary 0 ≤ t1 < t2 ≤ T and x ∈ R, and let ζ1
denote the optimal stopping time for V 1,L(t1, x). As the payoff function in (8)
is time-independent and the process X is time-homogeneous, it follows that the
map t 	→ V 1,L(t, x) is decreasing on [0, T ] for each x ∈ R. In turn, setting
ζ2 = ζ1 ∧ (T − t2), we obtain

0 ≤ V 1,L(t1, x) − V 1,L(t2, x) ≤ E
[
e−rζ1Xx

ζ1

]
− E

[
e−rζ2Xx

ζ2

]

≤ E
[
|Xx

ζ1
−Xx

ζ2
|
]
. (20)

Letting first t2 − t1 → 0 and using ζ1 − ζ2 → 0 we see that V 1,L(t1, x) −
V 1,L(t2, x) → 0 by the dominated convergence theorem. This shows that t 	→
V 1,L(t, x) is continuous on [0, T ] for each x ∈ R fixed, and the proof of the initial
claim is complete.
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2. Now we obtain some initial insights into the structure of the exit region D1,L . For
this, we use Ito’s formula and the optional sampling theorem to see that

E
[
e−rζ Xx

ζ

]
= x + E

[∫ ζ

0
e−rs H1,L(Xx

s )ds

]
(21)

for x ∈ R and any stopping time ζ ∈ [0, T ] where the function H1,L was defined
in (15).
The function H1,L is strictly decreasing with single root x∗ = μθ/(μ + r).
The Eq. (21) shows that it is not optimal to exit the position when Xt < x∗ as
H1,L(Xt ) > 0 in this region and thus the integral term on the right-hand side of
(21) is positive. For this one can make use of the first exit time from a sufficiently
small time-space ball centered at the point where H1,L > 0. Another implication
of (21) is that the exit region is non-empty for all t ∈ [0, T ), as for large x ↑ ∞
the integrand H1,L is very negative and thus due to the lack of time to compensate
the negative H1,L , it is optimal to exit at once.

3. Optimal exit boundary. Next we prove further properties of the exit region D1,L

and define the optimal exit boundary.
(i) Recall that the map t 	→ V 1,L(t, x) is decreasing on [0, T ] for each x ∈ R so

that V 1,L(t1, x)−x ≥ V 1,L(t2, x)−x ≥ 0 for 0 ≤ t1 < t2 < T and x ∈ R.
Now if we take a point (t1, x) ∈ D1,L , i.e. V 1,L(t1, x) = x , then (t2, x) ∈ D1,L

as well, which shows that the exit region expands when t increases. In other
words, D1,L is right-connected.

(ii) Now let us take t > 0, x > y, and we denote by ζ = ζ(t, x) the optimal
stopping time for V 1,L(t, x). Then using (21) we have

V 1,L(t, x) − V 1,L(t, y) ≤ E
[
e−rζ Xx

ζ

]
− E

[
e−rζ X y

ζ

]

= x − y + E
[∫ ζ

0
e−rs

(
H1,L(Xx

s )−H1,L(X y
s )

)
ds

]

≤ x − y (22)

where we used that H1,L is decreasing and Xx· ≥ X y· by (2). Now if we let
(t, y) ∈ D1,L , i.e. V 1,L(t, y) = y, we have V 1,L(t, x) = x , i.e. (t, x) ∈ D1,L .
Therefore we obtain an up-connectedness of the exit region D1,L .

(iii) From (i)-(i i) and paragraph 2 above we can conclude that there exists an
optimal exit boundary b1,L : [0, T ] → R such that

ζ 1,L∗ = inf {0 ≤ s ≤ T−t : Xx
s ≥ b1,L(t+s)} (23)

is optimal in (8) and x∗ < b1,L(t) < ∞ for t ∈ [0, T ). Moreover, b1,L is
decreasing on [0, T ).
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4. Smooth-fit. Now we prove that the smooth-fit condition along the boundary b1,L

holds

V 1,L
x (t, b1,L(t)−) = V 1,L

x (t, b1,L(t)+) = 1 (24)

for all t ∈ [0, T ).
(i) First let us fix a point (t, x) ∈ [0, T ) × R lying on the boundary b1,L so that

x = b1,L(t). Then we have

V 1,L(t, x) − V 1,L(t, x−ε)

ε
≤ x − (x−ε)

ε
= 1 (25)

and taking the limit as ε ↓ 0, we get

V 1,L
x (t, x−) ≤ 1 (26)

where the left-hand derivative exists by the convexity of x 	→ V 1,L(t, x) on
R for any fixed t ∈ [0, T ).

