Ann Finance (2016) 12:95-133 @ CrossMark
DOI 10.1007/510436-016-0275-7

RESEARCH ARTICLE

The skewness risk premium in equilibrium and stock
return predictability

Hiroshi Sasakil

Received: 23 April 2015 / Accepted: 14 February 2016 / Published online: 29 February 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In this study, we investigate the skewness risk premium in the financial mar-
ket under a general equilibrium setting. Extending the long-run risks (LRR) model
proposed by Bansal and Yaron (J Financ 59:1481-1509, 2004) by introducing a sto-
chastic jump intensity for jumps in the LRR factor and the variance of consumption
growth rate, we provide an explicit representation for the skewness risk premium, as
well as the volatility risk premium, in equilibrium. On the basis of the representation
for the skewness risk premium, we propose a possible reason for the empirical facts of
time-varying and negative risk-neutral skewness. Moreover, we also provide an equity
risk premium representation of a linear factor pricing model with the variance and
skewness risk premiums. The empirical results imply that the skewness risk premium,
as well as the variance risk premium, has superior predictive power for future aggre-
gate stock market index returns, which are consistent with the theoretical implication
derived by our model. Compared with the variance risk premium, the results show that
the skewness risk premium plays an independent and essential role for predicting the
market index returns.
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1 Introduction

The concern with the information content in option-implied distributions has been
growing for the last several years. In particular, there has been a growing interest in
the information of the difference between option-implied and realized distributions,
which is usually recognized as a risk premium required by the representative agent,
from the point of view of the financial risk management and asset pricing implications.
This paper investigates the risk premiums in higher order moments, especially in the
skewness, of financial asset returns under a general equilibrium setting. In this paper,
each of the risk premiums in higher order moments of financial asset returns is defined
by the difference between two expected values of the moment under the risk-neutral
and physical probability measures, respectively.

In recent years, there remains an ever-increasing interest and challenge to develop
an entirely self-contained equilibrium-based explanation for the nonzero volatility (or
variance) risk premium! and its predictability for stock index returns. To the best of
our knowledge, the first attempt to demonstrate the existence of the volatility risk
premium based on a general equilibrium market model is made by Eraker (2008).
Eraker (2008) develops an equilibrium explanation for the volatility risk premium
based on the long-run risks (LRR) model”> which emphasizes the role of long-run
risks, that is, low-frequency movements in consumption growth rates and volatility,
in accounting for a wide range of asset pricing puzzles. The LRR model features an
Epstein and Zin (1989) utility function with an investor preference for early resolution
of uncertainty and contains (i) a persistent expected consumption growth component
and (ii) long-run variation in consumption volatility. On the basis of the LRR model,
Eraker (2008) studies the volatility risk premium through the framework of a general
equilibrium model.

In addition to the development of an entirely self-contained equilibrium-based
explanation for the risk premiums in higher order moments, several academic studies
related to those risk premiums are provided in recent years. For example, motivated
by fruitful implications from the LRR model pioneered by Bansal and Yaron (2004),
Bollerslev et al. (2009) investigate the stock return predictability of the variance risk
premium from the point of view of a general equilibrium setting based on the LRR
model framework. They show that the difference between option-implied and real-
ized variation, or the variance risk premium, is able to explain a nontrivial fraction
of the time-series variation in post-1990 aggregate stock market returns, with high
(low) premia predicting high (low) future returns. The magnitude of the predictability
is particularly strong at the intermediate quarterly return horizon, where it dominates
that afforded by other popular predictor variables, such as the P/E ratio, the default
spread, and the consumption-wealth ratio.

I The volatility (variance) risk premium is defined by the difference between two expected values of the
volatility (variance) under the risk-neutral and physical probability measures, respectively.

2 The long-run risks model, which is a stylized self-contained general equilibrium model incorporating the
effects of time-varying economic uncertainty, is pioneered by Bansal and Yaron (2004).
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Drechsler and Yaron (2011) also show the predictability of the variance risk pre-
mium for stock index returns based on an extended LRR model with jumps in
uncertainty and the long-run component of cash-flows. They demonstrate that a risk
aversion greater than one and a preference for early resolution of uncertainty correctly
signs the variance risk premium and the coefficient from a predictive regression of
returns on the variance risk premium.

All of the studies cited above focus only on the variance risk premium which is
required by a representative investor due to the stochastic nature of asset return vari-
ance. Conversely, as far as we know, there are few reports about the risk premium which
compensates for uncertainty of the third moment, that is, the skewness, of asset returns.
In this paper, we demonstrate that the skewness risk premium, defined by the differ-
ence between two expected values of the skewness under the risk-neutral and physical
probability measures, respectively, also captures attitudes toward economic uncer-
tainty as well as the variance risk premium. Among recent studies on self-contained
equilibrium-based models for the nonzero variance risk premium referred above, all
of the studies except for Drechsler and Yaron (2011) model the processes of both the
variance of consumption growth rate and the LRR factor as conditional normal, so that
the one-step-ahead conditional distribution of the market return in each time is also
conditional normal and, as a result, the skewness of that distribution must be zero.
Therefore, the models proposed by those studies can not explain the negative risk-
neutral skewness, which is found by the previous studies such as those by Ait-Sahalia
and Lo (1998) and Ait-Sahalia et al. (2001). They document several empirical features
of the state price density for the S&P500 index option market over time, including
the term structures of mean returns, volatility, skewness, and kurtosis, that are implied
by option-implied distributions. In particular, They show that the nonparametric state
price densities are negatively skewed, have fatter tails and the amount of skewness
and kurtosis both increase with maturity.

We show that jump components in the LRR factor and/or the variance of consump-
tion growth rate can explain the nonzero (and negative) skewness of the one-step-ahead
asset return distribution. To the best of our knowledge, Drechsler and Yaron (2011)
is the first paper that indicates an important role for transient non-Gaussian shocks
(jumps) to fundamentals such as the LRR-factor and the variance of consumption
growth rate for understanding how perceptions of economic uncertainty and cash-flow
risk manifest themselves in asset prices. However, in Drechsler and Yaron (2011), they
assume that the jump intensity process A; has an affine structure of A, = Iy + / latz,
where [y, [; > 0 and U,Z is the variance of consumption growth rate, and under this
assumption, it is unfortunately not possible to explain an empirical fact on a simultane-
ous relation between monthly stock returns and monthly changes of the option-implied
skewness:

P41 = 0.006 — 0.019 x AISkew; 1,
(2.46) (—3.46)

Fiia1 = 0.006 — 0.007 x AVIX; 1| — 0.016 x AISkew 41,
(3.33) (—16.00) (—3.94)

ey

where 1, ;41 is the monthly return of the S&P500 Total Return Index from time ¢ to
t 4+ 1, AVIX, 4 is the monthly change of option-implied volatility calculated with the
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CBOE’s VIX from time ¢ to t + 1, and A7Skew, 1 is the monthly change of option-
implied skewness calculated with the CBOE’s Skew Index from time 7 to £ 4 1.> These
results are obtained based on the monthly data from Jan-1990 to Aug-2012. Under the
assumption on the jump intensity process in Drechsler and Yaron (2011), however,
we can confirm that the regression parameters to AlSkew; | in the above regression
models should be positive.

Moreover, such assumption in Drechsler and Yaron (2011) can not explain another
empirical fact of low correlation (in absolute value) between AV I X; and AlSkew;.
The jump intensity model assumed in Drechsler and Yaron (2011) leads to the perfect
correlation between AV I X, and AlSkew, because the jump intensity process in their
paper is driven by only one factor, that is, o>. However, actual correlation value
between AVIX, and AlSkew; in the period from Jan-1990 to Aug-2012 is nearly
zero,* so that the assumption for jump intensity in Drechsler and Yaron (2011) can
not explain such empirical fact.