(ii) To prove the reverse inequality, we set ζε = ζε(t, x−ε) as an optimal stopping
time for V 1,L(t, x − ε). Using that X is a regular diffusion and t 	→ b1,L(t) is
decreasing, we see that ζε → 0 as ε → 0 P-a.s. We get

1

ε

(
V 1,L(t, x) − V 1,L(t, x−ε)

)

≥ 1

ε
E

[
e−rζε

(
Xx

ζε
−Xx−ε

ζε

)]
= E

[
e−(r+μ)ζε

]
(27)

where we used the solution (2) for X . Clearly, the right-hand side of (27) goes to
1 as ε → 0. Thus taking the limits as ε → 0, we get the inequality

V 1,L
x (t, x−) ≥ 1 (28)

for t ∈ [0, T ). Combining (26) and (28), we obtain (24).
5. Continuity of b1,L . Here we prove that the boundary b1,L is continuous on [0, T ]

and that b1,L(T−) = x∗. The proof is provided in 3 steps and follows the approach
proposed by De Angelis (2014).
(i) We first show that b1,L is right-continuous. Let us fix t ∈ [0, T ) and take a

sequence tn ↓ t as n → ∞. As b1,L is decreasing, the right-limit b1,L(t+)

exists and (tn, b1,L(tn)) belongs to D1,L for all n ≥ 1. Recall that D1,L is
closed so that (tn, b1,L(tn)) → (t, b1,L(t+)) ∈ D1,L as n → ∞ and we may
conclude that b1,L(t+) ≥ b1,L(t). The fact that b1,L is decreasing gives the
reverse inequality and thus b1,L is right-continuous as claimed.

(ii) Now we prove that b1,L is also left-continuous. Assume that there exists t0 ∈
(0, T ) such that b1,L(t0−) > b1,L(t0). Let us set x1 = b1,L(t0) and x2 =
b1,L(t0−) so that x1 < x2. For ε ∈ (0, (x2 − x1)/2) given and fixed, let
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ϕε : (−∞,∞) → [0, 1] be a C∞- function satisfying (i) ϕε(x) = 1 for x ∈
[x1+ε, x2−ε] and (ii)ϕε(x) = 0 for x ∈ (−∞, x1+ε/2]∪[x2−ε/2,∞). Letting
L∗
X denote the adjoint of LX , recalling that t → V 1,L(t, x) is decreasing on

[0, T ] and that V 1,L
t +LXV 1,L −rV 1,L = 0 on C1,L , we find integrating by

parts (twice) that

0 ≥
∫ x2

x1
ϕ(x)V 1,L

t (t0−δ, x)dx

= −
∫ x2

x1
V 1,L(t0−δ, x)

(
L∗
Xϕ(x)−rϕ(x)

)
dx (29)

for δ ∈ (0, t0 ∧ (ε/2)) so that ϕε(x2−δ) = ϕ′
ε(x2−δ) = 0 as needed. Letting

δ ↓ 0 it follows using the dominated convergence theorem and integrating by
parts (twice) that

0 ≥ −
∫ x2

x1
V 1,L(t0, x)

(
L∗
Xϕ(x)−rϕ(x)

)
dx

= −
∫ x2

x1
x

(
L∗
Xϕ(x)−rϕ(x)

)
dx

= −
∫ x2

x1
(LX x−r x) ϕ(x)dx = −

∫ x2

x1
H1,L(x)ϕ(x)dx . (30)

Letting ε ↓ 0 we obtain

0 ≥ −
∫ x2

x1
H1,L(x)dx > 0 (31)

as x → H1,L(x) is strictly negative on (x1, x2]. We thus have a contradiction
and therefore we may conclude that b1,L is continuous on [0, T ) as claimed.

(iii) To prove that b1,L(T−) = x∗ we can use the same arguments as those in (i i)
above with t0 = T and suppose that b1,L(T−) > x∗.

6. Free-boundary problem. The facts proved in paragraphs 1–5 above and standard
arguments based on the strong Markov property (see e.g. Peskir and Shiryaev
(2006)) lead to the following free-boundary problem for the value function V 1,L

and unknown boundary b1,L :

V 1,L
t +LXV

1,L−rV 1,L = 0 in C1,L (32)

V 1,L(t, b1,L(t)) = b1,L(t) for t ∈ [0, T ) (33)

V 1,L
x (t, b(t)) = 1 for t ∈ [0, T ) (34)

V 1,L(t, x) > x in C1,L (35)

V 1,L(t, x) = x in D1,L (36)
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where the continuation set C1,L and the exit region D1,L are given by

C1,L = {(t, x) ∈ [0, T )×R : x < b1,L(t)} (37)

D1,L = {(t, x) ∈ [0, T )×R : x ≥ b1,L(t)}. (38)

The following properties of V 1,L and b1,L were also verified above:

V 1,L is continuous on [0, T ] × R (39)

V 1,L is C1,2 on C1,L (40)

x 	→ V 1,L(t, x) is increasing and convex on R for each t ∈ [0, T ] (41)

t 	→ V 1,L(t, x) is decreasing on [0, T ] for each x ∈ R (42)

t 	→ b1,L(t) is decreasing and continuous on [0, T ] with b1,L(T−) = x∗.
(43)

7. Integral equation. We clearly have that the following conditions hold: (i) V 1,L is
C1,2 on C1,L ∪D1,L ; (i i) b1,L is of bounded variation (due to monotonicity); (i i i)
V 1,L
t +LXV 1,L − rV 1,L is locally bounded; (iv) x 	→ V 1,L(t, x) is convex; (v)

t 	→ V 1,L
x (t, b1,L(t)±) is continuous (recall (34)). Hence we can apply the local

time-space formula on curves Peskir (2005a)) for e−rsV 1,L(t + s, Xx
s ), along with

(32), (34), and (36), to get

e−rsV 1,L(t+s, Xx
s )

= V 1,L(t, x) + Ms

+
∫ s

0
e−ru

(
V 1,L
t +LXV

1,L−rV 1,L
)

(t+u, Xx
u )I (X

x
u �= b1,L(t+u))du

+ 1

2

∫ s

0
e−ru

(
V 1,L
x (t+u, Xx

u+)−V 1,L
x (t+u, Xx

u−)
)
I
(
Xx
u=b1,L(t+u)

)
d�b

1,L

u

= V 1,L(t, x) + Ms +
∫ s

0
e−ru H1,L(Xx

u )I (X
x
u ≥ b1,L(t+u))du (44)

where M = (Ms)s≥0 is the martingale part, and (�b
1,L

t (Xx ))t≥0 is the local time
process of Xx at the boundary b1,L , given by

�b
1,L

t = P − lim
ε↓0

1

2ε

∫ t

0
I (b1,L(t+u)−ε < Xx

u < b1,L(t+u)+ε)d 〈X, X〉u .

(45)

Now upon letting s = T−t , taking the expectation E, using the optional sampling
theorem for M , rearranging terms, noting that V 1,L(T, x) = x for all x ∈ R

and recalling (4), we get (18). The integral equation (17) is obtained by inserting
x = b1,L(t) into (18) and using (33).
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8. Uniqueness of the solution. The proof of that b1,L is the unique solution to the
Eq. (17) in the class of continuous decreasing functions t 	→ b1,L(t) is based on
arguments originally employed by Peskir (2005b) and omitted here.

Numerical algorithm for solution to integral equation. We proved above that b1,L

is the unique solution to the integral equation (17). Even though this equation cannot
be solved analytically, it can be solved numerically in a straightforward and efficient
manner, as we illustrate below and refer to Chap.8 of Detemple (2005) for more
details. In order to numerically solve the integral equation, it is crucial to be able
to compute K1,L efficiently. Fortunately, we have the closed-form expression for the
function K1,L since the (marginal) distribution of Xt is Gaussian.

Let N be the number of time discretizations, and set h = T/N and tk = kh for
k = 0, 1, ..., N . This leads to the following discrete approximation of the integral
equation (17):

b1,L(tk) = e−r(T−t)m(T − t, b1,L(tk))

+ h
N−1∑
l=k

K1,L
(
tk, tl+1−tk, b

1,L(tk), b
1,L(tl+1)

)
(46)

for k = 0, 1, ..., N−1. Setting k = N−1 and b1,L(tN ) = x∗ we solve the Eq. (46)
numerically and obtain the value of b1,L(tN−1). Setting k = N −2 and using the
values b1,L(tN−1) and b1,L(tN ), we solve (46) numerically for the value b1,L(tN−2).
Continuing this recursion we obtain all b1,L(tN ), b1,L(tN−1),...,b1,L(t1), b1,L(t0) as
approximations to the continuous optimal boundaryb1,L at the pointsT, T−h, ..., h, 0.

Finally, the value function (18) can be approximated as follows:

V 1,L(tk, x) = e−r(T−t)m(T − t, x)

+ h
N−1∑
l=k

K1,L
(
tk, tl+1−tk, x, b

1,L (tl+1)
)

(47)

for k = 0, 1, ..., N−1 and x ∈ R.

3.2 Optimal entry problem

Having solved for the optimal timing to exit, we now turn to the optimal entry problem

V 1,E (t, x) = sup
0≤τ≤T−t

E
[
e−rτ

(
V 1,L(t+τ, Xx

τ ) − Xx
τ

)]
(48)

where the supremum is taken over all stopping times τ ∈ [0, T − t] of X . We define
the payoff function G1,E (t, x) = V 1,L(t, x) − x for (t, x) ∈ [0, T ) × R.
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We tackle the problem (48) using similar arguments as for (8). We define the
continuation and entry regions

C1,E = {(t, x) ∈ [0, T )×R : V 1,E (t, x) > G1,E (t, x)} (49)