In this paper, we propose an extension of the LRR models pioneered by Bansal
and Yaron (2004) and Drechsler and Yaron (2011). Our model contains a rich set
of transient dynamics and can quantitatively account for the time variation and asset
return predictability of the skewness premium as well as the variance risk premium. In
particular, we introduce a stochastic jump intensity for transient jumps to fundamentals
such as the LRR factor and the variance of consumption growth rate, and show that this
additional introduction of a stochastic jump intensity enables our model to capture the
various empirical aspects of the stock index returns and its option-implied moments
including the facts cited above. Christoffersen et al. (2012) find very strong support for
time-varying jump intensities for S&P500 index returns and they show that, compared
to the risk premium on dynamic volatility, the risk premium on the dynamic jump
intensity has a much larger impact on option prices. We find that the existence of the
negative skewness and the skewness risk premium observed in historical data have a
close relationship with the existence of the jumps and the jump risk premium of the
economic uncertainty, respectively.

This paper also shows that the skewness of asset return distribution and the skewness
risk premium, which compensates for the stochastic nature of the skewness, are both
time-varying due to the stochastic nature of the jump intensity for transient jumps in
both the LRR factor and the variance of consumption growth rate. Moreover, providing
an equity risk premium representation of a linear factor pricing model with time-
varying variance and skewness risk premiums, we find that those risk premiums can
explain a nontrivial fraction of the time series variation in the aggregate stock market
returns. Simplified preliminary tests of regression models provide empirical evidence
in which the skewness risk premium, as well as the variance risk premium, has superior
predictive power for future aggregate stock market index returns. Compared with the
variance risk premium, the results also show that the skewness risk premium plays an
independent and essential role for predicting the market index returns.

3 See Sects. 4.1 and 4.2 for the details of calculation methodology for option-implied skewness with the
CBOE’s Skew Index.

4 We can find that the correlation value between VIX ,2 and /Skew; in the same period is also nearly zero
(see Table 2).
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The remainder of this paper is organized as follows. Section 2 outlines the basic
theoretical model with jumps in consumption growth rate and its volatility, shows
how equilibrium is derived for our model economy, and highlights its key features. In
particular, we provide an equity risk premium representation of a linear factor pricing
model with time-varying variance and skewness risk premiums. Section 3 provides the
implications from a calibrated version of the theoretical equity risk premium repre-
sentation of a linear factor pricing model derived in Sect. 2 to help guide and interpret
our subsequent empirical reduced form predictability regressions. Section 4 describes
the data used for examining the equity risk premium representation empirically and
discusses the results from the predictive regressions on the stock returns to the variance
and the skewness risk premiums with historical data. Section 5 provides concluding
remarks.

2 Model framework
2.1 Model setup and assumptions

The underlying environment is a discrete time endowment economy. The representa-
tive agent’s preferences on the consumption stream are of the Epstein and Zin (1989)
form, allowing for the separation of risk aversion and the intertemporal elasticity of
substitution (IES). Thus, the agent maximizes his lifetime utility, which is defined
recursively as

vi=|a _5e T +8(E,[th+_l”])$]%, 2)

where C; is consumption at time ¢, 0 < § < 1 reflects the agent’s time preference, y
is the coefficient of risk aversion, § = 11;1 and 1 is the intertemporal elasticity of

substitution (IES). This preference structurlé collapses to a standard CRRA utility rep-
resentation if y = %, thatis, & = 1, and in this case, only innovations to consumption
are priced. In the following, based on the result provided by Bansal and Yaron (2004)
we assume that both y and ¢ are larger than one. It then holds that y > L which
implies & < 0. With this choice, the investor has a preference for early resolution of
uncertainty (Bansal and Yaron 2004). Then, not only consumption risk is priced, but
state variables carry risk premia, too. The parameter restrictions also ensure that the
signs of the risk premia are in line with economic intuition, and that a worsening of
economic conditions leads to a decrease in asset prices.
Utility maximization is subject to the budget constraint:

Wt+l = (Wt - Ct)Rc,H-l»

where W; is the wealth of the agent and R, ; is the return on all invested wealth. As
shown in Epstein and Zin (1989), for any asset j, the first-order condition yields the
following Euler condition:

E[exp(mis +rjusn) | = 1, 3
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where ;11 is the log of the gross return on asset j and m;y; is the log of the
intertemporal marginal rate of substitution (IMRS), whichis givenby m; 1 = 6 log §—
% Aciy1+ (0 — Dregv1. Here, re p41 islog R. ;41 and Acy41 is the change in log Cy,

that is, 10g( ’“).

We model consumption and dividend growth rates, g;+1 = log(C’C—f‘) and g4 41 =

1og(DL’)—J;1) where D; is dividend at time ¢, respectively, as containing a small persistent
predictable component x;, which determines the conditional expectation of consump-
tion growth,

X4l = PxXt + @e0rery1 + Jx 41,

8i+1 = Ug + Xt + Qo Ni41, 4
8d.t+1 = Mg + paxt + GO;Ut{t-&-l’

where @e, 05, @z, px, pa > 0, pg, ta € R, e, 1;, and ¢; are mutually independent
i.i.d.N@,1) processes, and Jy ;41 is a compound-Poisson process represented by

N
Jei41 = ]f’]' €] where N}, | is the Poisson counting process for that jump compo-

nent whose the intensity processis Ay ;41 = IxAr41, [y > 0,and 6x ~i.i.d. N(O, 6)%),
8x > 0, is the size of the jump that occurs upon the N},
Furthermore, we also model the dynamics of the volatility as follows:

Utz.H = Uog + ,000;2 + Vw41 + J02,1+1’

(5)
Gi+1 = Hg + Pqqr + Qe /qr6i+1,
where the parameters satisfy o > 0, g > 0, ]ps| < 1, [pg] < 1, ¢z > 0, and wy,
and &, are mutually independent i.i.d.N (0, 1) processes and are also independent of
each of e;, n;, and &. J;2 ,, is a compound-Poisson process, which is represented
N?, . . .
by Jy2,41 = Zj:fl‘ ¢ -2 Where Nz+1 is the Poisson counting process for that jump
component whose the intensity process is Ay2 11 = l[p2h41, 12 > 0 and 612 ~

i.id. N(O, 822) 852 > 0,isthesize of the jumpthatoccursuponthe We assume

t+1
that N/, | and N; _51 are mutually independent and €] and €’ 2 are too. The stochastic
variance process o represents time-varying economic uncertainty in consumption
growth with the variance-of-variance process g, in effect inducing an additional source
of temporal variation in that same process. We model the variance-of-variance process
q: in the same fashion as Bollerslev et al. (2009).

Importantly, the jump intensity dynamics for A; is newly introduced in our economy,
which is represented by the following discrete-time stochastic process,

Lkl = Ma + Pare + Qu/a (&1 + V1 — p2uigr), (6)

where u, > 0, |[pa] < 1, |p| < 1, and u; is an i.i.d.N(0, 1) process which is
independent of each of ¢;, n;, ¢, wy, and &.
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One of the notable features of our model setup is this introduction for the jump
intensity process (6). Christoffersen et al. (2012) also find very strong support for time-
varying jump intensities for S&P500 index returns, and they show that, compared to the
risk premium on dynamic volatility, the risk premium on the dynamic jump intensity
has a much larger impact on option prices. In the previous studies, Drechsler and Yaron
(2011) is the first paper that introduces transient jumps to fundamentals such as the
LRR-factor x; and the variance of consumption growth rate otz. However, it assumes
that the jump intensity process A; is represented by an affine structure of A; = lp+/; 0,2
where [, [; > 0. As mentioned in the introduction of this paper, such assumption for
the jump intensity process can not explain empirical facts of regression (1) and nearly
zero correlation between option-implied volatility and option-implied skewness. We
extend the LRR models of Bansal and Yaron (2004) and Drechsler and Yaron (2011)
so as to introduce a stochastic jump intensity of (6) into the economy. As shown in the
following, this introduction enables our model to have a consistency with the empirical
facts mentioned above and plays a key role in describing the characteristics of asset
return distributions.