D1,E = {(t, x) ∈ [0, T )×R : V 1,E (t, x) = G1,E (t, x)}. (50)

In turn, the optimal exit time in (48) is given by

τ 1,E∗ = inf {0 ≤ s ≤ T−t : (t+s, Xx
s ) ∈ D1,E }. (51)

Let us define the function K1,E as

K1,E (u, x, z) = −e−ruE
[
H1,E (u, Xx

u )I (X
x
u ≤ z)

]

= −e−ru
∫ z

−∞
H1,E (u, x̃) p(̃x; u, x) dx̃ (52)

for u ≥ 0 and x, z ∈ R, where

H1,E (t, x) = ((μ + r)x − μθ)I (x < b1,L(t)) (53)

for (t, x) ∈ [0, T ) × R.
We now state the main theorem of this section. We do not provide full proof since

it is very similar to the one in Theorem 3.1 above and outline only important details.

Theorem 2 The optimal entry boundary b1,E in (48) can be characterized as the
unique solution to a nonlinear integral equation

V 1,L(t, b1,E (t))−b1,E (t) =
∫ T−t

0
K1,E (u, b1,E (t), b1,E (t+u))du (54)

for t ∈ [0, T ] in the class of continuous increasing functions t 	→ b1,E (t) with
b1,E (T ) = x∗. The value function V 1,E in (48) can be represented as

V 1,E (t, x) =
∫ T−t

0
K1,E (u, x, b1,E (t+u))du (55)

for t ∈ [0, T ] and x ∈ R.

Proof 1. Weuse the local time-space formula on curves (Peskir (2005a)), the smooth-
fit property (34) and the option sampling theorem to obtain

E
[
e−rτG1,E (t+τ, Xx

τ )
]

= G1,E (t, x) + E
[∫ τ

0
e−rs H1,E (t+s, Xx

s )ds

]

(56)
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for t ∈ [0, T ), x ∈ R, any stopping time τ ∈ [0, T − t] of process X and
where the function H1,E is defined as H1,E (t, x) := (LXG1,E−rG1,E )(t, x) for
(t, x) ∈ [0, T ) × R and equals

H1,E (t, x) = ((μ+r)x − μθ)I (x < b1,L(t)) (57)

for (t, x) ∈ [0, T ) × R.
The function H1,E is strictly increasing and linear in x on (−∞, b1,L(t)) for fixed
t and has unique root x∗ = μθ/(μ+r) < b1,L(t). Hence, it is not optimal to enter
into the position when Xt > x∗ and as the integral term on the right-hand side of
(56) is non-negative. The Eq. (56) also gives that the entry region is non-empty for
all t ∈ [0, T ), as for large negative x ↓ −∞ the integrand H1,E is very negative
and thus it is optimal to enter immediately.

2. We can prove similarly as in the previous section that the entry regionD1,E is right-
connected and down-connected. Hence there exists an optimal entry boundary
b1,E : [0, T ] → R (see Fig. 1) such that

τ 1,E∗ = inf {0 ≤ s ≤ T−t : Xx
s ≤ b1,E (t+s)} (58)

is optimal in (48) and −∞ < b1,E (t) < x∗ for t ∈ [0, T ). Moreover, b1,E is
increasing on [0, T ) and is bounded from below.

3. Standard methods based on the strong Markov property and arguments from the
previous section lead to the following free-boundary problem for the value function
V 1,E and the boundary b1,E :

V 1,E
t +LXV

1,E−rV 1,E = 0 in C1,E (59)

V 1,E (t, b1,E (t)) = V 1,L(t, b1,E (t))−b1,E (t) for t ∈ [0, T ) (60)

V 1,E
x (t, b1,E (t)) = V 1,L

x (t, b1,E (t))−1 for t ∈ [0, T ) (61)

V 1,E (t, x) > G1,E (t, x) in C1,E (62)

V 1,E (t, x) = G1,E (t, x) in D1,E (63)

where the continuation set C1,E and the entry region D1,E are given by

C1,E = {(t, x) ∈ [0, T )×R : x > b1,E (t)} (64)

D1,E = {(t, x) ∈ [0, T )×R : x ≤ b1,E (t)}. (65)
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Fig. 1 The optimal entry boundary (lower) and the optimal exit boundary (upper) for the long-short strategy
problem (7) computed as the solutions to integral equations (54) and (17), respectively. The parameters are:
T = 1year, r = 0.01, θ = 0, μ = 16, ζ = 0.16. A time discretization with 500 steps for the interval [0, T ]
is used

The following properties of V 1,E and b1,E hold:

V 1,E is continuous on [0, T ] × R (66)

V 1,E is C1,2 on C1,E (67)

x 	→ V 1,E (t, x) is convex on R for each t ∈ [0, T ] (68)

t 	→ V 1,E (t, x) is decreasing on [0, T ] for each x ∈ R (69)

t 	→ b1,E (t) is increasing and continuous on [0, T ] with b1,E (T−) = x∗.
(70)

4. We then verify the conditions of local time-space formula and apply it for
e−rsV 1,E (t + s, Xx

s ) to obtain representation (55). The integral equation (55)
is derived by inserting x = b1,E (t) into (55).