2.2 The model solution in equilibrium

We distinguish between the unobservable return on a claim to aggregate consumption,
R¢ 1+1,and the observable return on the market portfolio, Ry, ;+1: the latter is the return
on the aggregate dividend claim. Solving our model numerically, we demonstrate the
mechanisms working in our model via approximate analytical solutions in the same
fashion as the previous studies such as those by Bansal and Yaron (2004), Bollerslev
etal. (2009), Drechsler and Yaron (2011), etc. To derive these solutions for our model,
we use the standard approximation utilized in Campbell and Shiller (1988),

Fepdl = Ko+ K1Vrp1 — U + g1t 1, @)

where lowercase letters refer to logs, so that r. ;11 = log(R. +1) is the continuous
return, v, = log(g) is the log price-consumption ratio of the asset that pays the
consumption endowment, {C;4;}7°,, and ko and « are approximating constants that
both depend only on the average level of v.> Analogously, 7, ;+; and v, ;41 correspond
to the market return and its log price-dividend ratio and the similar approximation

presented below can also be derived:

Fm,t+1 = KO,m + K1,mVm,t+1 — Um,t + &d,t+1- ()

The standard solution method for finding the equilibrium in a model like the one
defined above then consists in conjecturing solutions for v; and v, ; as an affine

5 Note that K| = li)g( (pu()a)

also consistent with magnitudes used in Campbell and Shiller (1988).

and this value is approximately 0.997 (cf) Bansal and Yaron (2004), which is
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function of the state variables, x;, 0,2, q:, and A;,

v = Ao+ Axx; + Agol + Agqr + A, )
Ut = Aom + AxmXs + Ac‘r,mo}2 + Aq,mQt + Ax mAs, (10)

respectively, solving for the coefficients Ag, Ay, As, Ay, and A, in v, and for the
coefficients Ag u, Ax,m» Ac,ms Ag,m»and Ay, in vy, ;.

Substituting (9) for (7), we have a temporal representation for r. ;4| with the state
variables, x;, 0,2, q:, and A, and furthermore, substituting this r. ;41 for the Euler
equation (3), we can derive an identity with those state variables. Solving the identity
in the same manner as Bansal and Yaron (2004), Bollerslev et al. (2009) and Drechsler
and Yaron (2011), we can derive the equilibrium solutions for the four parameters as
follows:

__vr-1
S Okipe — 1)
_ 10—yl + 0% ALy
) G(Klpa—l) ’
2 — exp(30%(}A282) — exp(R0%k A262) (n

Ay = ,
O(k1p5 — 1)

Ay is a solution of the quadratic equation presented below:

92
04 c1py =1+ — [A2 + A2g7 424 A;\(pgfpu,o+A)\gou] —0.
Considering the expressions of (11), the following proposition can be proven easily:
Proposition 1 If y > 1 and > 1, then, Ay >0, A, <0, A; <0, and A, < 0.

The above proposition suggests that if the IES and risk aversion are higher than 1, a
rise in each of the state variables of otz, q:, and A; lowers the price-consumption ratio.

Having solved for r. ;11 with the four parameters derived above, we can substitute
it (and Ac;4+1 = g¢+1) into m,4 | to obtain an expression for the conditional innovation
to the log pricing kernel at time 7 4 1:

myr1 — E[myq1]

0
=0logs — v Aciyr+ O = Drep

0
—E, [9 log§ — E Aciye + (0 — l)rc,t+1]

= —A"(Gizi+1 + Jrs1 — Edl 1)), (12)
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where

A=(y (1=0)kiAy (1 —0)1As (1 —0)k1Ay (1 — 01 Ay 0)'

¥not 0 0 0 0 0
0 PeOt 0 0 0 0
G = 0 0 Jar 0 0 0
1= 0 0 (N 0 (VN
0 0 0 p‘puﬁ ouv 1 — pz\/E 0 (13)
0 0 0 0 0

Pr Ot
241 = (M1 €1 Wit Era1 Uit Git1)'
Jis1= (0 Jx g1 Jy2,0y 0 0 0),

EilJir1] = (0 Ei[Je 1] E[Jy2, 0] 0 0 0).

A can be interpreted as the price of risk for Gaussian shocks and also the sensitivity
of the IMRS to the jump shocks. From the expression of A, one can see that the
prices of risks are determined by the A coefficients, thatis, Ay, A, A4, and A;. The
expression of A also shows that the signs of the risk prices depend on the signs of
the A coefficients and (1 — 6). In particular, when y = i, 6 = 1, and we are in the
case of constant relative risk aversion (CRRA) preferences, it is clear that only the
transient shock to consumption z. ;4+1 = ;41 is priced, and prices do not separately
reflect the risk of shocks to x; (long-run risk), 0,2 (volatility-related risk), ¢; (variance-
of-variance-related risk), and A; (jump intensity-related risk).

In the discussion and calibrations explored below, we especially focus on the case
in which the agent’s risk aversion y and the IES v are both greater than 1, which
implies that A, > 0, A, < 0, A; < 0, and A, < 0 by the proposition provided
above. Thus, positive shocks to long-run growth decrease the IMRS, while positive
shocks to the levels of the other state variables, atz, q:, and X;, increase the IMRS.
Note that in this case, since (1 — 6) > 0, each of the A coefficients has the same sign
as the corresponding price of risk.

To study the risk premiums in higher-order moments of the market returns, we first
need to solve for the market return. A share in the market is modeled as a claim to a
dividend with growth process given by g4 ;. To solve for the price of a market share,
we proceed along the same lines as for the consumption claim and solve for vy, ;+1,
the log price-dividend ratio of the market, by using the the conjecture (10), Campbell
and Shiller (1988)-approximation (8), and the Euler equation (3).0

With the equilibrium solutions for the parameters of Ay ., Agm, Ag,m, and Ay
in (10), we can obtain an expression for r,, ;41 in terms of the state variables and its
innovations by substituting the expression for v, ;(1) into (8):

"'mt+1 = KO,m "l‘Kl,mAO,m "l"(l,mAa,de'i‘Kl,mAq,mlig + Kl,mAA,lnl/LA - AO,m + d
+ (Kl,mAx,m:Ox - Ax,m + pa)x;

6 Because the datails of the four parameters, Ax m, Ag,, Agm> and A, ,,, are insignificant and do not
affect the discussion explored in the following at all. For simplicity, we express the parameters, Ax m, Ag,,
Ag.m»and A _,,, as they are and do not show explicit representations of those parameters in this paper.
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+ (Kl,mAa,m,Oa - Ao,m)dt2
+ (Kl,mAq,mpq - Aq,m)%
+ (K1mAxmPr — Anm)he
+K1,mAx,m‘peUtet+l + Kl,mAa,m«/Ethrl
+K1m(Agm®s + AxmPuP)N/Abr+1
+ k1 mAsm@uv 1 — P2/ qrurs1 + ©c 01841
trimAxmIx 41+ KlmAomIe2 141
=10+ (BrtF — Ain)Yt + B,{GtZFH + B£Jz+], (14)

where

ro = ko,m + (Kl,m - 1)AO,m + (Kl,mAa,m + Dpag + Kl,mAq,mPLg + Kl,mA)\,mH«)u
B, = Kl,mAm +eq,

0 0 o 1 0 0 0 0 &
Avm 0 0O px 0 0 0 0 X
N ol .o 0 s 0o 0o o |a
An=tanl“=fol =0 0o 0 o o o'V=|4
Arm 0 0 0 0 0 p O e
0 1 0O pa 0 0 0 0 8d.i
(15)

2.3 Risk premiums in higher-order moments in equilibrium

Before proceeding to investigating the risk premiums in higher-order moments in
equilibrium, we need to provide some further explanation on the jump dynamics and
the features of the pricing kernel introduced above.