4 Optimal short-long strategy

In this section, we consider the short-long strategy: short the spread to open, long the
spread to close the position. This problem is analogous to the one in Sect. 3, and thus
we only state the optimal stopping problems and main results, and omit the proofs.
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At time t ∈ [0, T )with the current spread value x ∈ R, the trader solves the optimal
double stopping problem

V 2(t, x) = sup
0≤ζ≤τ≤T−t

E
[
e−rζ Xx

ζ −e−rτ Xx
τ

]
(71)

where Xx represents that the process X starts from Xx
0 = x , r > 0 is the interest

rate, and the supremum is taken over all pairs of F X - stopping times (τ, ζ ) such that
ζ ≤ τ ≤ T − t . As in the previous section, τ is time for long position and ζ is the
strategy for short position.

Remark 1 If θ = 0, then X and −X have the same law. As such, the problems (7) and
(71) are symmetric, i.e., V 2 = −V 1.

We reduce (71) into the two single optimal stopping problems:

V 2,L(t, x) = inf
0≤τ≤T−t

E
[
e−rτ Xx

τ

]
(72)

which is the optimal exit problem under this strategy. After solving (72) we will turn
to the entry problem, i.e. optimal timing to enter into the long position

V 2(t, x) = V 2,E (t, x) = sup
0≤ζ≤T−t

E
[
e−rζ (Xx

ζ −V 2,L(t+ζ, Xx
ζ ))

]
(73)

as at time t+ζ we receive Xx
ζ and get the short positionwith the value−V 2,L(t+ζ, Xx

ζ ).
As in the previous section, we reduce (72) to the free-boundary problem for the

value function V 2,L and optimal exit boundary b2,L :

V 2,L
t +LXV

2,L−rV 2,L = 0 in C2,L (74)

V 2,L(t, b2,L(t)) = b2,L(t) for t ∈ [0, T ) (75)

V 2,L
x (t, b2,L(t)) = 1 for t ∈ [0, T ) (76)

V 2,L(t, x) < x in C2,L (77)

V 2,L(t, x) = x in D2,L (78)

where the continuation set C2,L and the exit region D2,L are given by

C2,L = {(t, x) ∈ [0, T )×R : x > b2,L(t)} (79)

D2,L = {(t, x) ∈ [0, T )×R : x ≤ b2,L(t)}. (80)

123



196 Y. Kitapbayev, T. Leung

The value function V 2,L and optimal boundary b2,L admit the following properties:

V 2,L is continuous on [0, T ] × R (81)

V 2,L is C1,2 on C2,L (82)

x 	→ V 2,L(t, x) is increasing and concave on R for each t ∈ [0, T ] (83)

t 	→ V 2,L(t, x) is increasing on [0, T ] for each x ∈ R (84)

t 	→ b2,L(t) is increasing and continuous on [0, T ] with b2,L(T−) = x∗. (85)

The main theorem is stated as follows.

Theorem 3 The value function V 2,L in (72) has the following representation

V 2,L(t, x) = e−r(T−t)m(T − t, x) +
∫ T−t

0
K2,L(u, x, b2,L (t+u))du (86)

for t ∈ [0, T ] and x ∈ R. The optimal exit boundary b2,L in (72) can be characterized
as the unique solution to a nonlinear integral equation

b2,L(t) = e−r(T−t)m(T − t, b2,L(t)) +
∫ T−t

0
K2,L(u, b2,L(t), b2,L(t+u))du (87)

for t ∈ [0, T ] in the class of continuous increasing functions t 	→ b2,L(t) with
b2,L(T ) = x∗. and where the function K2,L is defined as

K2,L(u, x, z) = −e−ruE
[
H1,L(Xx

u )I (X
x
u ≤ z)

]
(88)

for u ≥ 0, x, z ∈ R and H1,L is given in (15).