To handle the jumps, we introduce some notation. vV (ux) = Elexp(uxer)] (k is
x or 02) denotes the moment-generating function (mgf) of the jump size €. The
mgf for the jump component of k, E[exp(uxJi +1)], then equals exp(W; x(ux)),
where W; i (ur) = Ak (Yr(ur) — 1). W,k is called the cumulant-generating func-
tion (cgf) of Ji ,+1 and is a very helpful tool for calculating asset pricing moments.
The reason is that its n-th derivative evaluated at 0 equals the n-th central moment of
Jk,t+1~

Regarding the features of the pricing kernel, we can show what described below
in line with Drechsler and Yaron (2011). Let us set the Radon-Nikodym deriva-

tive % = Eﬁ’/[il], where P is the physical probability measure and Q is the
risk-neutral probability measure in our economy. From (12), we have My

E[Mi41]
exp(—=A'(G;zi41 + Ji+1)). Since z;41 and J;4 are independent, we can treat their
measure transformations between P and QQ separately. As a consequence, Drechsler
and Yaron (2011) show that

2t EN(-G.A, D), (16)
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where [ is the identity matrix in R®*0_ Thatis to say that, under Q, z,4 is still a vector
of independent normals with unit variances, but with a shift in the mean.

For the case of J;11, we could also proceed by transforming the probability den-
sity function directly. As guided in Drechsler and Yaron (2011), Proposition (9.6) in
Cont and Tankov (2004) shows that under Q, the J;1 ; are still compound Poisson
processes, but with cgf given by

Yk (ug — Ap) 1)

17
Vi (=Ax) (4"

W @) = vk (=40

where k = x or k = o2, A, denotes the price of risk for the LRR-factor x;, that
is, (1 — 0)k1A,, and A2 denotes the price of risk for the variance of consumption
growth rate, that is, (1 — 6)x1As. (see (13)) In the following discussion, we use the
facts mentioned above to calculate the higher-order moments of the market return and
to investigate the risk premiums in the moments.

2.3.1 The variance risk premium in equilibrium

According to Bollerslev et al. (2009) and Drechsler and Yaron (2011), the variance
risk premium in equilibrium, vp;,, is defined by

vpr = E2[Var® | (r,r+2)] — ES [Varky  (rne42)1, (18)

where Vartm:r] (Varg 1) is the variance operator under the physical (risk-neutral) prob-
ability measure at time ¢ 4+ 1. We have the following proposition:

Proposition 2 (The Conditional Variance of the Market Return) The conditional vari-
ance of the market return ry, ;42 at time t + 1 under P can be expressed as follows:

t ..
Var( (rmi+2) = Bl (Hy207, 1 + Hyqr+1) By + B} dlag(w@)(m)nm, (19)

where
92 0 0 0 0 0 0 0 0 0 0 0
0 g2 0 0 0 0 0 0 0 0 0 0
.0 0 0 0 0 of . _fo 0 1 0 0 0
=10 0 0 0 0 OofMT0 0 0 ¢} pezp. O]
0 O 0 0 0 O 0 0 0 pp:o, <p3 0
0 0 0 0 0 ¢ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 v2(0) (2)0 0 0 0 Axrtl
i 2 10 0 ¥50 0 0 0 _ | o241
diag(y2(0)) = O A
0 0 0 0 0 0 0
0 0 0 0 0 O 0

@ Springer



106 Hiroshi Sasaki

Proof See the “Appendix”. O

Under the risk-neutral probability measure Q, the conditional variance of the market
return r,, ;42 attime 41 also can be obtained in the same manner demonstrated above.
As a consequence, we can show the following proposition based on the definition of
the variance risk premium (18).

Proposition 3 (The Variance Risk Premium in Equilibrium) In equilibrium, the vari-
ance risk premium at time t, vpy, is linear to the variance-of-variance, q;, and the
Jjump intensity, A;, and the representation of it is provided as follows:

vpr = Bup,c + Bup.qdr + Buprres (20)
where
Bupe = [LBEQWP (=20 = U@ O)+Ho2 BEOWD (= Ap2) = v O |,

Bupg = — B! [Aaszz + e (e Ay + pgouAA)Hq]B,
2
— Qu(p9e A + M) L BF QY (=M + 12 BE B3 (= Ag2)),
1
Bup = BLH,2 By 'Y (—A,2)

+ (LB P (-0 =¥ 2 O+ BEO U (- A2) =33 00 |

o2
Proof See the “Appendix”. O

A number of interesting implications arise from the expression (20). In particular,
any temporal variation in the endogenously generated variance risk premium is solely
due to the variance-of-variance ¢, and the jump intensity ;. Moreover, provided that
6 <0, Ax > 0,and A,2 < 0, as would be implied by y > 1 and ¢ > 1, the factor
loading to the jump intensity, that is, Byp,», is guaranteed to be positive, but that to
the variance-of-variance, that is, B,y 4, can be both positive and negative in general.
However, if the correlation between the dynamics of the variance-of-variance and that
of the jump intensity, thatis, p, is positive, then B, 4 is also guaranteed to be positive
due to the facts that A; < Oand Ay < 0.

2.3.2 The skewness risk premium in equilibrium

On the basis of the same manner used to derive the expression (19) in the previous
subsection, we can also derive the representations for the skewness of the market return
under P and Q, respectively, as follows:

Skew! (rmry1) = B2 diag(y @ 0)) 11,

Q CLFB 3) @h
Skew, (Vm,t—i-l) = B} dlag(‘ﬁ T (=A)IT,
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where
B} (1) 0 0 0 000
B3 (2) oyP©0 0 0 0 0
B3| . o 0o v20 0 0 0
B3 = ’ , dia ) = 2 ,

"7 | B4 g(l’/’ ()) 0 0 0 000
B} (5) 0 0 0 000
B} (6) 0 0 0 000

0 0 0 000

0y (—Ax) N 0 00 0

g(w ( )) 0 0 0 00 0

0 0 0 000

0 0 0 000

In this paper, we define the skewness risk premium in equilibrium at time ¢, skp;, as
the following expression, which is the same manner with the definition of the variance
risk premium (18):

skpy = E2[Skew | (rm.r+2)] — Ey [Skew (i r+2)]- (22)

Substituting (21) into (22), the explicit representation for the skewness risk premium
can be obtained as follows:

skp, = B diag(y @ (= ADER[M, 411 — B diagp D ONEL[T,1]. (23)

We also find a number of interesting implications from the expressions of (21)
and (23). First, in the case that there is no jump to fundamentals in the economy,
that is, in the case of I1; = 0, it is clear that the conditional skewness of the market
return should be zero due to (21). Thus, the existence of the nonzero skewness of the
market return crucially depend on the existence of the jumps to fundamentals in the
economy. Second, any temporal variation in endogenously generated skewness and
skewness risk premium are solely due to the temporal variation in the jump intensity
process A;. For example, if the jump intensity is constant, then it is clear that the
skewness (under P and Q) and skewness risk premium should be constant by (21)
and (23). Third, since we have the fact of A, < 0 by the proposition 1, then in the
case that the jump to the variance of consumption growth rate exists, that is, in the
case that 4,2, > 0, we can show easily by (21) that the risk-neutral skewness at

time 7, Skew;Q(rm’ 1+1) , should be negative. Finally, we can also find via (23) that in
the case that either A, ; > 0 or A,2, > 0 is satisfied, the skewness risk premium at
time t, skp;, in equilibrium also should be negative due to the facts of Ay > 0 and
Ay < 0.

On the basis of the definition of (22), let us provide the proposition for the repre-
sentation of the skewness risk premium in equilibrium.
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Proposition 4 (The Skewness Risk Premium in Equilibrium) In equilibrium, the
skewness risk premium at time t, skpy, is linear to the variance-of-variance, q;, and
the jump intensity, A, and the representation of it is provided as follows:

skp; = ﬂsp,c + ﬂsp,qqr + ﬂsp,)\)“ls

where
Bop.e = [iBE @D (=80 +1,2B}310,2 P (=0 |1, 24
Bopag = [0 D (=0 + 1,2 B 31Wo2 D (=8 02) [ (=00 Ag = 0uhs),

Bops = [1xBR @0 D (= A0) + 162 B 30p2 D (=82 | .