Applying the results for exit problem, we now analyze the following free-boundary
problem for the optimal entry value function V 2,E in (73), and the associated boundary
b2,E :

V 2,E
t +LXV

2,E−rV 2,E = 0 in C2,E (89)

V 2,E (t, b2,E (t)) = b2,E (t)−V 2,L(t, b2,E (t)) for t ∈ [0, T ) (90)

V 2,E
x (t, b2,E (t)) = 1−V 2,L

x (t, b2,E (t)) for t ∈ [0, T ) (91)

V 2,E (t, x) > x−V 2,L(t, x) in C2,E (92)

V 2,E (t, x) = x−V 2,L(t, x) in D2,E (93)

where the continuation and entry regions, respectively, are given by

C2,E = {(t, x) ∈ [0, T )×R : x < b2,E (t)} (94)

D2,E = {(t, x) ∈ [0, T )×R : x ≥ b2,E (t)}. (95)

123



Optimal mean-reverting spread trading: nonlinear… 197

The following properties of V 2,E and b2,E hold:

V 2,E is continuous on [0, T ] × R (96)

V 2,E is C1,2 on C2,E (97)

x 	→ V 2,E (t, x) is convex on R for each t ∈ [0, T ] (98)

t 	→ V 2,E (t, x) is decreasing on [0, T ] for each x ∈ R (99)

t 	→ b2,E (t) is decreasing and continuous on [0, T ] with b2,E (T−) = x∗. (100)

To prepare the following result, we define the function

K2,E (u, x, z) = −e−ruE
[
H1,L(Xx

u )I (X
x
u ≥ z)

]
(101)

for t, u ≥ 0, x, z ∈ R, with H1,L defined in (15).

Theorem 4 The value function V 2,L in (73) admits the integral representation:

V 2,E (t, x) =
∫ T−t

0
K2,E (u, x, b2,E (t+u))du (102)

for t ∈ [0, T ]and x ∈ R. The optimal entry boundary b2,E in (73) canbe characterized
as the unique solution to a nonlinear integral equation

b2,E (t)−V 2,L(t, b2,E (t)) =
∫ T−t

0
K2,E (u, b2,E (t), b2,E (t+u))du (103)

for t ∈ [0, T ] in the class of continuous decreasing functions t 	→ b2,E (t) with
b2,E (T ) = x∗.

5 Chooser strategy

In this section, the trader in the spread trading problem can choose whether to long or
short his position first. Thus she/he is not pre-committed to the strategies in Sects. 3
and 4, and clearly this flexibility increases his overall expected profit from the trading.
The trading problem again can be formulated as the double optimal stopping one

V 0(t, x) = sup
0≤τ,ζ≤T−t

E
[
e−rζ Xx

ζ −e−rτ Xx
τ

]
(104)

for (t, x) ∈ [0, T ) × R where Xx represents that the process X starts from Xx
0 = x ,

r > 0 is the interest rate, and the supremum is taken over all pairs of F X - stopping
times (τ, ζ ) such that τ, ζ ≤ T − t . As before, τ is time for long position and ζ is time
for short position. The main difference of (104) compare to both long-short and short-
long strategies is that there is no order and constraint between τ and ζ . We do not need
to consider sequentially exit and entry problems, but just solve optimal problems for
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Fig. 2 The optimal boundaries (b1,L , b2,L ) (solid line) for the chooser strategy problem (104) computed as
the solution to integral equations (17) and (87). Dashed lines represent optimal thresholds for the perpetual
case. The parameter set is T = 1year, r = 0.01, θ = 0, μ = 16, ζ = 0.16. We used N = 500 steps for the
time discretization of interval [0, T ]

both long and short positions independently. Therefore we split the trading problem
into the two separate problems

V 1,L(t, x) = sup
0≤ζ≤T−t

E
[
e−rζ Xx

ζ

]
(105)

V 2,L(t, x) = inf
0≤τ≤T−t

E
[
e−rτ Xx

τ

]
(106)

and we have
V 0(t, x) = V 1,L(t, x) − V 2,L(t, x) (107)

for (t, x) ∈ [0, T ) × R and where V 1,L and V 2,L are given in (18)–(86).
Both problems (105)–(106) have been solved already in previous sections. The

optimal entry time in (104) is given by ζ
1,L∗ ∧ τ

2,L∗ and the exit time is ζ
1,L∗ ∨ τ

2,L∗ ,
where ζ

1,L∗ and τ
2,L∗ have been characterized as well.

In Fig. 2, we illustrate the two optimal boundaries representing the long and short
entering positions under the chooser strategy. We compare it to the optimal entering
thresholds in the perpetual version of the problem (seeChap.14 ofCartea et al. (2015)).
Intuitively, with an infinite horizon ahead, the trader can afford to wait longer and enter
the market when the spread is wider in either direction. This is confirmed in Fig. 2 as
the optimal boundary to long (resp. short) is above (resp. below) the optimal thresholds
from the perpetual case. In other words, the continuation region, in which the trader
waits to enter themarket, is larger in the perpetual case than in the current finite-horizon
problem.
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Here we reformulate the problem (104) sequentially as for the long-short and short-
long strategies.We already know the solution to the problem from previous paragraph,
but would like to show that the solution satisfies the free-boundary problem for the
entry problem.Once the trader enters into the position, she/he solves one of the optimal
liquidation problems and both of them were already solved Sects. 3.1 and 4. Therefore
we only need to study the optimal entry problem and this can be formulated as follows

V 0,E (t, x) = sup
0≤τ≤T−t

E
[
e−rτG(t+τ, Xx

τ )
]

(108)

where the payoff function G reads

G(t, x) = max(V 1,L(t, x)−x, x−V 2,L(t, x)) (109)

for t ∈ [0, T ) and x ∈ R. The payoff function G shows that at entry time the trader
maximizes his value and chooses the best option, i.e. whether to go long or short the
spread. Below we show that V 0,E is the same as V 0 from (107).

It can be seen that V 1,L(t, x) − x = 0 for x ≥ b1,L(t) and x − V 2,L(t, x) = 0
for x ≤ b2,L(t). Also since V 1,L and V 2,L are convex and concave, respectively, we
have V 1,L

x ≤ 1 and V 2,L
x ≤ 1. Hence the function V 1,L(t, x)− x is decreasing for

x < b1,L(t) and x−V 2,L(t, x) is increasing x > b2,L(t), and we can conclude that
there exists threshold m(t) for fixed t ∈ [0, T ) such that

G(t, x) = (V 1,L(t, x)−x)I (x ≤ m(t)) + (x−V 2,L(t, x))I (x > m(t)) (110)

for t ∈ [0, T ) and x ∈ R. Clearly, the function G is convex in x for fixed t ∈ [0, T ).
Given that we already know the solution to the problem (104), we will use “guess-

verify” method for the finite horizon optimal entry problem (104) unlike in Sects. 3.1
and 4 where the optimal boundaries were constructed directly (as solutions to the
integral equations). Let us take the pair of optimal exit strategies (b1,L , b2,L) as the
candidate for the optimal entry boundaries such that the entry time is given by

τ0,E = inf {0 ≤ s ≤ T−t : Xx
s ≤ b2,L(t+s) or Xx

s ≥ b1,L(t+s)} (111)

and define
V̂ 0,E (t, x) = V 1,L(t, x) − V 2,L(t, x) (112)

for t ∈ [0, T ) and x ∈ R as the candidate value function for V 0,E .
Using established properties (32)–(36) and (74)–(78) of the value functions V 1,L

and V 2,L , and boundaries b1,L and b2,L , we can verify that V̂ 0,E and (b1,L , b2,L)
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Fig. 3 The value function V 0,E (solid line) of the chooser strategy (104) over a finite horizon lies below
the value function for the perpetual case (dashed line). The parameters are: T = 1 year, r = 0.01, θ = 0,
μ = 16, ζ = 0.16

solve the following free-boundary problem

V̂ 0,E
t +LX V̂

0,E−r V̂ 0,E = 0 in C0,E (113)

V̂ 0,E (t, b1,L(t)) = G(t, b1,L(t)) for t ∈ [0, T ) (114)

V̂ 0,E (t, b2,L(t)) = G(t, b2,L(t)) for t ∈ [0, T ) (115)

V̂ 0,E
x (t, b1,L(t)) = Gx (t, b

1,L(t)) for t ∈ [0, T ) (116)

V̂ 0,E
x (t, b2,L(t)) = Gx (t, b

2,L(t)) for t ∈ [0, T ) (117)

V̂ 0,E (t, x) > G(t, x) in C0,E (118)

V̂ 0,E (t, x) = G(t, x) in D0,E (119)

where the continuation set C0,E and the entry set D0,E are given by

C0,E = {(t, x) ∈ [0, T )×R : b2,L(t) < x < b1,L(t)} (120)

D0,E = {(t, x) ∈ [0, T )×R : x ≤ b2,L(t) or x ≥ b1,L(t)}. (121)

Let us show, for example, that (114) holds indeed. This condition is equivalent to
V 1,L(t, b1,L(t)) − V 2,L(t, b1,L(t)) = b1,L(t) − V 2,L(t, b1,L(t)) as b1,L(t) > m(t).
The latter is true as V 1,L(t, b1,L(t)) = b1,L(t) due to (33). The conditions (114)–(117)
can be shown in similar way.

Finally, standard verification arguments indicate that V̂ 0,E and (b1,L , b2,L) are
indeed the value function and optimal boundaries, respectively. In Fig. 3, we compare
the value function of the chooser strategy over a finite horizon (T = 1 year) to the
value of the perpetual counterpart. As we can see, the difference is quite significant as
a longer horizon allows the trader to wait longer to capture a wider spread. This also
shows the practical importance of studying the optimal spread problem over the finite
horizon.
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Remark 2 We note that the analytical results above can be extended to other mean-
reverting models of the form

dXt = μ(θ−Xt )dt + σ(Xt )dBt , X0 = x, (122)

where σ(x) is some smooth function of X , but not necessarily a constant. The cor-
responding integral equations and value function representations will be of the same
form as those under theOUmodel derived above. Indeed, the linear payoffs considered
herein render the diffusion coefficient σ(x) irrelevant when we apply Ito’s calculus.
However, for numerical analysis and computation, it is crucial to know marginal dis-
tributions of X . For example, Xt is Gaussian when σ(x) = σ , and Xt is non-central
chi-squared when σ(x) = σ

√
x (CIR process). Hence, our results can be extended

to models in (122) with a known probability density for Xt that is explicit or can be
approximated. We refer to Leung et al. (2014) for optimal double stopping of the CIR
process.