Proof Considering (6), (16), and the definition of the moment-generating function, it
is trivial to derive the above expression. O

From the above proposion, we find that any temporal variation in endogenously
generated skewness risk premium is also solely due to the variance-of-variance g; and
the jump intensity A, as well as the volatility risk premium (Proposition 2). Moreover,
provided that Ay > 0 and A,> < 0, the factor loading to the jump intensity, that is,
Bsp,x» 1s guaranteed to be negative, but that to the variance-of-variance, that is, B;p 4,
can be both positive and negative in general. However, if the correlation between the
dynamics of the variance-of-variance and that of the jump intensity, that is , p, is
positive, then By, 4 is also guaranteed to be negative due to the facts that A, < 0 and
A A< 0.

Before we turn to the next discussion, it will be useful to mention about some
features of the higher-order moments of the market return and the risk premiums in
them.

First, as mentioned in the introduction in this paper, the usual assumption of an affine
structure on the jump intensity process A, thatis, Ay = lo+1 1012 where [g, [{ > 0 and
0,2 is the variance of consumption growth rate, in the previous studies such as Drechsler
and Yaron (2011) can not explain an empirical fact on a simultaneous relation between
monthly stock returns and monthly changes of the option-implied skewness shown by
(1). It is because, under such assumption, we can show analytically that the regres-
sion parameters to AlSkew;11 in (1) should be positive even if empirical evidence
is consistent with the negative parameters.” On the other hand, based on our model
provided above, the correlation between the one-step-ahead market return, r,, ;+1, and

Q

= Skew(g_l —Skewi@,

the one-step-ahead change of risk-neutral skewness, ASkew
can be derived analytically with (14) and (21) as follows:

7 The empirical evidence of the negative correlation between the one-step-ahead market return, r,, ;41,

Q _

and the one-step-ahead change of risk-neutral skewness, ASkew,” | = Skew;Q = Skew;Q, also essentially
shown by Neuberger (2012). He shows that the period when the S&P500 index volatility was very low
by historic standards (from the year of 2003 to 2007) was also one of relatively low skewness, whereas
skewness was actually rather high in the volatility spike of the year of 2008. Under the leverage effect of
Black (1976), that evidence suggests the same essentially as that of the negative correlation between the
one-step-ahead market return and the one-step-ahead change of risk-neutral skewness.
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Corr(rm,z+1, ASkewgl) = Kouk1,m(pAgm + ulim)q:

where K =1, B3y, (=Ay) + 12 B2 32 (A ,2).

A)L,m
Aq,nl ’

From the above expression, we can show that, when p < —¢, the correlation

between ry, ;41 and ASkew%l = Skew(gH — SkewiQ should be negative because, in
the case of y > 1 and ¢ > 1, it is proven that K is negative. This observation is
consistent with the empirical fact of (1) shown in the introduction of this paper. If we
assume the “zero” correlation between the A; and g;, we can not show the negative

correlation between the one-step-ahead market return, r,, ;+1, and the one-step-ahead

change of risk-neutral skewness, ASkewgl = Skew(gH — Skew(,@, with our model.
Thus, we would like to emphasize that there is considerable validity in our model
setting with the stochastic jump intensity compared with the previous studies such as
Drechsler and Yaron (2011), etc.

Second, although both the variance risk premium and the skewness risk premium
are linear to the variance-of-variance ¢g; and the jump intensity X;, we can find that
they are linearly independent because of the fact that det = Byp,¢Bsp,x — Bup,iBsp.q
will not be zero under suitable parameter condition, which will be also proven in
Sect. 3 with a model calibration result. If we assume that jump intensity process A,
has an affine structure as mentioned above, the correlation between the variance and
skewness risk premium should be one in absolute value and should not be independent
each other. This is because the jump intensity process is driven by only one factor,
that is, 0,2, under such assumption. This observation also shows considerable validity
in our model setting with the stochastic jump intensity.

2.4 An equity risk premium representation

In this subsection, let us show an equity risk premium representation with the vari-
ance and skewness risk premiums in equilibrium. In the beginning, we start with an
expression for the equity risk premium provided by Drechsler and Yaron (2011) as
follows:

10g B (Ry1+1) — rfr = BiGiGA + T (Y (By) — 1 = (B — A) + ¥ (=A)),

where
0 0
Y (Br(2)) V(B (2) — Ay)
v (B,) = %z(gre)) (B — A) = woz(B,(?))—Aaz) ’
0 0
0 0
0
Y (—Ay)
Y(=A) = waz(gAJZ) )
0
0
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As mentioned in Drechsler and Yaron (2011), the first term, B:G;G' A, represents
the contributions of the Gaussian shocks to the equity risk premium. In particular,
according to the expression of G,G! = H,» atz + Hyq; (see (19)), this term aggregates
both the risk-return tradeoff relationship and a true premium for variance risk. The
next terms, l'[;(w(Br) —1—v (B, — A)+ ¥ (—A)), represents the contributions from
the jump processes. The derivation of this expression is presented in the “Appendix”
in Drechsler and Yaron (2011).

The ry, is the risk-free rate at time # in the economy and the explicit expression of
this r 7, is provided in the “Appendix”.

With the expression of G,G' = H,207 + Hyq: and TT; = (0 Ay g2, 000)',
the following representation can be obtained via the expression for the equity risk
premium shown above:

102 Ey (R 1+1) — 7.1 = Bero 07 + Bergr + Ber, where Beoro = BLHy A,
,Ber,q = B,)quA7

Bern = LU (B ) = 1 = (B (2) = M) + Y= |

o Vo2 (B 3) = 1= Ws (B, 3) = Ag) + ¥ (—Ag0) | (25)

As shown in (25), the equity risk premium is driven by the state variables of atz,
q:, and A, and have a time-varying nature essentially because each of those variables
has the stochastic nature. In particular, in the case of y > 1 and ¥ > 1, it is proven
that B¢y > 0, Berg > 0, and B,;,5 > 0 because of the facts that A, > 0, A2 <0,
A4 < 0,and A < 0, which are provided in Proposition 1, so that if each of the state
variables increases, then the equity risk premium also increases, and vice versa.

The conditional variance of the equity return at time ¢, Var]fn(rm,,+1), is also
expressed by

t ..
VarP (rn.r41) = B!G,G' B, + B> dlag(w(z)(O))Ht
= B!H,2B,0}+BLHyBrq; + (1. B2y P (0) + 1,2 B2 3)¥'D ()2,
= ﬁvar,oatz + ,Bvar,q% + ,Bvar,k)\zy

so that with (20), (24), (25), and the above expression for the conditional variance
of the equity return we can derive an explicit equity risk premium representation of
a linear factor pricing model with the variance and skewness risk premiums and the
conditional variance of the equity return.

Proposition 5 (An Explicit Representation for the Equity Risk Premium)

10g IEI(Rm,t+l) —I'ft =T + nvarvarip(rm,t+l) + Typ VPt + ”spSkpta (26)
where
T = (_ :Ber,cr,Bvar,q + ,Ber,q) _ISSP,)L/gUp,C + ,va,A,Bsp,c
ﬂvar,a det
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+ (_ Ber,o Buar, 4 ,Ber,A) ,Bsp,q,va,c - ﬂvp,qﬂsp,c ’
,Bvar,o det
T _ Ber.o
e Buar,o '
Top = (_ :Ber,olgvar,q + ,Ber,q) ,Bxp,k _ (_ ,Ber,aﬂvar,k +,Ber,k) lgsp,q ’
Buar.o det Buar.o det
ﬂer oﬂvar q ,va A ,Ber aﬁvar A ﬂvp q
S R e
” ( lguar,(r ,Ber,q det ,Bvar,o lger,k det

det = ﬁvp,qﬁsp,)\ - ﬁvp,)»ﬂsp,w

This representation of (26) suggests that the skewness risk premium, as well as the
variance risk premium and the conditional variance of the market return, constitutes the
dominant source of the variation in the equity risk premium. In the following section,
we will show that det in (26) is not zero under the suitable parameter condition. Thus,
from the above proposition, it is found that the skewness risk premium has an essential
source of the variation in the equity risk premium, which is different from that of the
variance risk premium (see Fig. 1).