6 Incorporating transaction costs

In this section, we incorporate fixed transaction costs when the trader is pre-committed
to the long-short strategy. We assume that she/he may not enter into the long position,
e.g., if we enter very close to T it is more likely that we end up with the loss since we
pay transaction costs twice and gain at most small difference from the spread. Thus it
would be optimal not to enter at all and get zero payoff.

We formulate this problem sequentially, first assume that there is open long position
in the spread which want to liquidate optimally

V 1,L ,c(t, x) = sup
0≤ζ≤T−t

E
[
e−rζ (Xx

ζ − c)
]

(123)

and the only difference with the problem (8) above is that we add fixed trading fee
c > 0. Then having solved (123) we consider optimal entry problem

V 1,E,c(t, x) = sup
0≤τ≤T−t

E
[
e−rτ (V 1,L ,c(t+τ, Xx

τ )−Xx
τ −c)+

]
(124)

as at time t+τ we pay Xx
τ +c and get the long position with the value V 1,L ,c(t+τ, Xx

τ )

and we will go long only if the payoff of this strategy is positive, otherwise we use
our right not to enter into it at this instance.

Observe that the optimal stopping problem in (123) is a slight generalization of that
in (8). Therefore, to avoid repetition, we only state the results below.

Theorem 5 The value function V 1,L ,c has the following representation

V 1,L ,c(t, x) = e−r(T−t)(m(T−t, x)−c)

+
∫ T−t

0
K1,L ,c(u, x, b1,L (t+u))du (125)
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for t ∈ [0, T ] and x ∈ R. The optimal exit boundary b1,L ,c can be characterized as
the unique solution to a nonlinear integral equation

b1,L ,c(t) = e−r(T−t)(m(T−t, b1,L ,c(t))−c)

+
∫ T−t

0
K1,L ,c(u, b1,L ,c(t), b1,L ,c(t+u))du (126)

for t ∈ [0, T ] in the class of continuous decreasing functions t 	→ b1,L ,c(t) with
b1,L ,c(T ) = (μθ+rc)/(μ+r) where

K1,L ,c(u, x, z) = −e−ruE
[
H1,L ,c(Xx

u )I (X
x
u ≥ z)

]
H1,L ,c(x) = −(μ+r)x + μθ + rc.

Now we turn to the entry problem (124). It differs from (9) in two ways: there is
transaction fee c and, more importantly, the right not to enter into the position. Indeed,
when t goes T , the value of long position V 1,L ,c(t, x) is close to x − c so that the
payoff V 1,L ,c(t, x) − x − c tends to −2c and thus it almost always not rational to go
long near T . To formalize this observation, we define the curve γ on [0, T ) as

V 1,L ,c(t, γ (t)) − γ (t) − c = 0 (127)

for t ∈ [0, T ). Hence when x ≥ γ (t) we should not enter as the value is non-
positive. From the properties of V 1,L ,c(t, x), it can be seen that γ is decreasing with
γ (T−) = −∞ and that γ < b1,L ,c.

The optionality is the key component that precludes us to perform the complete
theoretical analysis and prove regularity properties. The problem becomes very chal-
lenging and is left for future research. Here, we conclude the paper with a number of
open questions with our remarks:

– The existence of the optimal entry boundary b1,E,c that separates the continuation
and exercise sets. Intuitively, it is should be true thatD1,E,c = {(t, x) ∈ [0, T )×R :
x ≤ b1,E,c(t)}.

– Monotonicity of the boundary b1,E,c. Most likely, it is decreasing and explodes to
−∞ at T . For another example of this boundary behavior, we refer to Leung et al.
(2016), where the optimal futures trading problem with the transaction costs has
been numerically solved using a finite-difference method applied to the associated
variational inequality.

– Smooth-fit property at b1,E,c. The standard proof uses that the process enters
immediately into the exercise region if starts slightly above b1,E,c. However, if
the boundary is decreasing, it is not clear that this property holds. Thus one has to
compare the asymptotic behavior of the process at 0 and the slope of the boundary.
The latter is unknown. In particular, the slope is very negative near T and we do
not see strong evidence that the smooth fit holds close to T . This open problem is
general for optimal stopping problemswhen the immediate hitting of the boundary
is not guaranteed.
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– Local time. It is unclear whether the local time term is present in the expression
for the value function and/or in the integral equation for the optimal exercise
boundary for problem (124). The local time term will add significant challenges
to the analysis and numerical implementation of the associated integral equations.
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