Some recent studies such as those by Bali and Hovakimian (2009), Yan (2009),
Chang et al. (2012), Driessen et al. (2012), and Rehman and Vilkov (2012) focus on a
significant relationship between skewness or jump risks and expected stock returns, and
they provide empirical evidence for a significantly positive link between the expected
stock returns and the jump or skewness risks. To the best of our knowledge, this result
of (26), which suggests an explicit relationship between the skewness risk premium
and the expected equity excess return, is the first to provide a theoretical implication
in their empirical evidence in terms of the LRR model approach pioneered by Bansal
and Yaron (2004).

1OgE; [Rm,H-l ] - r/ ot

vp, skp,

Jo g,

Fig. 1 The risk premiums in higher-order moments and the equity risk premium
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Table 1 The set of model

parameters Parameter Source (Calibrated) Values
(1) Preference
v BST 2.5
(2) Consumption growth
©n BY 1.0
(3) Long run risk
Dx BY 0.979
Ye BY 0.044
(4) Variance
Do BTZ 0.978
(5) Variance-of-variance
Pq BTZ 0.8
®g BTZ 0.001
This table reports the parameter ~ (6) Campbell=Shiller
values used in the calibration of K1 BTZ 0.9

the factor loadings in the

theoretical model (26). CM, BY, (7) Jump intensity

BTZ, and BST in this table P CM 0.9
denote values taken directly u - 0.01
from Chan and Maheu (2002),

Bansal and Yaron (2004(1), ) 8x: 852 - 0.01
Bollerslev et al. (2009), and o - 1.0
Bollerslev et al. (2012), Iy, 1(’2 _ 1.0
respectively

3 Model implications

Before proceeding to an empirical analysis based on the representation of (26), we
show the implications from a calibrated version of the theoretical model (26) to help
guide and interpret our subsequent empirical reduced form predictability regressions.

Table 1 reports the parameter values used in the calibration of the factor loadings
in the theoretical model (26). CM, BY, BTZ, and BST in this table denote values
taken directly from Chan and Maheu (2002), Bansal and Yaron (2004), Bollerslev
et al. (2009), and Bollerslev et al. (2012), respectively. Those previous studies refer
to the unit time interval in the calibrated equilibrium models as a month, and we also
refer to the unit time as the same. On the basis of the parameters exhibited in Table
1, we calibrate the factor loadings for the variance risk premium, which appear in
the representation of (20), and for the skewness risk premium, which appear in the
representation of (24), in equilibrium.

The figures from Figs. 2, 3, 4 and 5 show the factor loadings, Bvp.g, Bup.x» Bsp.q»
and B, 5, corresponding to the parameters of the risk aversion parameters y and the
correlation p between the volatility of volatility g; and the jump intensity A;. As is
shown in the previous section, By ;, which is the factor loading to the jump intensity
A, in the variance risk premium representation (20), is essentially positive, and under
the parameter values exhibited in Table 1, B, 4, which is the factor loading to the
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Fig. 3 The factor loading By 2
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variance-of-variance ¢; in (20), also seems to be positive. These results indicate that
when the variance-of-variance and (or) the jump intensity rise(s), the level of the
variance risk premium also increases. In contrast, S, 5, which is the factor loading
to the jump intensity in the skewness risk premium representation (24), is essentially
negative and this result is consistent with the discussion explored in the previous
section. However, interestingly, B, 4, which is the factor loading to the variance-of-
variance in (24), can be both positive and negative corresponding to the parameters of
y and p. These results on the B;, ;. and the By, , indicate that although an increase in
the jump intensity reduces the level of the skewness risk premium essentially, but an
increase in the variance-of-variance will raise or reduce the level of the skewness risk
premium corresponding to the values of y and p.

The figures from Figs. 6, 7 and 8 show the factor loadings to the variance of the
market return, the variance risk premium, and the skewness risk premium in the equity
risk premium representation (26). It is interesting that both of the 7y, and ), are
essentially positive and these results are irrelevant to the values of y and p. Moreover,
these results are consistent with the previous studies such as those by Bollerslev et al.
(2009) and Drechsler and Yaron (2011). An important point to emphasize is that the
factor loading of 7y, which is the loading to the skewness risk premium in (26), can
be positive corresponding to the risk aversion parameter y . In particular, when the y is
over 4, itis clear from Fig. 8 that the ), is strictly positive. This result indicates that a
decrease in the skewness risk premium, which is the case that the risk-neutral skewness
is going to be much smaller than the skewness under the physical measure, reduces

Fig. 6 The factor loading to Var,P I yar
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the equity risk premium when y is over 4. This implication is interesting as it shows
the essential contribution of the skewness risk premium to the equity risk premium
explicitly implying the sign of the 7y, corresponding to the values of y and p. As
mentioned above, some recent studies such as those by Bali and Hovakimian (2009),
Yan (2011), Chang et al. (2012), Driessen et al. (2012), and Rehman and Vilkov (2012)
focus on a significant relationship between skewness or jump risks and expected stock
returns, and they provide empirical evidence for a significantly positive link between
the expected stock returns and the jump or skewness risks. In particular, Bali and
Hovakimian (2009) and Yan (2011) provide evidence for a significantly positive link
between expected returns and the call-put options’ implied volatility spread that can
be considered as a proxy for jump risk. Moreover, using data on individual stock
options, Rehman and Vilkov (2012) show that the currently observed option-implied
ex ante skewness is positively related to future stock returns. There has been no study
that tried to provide the theoretical equilibrium model which is consistent with the
empirical results cited above. To the best of our knowledge, this is the first paper that
demonstrates what mentioned above with a stylized model that accounts for a close
relationship between the skewness risk premium and the equity risk premium.

4 Empirical measurements

The theoretical model developed in the previous section suggests that the variance
and skewness risk premiums, as well as the variance of the market return, may serve
as useful predictor variables for the future market returns (see Proposition 4). To
examine this suggestion empirically and compare the results with those by Bollerslev
etal. (2009) and Drechsler and Yaron (2011), we plan for running some statistical tests
based on simple linear regression models of the S&P500 excess return on different
sets of lagged predictor variables including the variance and skewness risk premiums.
We always rely on monthly and quarterly observations and focus our discussion on the
estimated slope coefficients and their statistical significance as determined by the 7-
statistics. We also report the forecasts’ accuracy of the regression models as measured
by the corresponding adjusted Rs.

Before showing the results of the predictive regression models of the S&P500
excess return, let us note some key points on the measurements for the variance and
skewness risk premiums and describe the data used in our analysis explored in the
following subsection.

4.1 Measurements for the higher-order moments

Our method for measuring the risk premiums in higher-order moments is similar
to that in Bollerslev et al. (2009) and Drechsler and Yaron (2011). As mentioned
above, we formally define the variance risk premium as the difference between the
risk-neutral and physical expectations of the variance of the market return and also
define the skewness risk premium in the same manner. We focus on the one-month-
and three-month-forward predictability of those risk premiums and use the squared
VIX and the SKEW index from the Chicago Board of Options Exchange (CBOE) as
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our measures for the risk-neutral expected variance and skewness, respectively. The
VIX is calculated by the CBOE using the model-free approach to measure 30-day
expected volatility of the S&P500 return. The components of the VIX are near- and
next-term put and call options, usually in the first and second SPX (S&P500 index)
contract months. The model-free approach used to calculate the VIX is provided by, for
example, Demeterfi et al. (1999). The SKEW index from the CBOE is also calculated
from the S&P 500 option prices based on the method similar to that used to calculate
the VIX, which is obtained by a portfolio of S&P 500 index options that mimics an
exposure to the skewness payoff of one-step-ahead cumulative return distribution of
the index. The Skew index is also calculated by the model-free approach provided, for
example, Bakshi et al. (2003).8

For the measures of the expected variance and skewness under the physical measure,
we basically use the current variance and skewness of the S&P500 index return,
which are respectively defined as the historical 22 days actual variance estimated
based on daily return data of the index and the historical 12 months actual skewness
estimated based on monthly return data of the index. To match the definition of those
historical moments of the index return distribution with the risk-neutral expected
moments mentioned above, we use the annualized current variance, while the current
skewness, which is estimated based on historical 12 months monthly return data,
is used as it is. Bollerslev et al. (2009) suggest that, for highly persistent variance
dynamics, or p, & 1, the objective expected future variance will obviously be close
to the value of the current variance so that the same qualitative implications hold true
for the variance difference obtained by replacing E?[Varﬂ] (m,1+2)] in the definition
of (18) with the current variance. From a similar point of view, the same would be
considered for the objective expected future skewness.” However, in our model setting,
the time-# skewness of the one-step-ahead market return, r,, ;+1, can be expressed by
the jump intensity A; (see (21)), and empirically some people may find non-persistent
jump intensities and it may be true that the jumps are rare events and their roles
should disappear very quickly. For this reason, in addition to the current skewness
as a proxy of the measure of expected skewness under the physical measure, it may
be very nice to introduce another approach for measuring the E?[Skewﬂl(rm, +2)]

8 According to the description of the CBOE’s SKEW index, we have the proxy for the risk-neutral expected

skewness, IE(,@ [Skew(%r 1

9 In our model setting, the time-# skewness of the one-step-ahead market return, r,, ;4.1, can be expressed
by (21). Thus, we can find that the first-order autocorrelation of the skewness under the physical measure
P (or the risk-neutral measure Q) is determined by that of the jump intensity A;. From (6), we can also find
that the first-order autocorrelation of the jump intensity A; is p, . Previous studies such as those by Chan and
Maheu (2002) and Christoffersen et al. (2012) also model the dynamics of the jump intensity of financial
asset returns as a first-order autoregressive model in a similar fashion, and they find that the p, parameters
in the jump intensity models, which are estimated with historical data of stock indices, are more than 0.9
and show the strong persistence in the conditional jump intensity. So, on the basis of these previous studies,
we could assume that the objective expected future skewness, E?[Skew]f;l (rm,t42)], will be close to the
value of the current empirical skewness so that the same qualitative implications hold true for the skewness
difference obtained by replacing E?[Skewlpﬂ(rm,t_‘_g)] in the definition (22) with the current empirical
skewness.

(rm,142)], as %(100 — Skew index).
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based on a forecasting regression.!? In the empirical analysis in the following, we
also investigate empirical results explored by using the expected physical skewness
estimated by forecasting regressions described in the below. The models we employ
in this case are the following:

Reg.(1) : Skew™ | = o + p1Skew™ + BoCVol, + €41,

Reg.(2) : Skew? | = o + B1Skew? + poCVol, + €41,

Reg.(3) : Skew | = o + BiSkew™ + BrACVol; + €141,

Reg.(4) : SkewRH =+ ,BlSketh + B2 ACVol; + €41,

Reg.(5) : Skew%_l =a+ ,BlSkewf” + €141,

Reg.(6) : Skew? | = o + BiSkewP + €41 (27)

All the models presented above are monthly-based model and one time step of the
above models is one month. Skewﬁ” is time-¢ actual skewness, which is culculated based
on historical 12 months monthly return data of the S&P500 index. Skew? is time-t
actual skewness culculated based on historical 22 days daily return data of the S&P500
index,!! and CVol; is time-t annualized volatility culculated based on historical 22
days daily return data of the S&P500 index. ACV ol; is one-month differential of the
current volatility, which is defined by ACVol, = CVol; — CVol;_;. The regression
models introduced above are estimated based on historical 36 months rolling window
procedure. Based on the one-step-ahead forecasts of the physical skewness of the
S&P500 index monthly return distribution, which are estimated by each of the models
introduced above, we calculate the skewness risk premium based on the definition of
(22).

4.2 Data description

Our data series for the VIX, SKEW index, and expected variance and skewness under P
covers the period from January 1990 to August 2012. The main limitation on the length
of our sample comes from the VIX and SKEW index, since the time series published
by the CBOE begins in January 1990. As mentioned in the previous subsection, we rely
on the monthly and quarterly data for the squared VIX and SKEW index for quantify-

ing E2[Var?  (rm+2)] in (18) and E2[Skew | (ryy 1+2)] in (22), respectively, and
purposely rely on the readily available squared VIX as our measure for the risk-neutral

expected variance and the value of 1—10(100 — Skew index) as our measure for the
risk-neutral expected skewness. The expected variance E?[Varﬂl (rm.,1+2)] and the

expected skewness E?[Skew%:_l (rm.r+2)] at time ¢ are respectively calculated based
on the historical index returns as described in the previous subsection.

10 We thank a referee so much for suggesting the idea on this point.

1 1n this case, under the assumption of i.i.d distribution for daily returns, Skew,D is the historical 22 days
actual skewness of daily return data, which is devided by +/22.
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Fig.9 The VIX and the current volatility. This figure shows the time-series data of the VIX and the current
volatility (the square root of the current variance defined in the main paper). The current volatility is the
historical 22 days actual volatility estimated based on daily return data of the S&P500 index
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Fig. 10 The risk-neutral skewness and the current skewness. This figure shows the time-series data of
the risk-neutral expected skewness extracted from the SKEW index and the current skewness. The current
skewness is the historical 12 months actual skewness estimated based on monthly return data of the S&P500
index

To illustrate the data, Figs. 9 and 10 plot the monthly time-series of the risk-neutral
expected volatility (VIX), the current volatility (historical 22 days annualized actual
volatility), the risk-neutral expected skewness, and the current skewness (historical
12 months actual skewness). Consistent with the theoretical model developed in the
previous section and the earlier empirical evidence, the spread between the risk-neutral
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expected variance (the squared VIX) and the current variance is almost always positive
and the spread between the risk-neutral expected skewness and the current skewness
is almost always negative. Moreover, it is clear that these spreads have a time-varying
nature. It is interesting that, although the value of the VIX reaches an outstanding
peak at the period of the subprime crisis in 2008, the risk-neutral skewness seems to
be more negative at the period of the European financial crisis in 2011 than at the
period of the subprime crisis.

In addition to the variance and skewness risk premiums, we also consider a set
of other more traditional predictor variables for the predictive regressions examined
in the following subsection. Specifically, we obtain monthly P/E ratios and dividend
yields of the S&P 500 index directly from Standard&Poor’s. Data on the three-month
T-bill, the high-yield spread (hys) (between Moody’s BAA and AAA corporate bond
yields), and the term spread (ts) (between the 1-year T-bond and the three-month T-bill
yields) are taken from the Thomson Reuters Data Stream. The CAY, which represents
the aggregate consumption-wealth ratio, defined in Lettau and Ludvigson (2001) is
downloaded from Lettau and Ludvigson’s Web site.

Basic summary statistics for the monthly excess returns of the S&P500 index and
predictor variables are exhibited in Table 2. The sample period extends from January
1990 to August 2012. All variables are reported in monthly-based percentage form
whenever appropriate. The 7,, ; — 77, denotes the logarithmic return on the S&P 500
index in excess of the three-month T-bill rate. V I X? denotes the squared VIX index.
ISkew refers to the risk-neutral expected skewness extracted from the CBOE SKEW
index by the formula of ISkew = %(100 — Skew index). CVar and CSkew refer to
the current variance, which is the annualized actual variance based on historical 22
days daily return data, and the current skewness, which is the actual skewness based
on historical 12 months monthly return data, respectively. vp and skp respectively
refer to the variance and skewness risk premiums, that is, vp = VI X 2 _ CVar and
skp = ISkew — CSkew. The predictor variables include the log price-earning ratio
(In(pe)), the log dividend yield (In(dy)), the high yield spread (hys) defined as the
difference between Moody’s BAA and AAA bond yield indices, and the term spread
(ts) defined as the difference between the 10-year and 3-month Treasury yields.

The mean excess return on the S&P 500 index over the sample equals 0.3 % monthly.
The sample means for the VI X 2 and the current (historical 22 days) annualized vari-
ance are 6.0 and 5.0 %, respectively, and the sample means for the risk-neutral expected
skewness and the current (historical 12 months) skewness are -1.6 and -0.2, respec-
tively. The numbers for the traditional forecasting variables are all directly in line
with those reported in previous studies. In particular, all of the variables are highly
persistent with first-order autocorrelations ranging from 0.95 to 0.99.

As stated in the previous subsection, we additionally construct expected physical
skewness for measuring the E?[Skewﬂl (rm.r+2)] based on the forecasting regressions
(see (27)). Table 3 shows basic summary statistics for the expected physical skewness
(“ES”), which are estimated by the forecasting regressions described in (27), and corre-
spondent skewness risk premium (skp). The sample period extends from January 1990
to August 2012. For example, the label “E S;” means the expected physical skewness
estimated by the model of “Reg. (1)” in (27) and the label “skp;” means correspondent
skewness risk premium. From this table, we can find that the expected physical skew-
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ness and correspondent skewness risk premium have similar characteristics among
monthly- or daily-based skewness regression models.

4.3 The results of simple regression tests

Table 4 provides the results of return predictability regressions with the variance and
skewness risk premiums. In the first place, we use the skewness risk premium con-
structed with the current skewness in this table. (The regression results based on the
expected physical skewness estimated by the regression models of (27) and corre-
spondent skewness risk premium will be shown in the next table.) All of our forecasts
are based on simple linear regressions of the S&P500 excess returns on different sets
of lagged predictor variables. There are two sets of columns with regression esti-
mates. The first set of columns shows OLS estimates by monthly return regressions,
that is, one-month-ahead forecasts, and the second set shows OLS estimates by non-
overlapped quarterly return regressions, that is, one-quarter-ahead forecasts. These
regressions are examined in the period from January 1990 to August 2012 and, in
particular, each of the monthly return regressions is examined by 270-month samples
and each of the quarterly return regressions is examined by 88-quarter samples. Each
of the sets of columns consists of five regression results. The first two regressions are
one-factor regression models using the variance risk premium (vp model) or the skew-
ness risk premium (skp model) as a univariate regressor, while the third regression
is two factors regression model with both the variance and skewness risk premiums
(vp+skp model). The fourth regression model, which is denoted by 3 factors model,
is based on the three independent factors of the current variance (CVar), the variance
premium (vp), and the skewness risk premium (skp), and it represents the theoreti-
cal linear model of (26) derived in the previous section. Finally, we also provide the
stepwise selection model (Stepwise model), which the universe of independent vari-
ables consists of the risk premiums in higher-order moments, changes of those risk
premiums, and one of the traditional predictor variables, that is, the log price-earning
ratio (In(pe)). The variables such as AVIX 2 and AISkew exhibited in this table are
monthly or quarterly changes of the VI X? and I Skew, respectively.

From the monthly return regression results in this table, we can find that the slope
coefficients of the vp and skp model are both significant at 5 % level and, in particular,
the slope coefficient of the vp model is significant at 1 % level. Moreover, the slope
coefficients of the vp+skp model are also significant at the same level as mentioned
above and this model can account for about 7.2 % of the monthly return variation.
The 3 factors model represents the theoretical implication of (26) and this model has
a superior predictive power in the adjusted R? than the vp+skp model due to the
additional variable of the current variance (CVar). Although the stepwise model is not
equivalent to the theoretical implication of (26), that is, the 3 factors model, all of the
independent variables of CVar, vp, and skp in (26) are significant at 5 or 1 % level.
These results indicate that the theoretical model of (26) and, in particular, the variance
and skewness risk premiums have superior predictive power for future aggregate stock
market index returns and this indication is consistent with the theory provided in the
previous section in this paper.
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The quarterly regressions reported in this table further underscore the significance of
the monthly return regressions and, in contrast to the monthly return regressions, all of
the t-statistics for the skewness risk premium are insignificant at conventional levels.
However, interestingly, we can find that the stepwise model is perfectly equivalent
to the theoretical implication of (26), that is, the 3 factors model, and this model
can account for about 14.7 % of the quarterly return variation. Although the slope
coefficient to the skewness risk premium is not significant as mentioned above, the
coefficients to the variance risk premium and the current variance are both significant
at 5 % level and, in particular, at 1 % level for the variance risk premium.

Table 5 provides the results of predictive regressions with the 3 factors, that is, the
physical variance Var;P (m.t+1), the variance risk premium vp;,, and the skewness risk
premium skp;, of the S&P500 index. Particularly, the skewness risk premiums used
in these regressions are constructed by the expected physical skewness estimated by
the regression models described in (27). These regressions are examined in the period
from Jan-1990 to Aug-2012 and this in-sample period is the same as the in-sample
period of the regressions examined in Table 4. For example, the “Original 3 fac. model”
means the 3 factors model which is shown in the Table Table 5 and the “Predictive
Reg. (1)” means the predictive regression model based on the 3 factors in which the
skewness risk premium is constructed with the expected physical skewness estimated
by the Reg. (1) model in (27). We can find that the results in Table 5 show that none
of the alternative 3 factors models using the one-step-ahead forecast of the physical
skewness have a superior predictive power in comparison with the original 3 factors
model in terms of the adjusted R-square. Moreover, the statistical significance of the
factor loadings on the skewness risk premium skp; are decreasing when compared with
the original model and, in particular, the factor loadings on the skp, of the Predictive
Reg. (2), Predictive Reg. (4), and Predictive Reg. (6) are statistically insignificant at
5 % level. However, decreasing R-squares and smaller t-ratios should be the case when
we use the expected quantities for the physical skewness and this is not surprising.
In particular, the results of Predictive Reg. (1), (3), and (5) nevertheless indicate that
the variance and skewness risk premiums have superior predictive power for future
aggregate stock market index returns.

Let us show the other results to emphasize the superiority of the skewness risk pre-
mium, as well as the variance risk premium, as a predictor variable for the equity
excess return. Table 6 reports monthly- and quarterly-based predictive regression
results for the S&P500 index excess return with each of the traditional predictor
variables exhibited in this table, that is, the price-earning ratio (pe), dividend yield
(dy), high-yield spread (hys), and term spread (ts) defined in the previous subsection
and the changes of those variables. As shown in this table, we can find that, in the
case of the monthly return regressions, none of the predictor variables are superior in
the adjusted R? to the variance and skewness risk premiums (see Table 4). In the case
of the quarterly return regressions in this table, it seems that only Aln(pe) and Ahys
have superior adjusted R? in comparison with the skewness risk premium, but, none
of the variables are superior in the adjusted R? to the variance risk premium (see Table
4)

Table 8 reports monthly- and quarterly-based predictive regression results for the
S&P500 index excess return with the CAY, the aggregate-consumption wealth ratio
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Table 6 The univariate regressions with traditional predictor variables

In(pe) A In(pe) In(dy) A In(dy) hys A hys ts Ats

(A) Monthly return regressions

Slope Coeff. 0.001  —0.002 0.011  —0.090 —-0.516  -1.822 —0.084 —0.513
p-Value (%) 86.7 93.1 22.4 15.1 40.0 38.4 71.2 56.6
Adj.R* (%) —0.4 —0.4 0.2 0.4 —0.1 -0.1 —-0.3 —-0.3
(B) Quarterly return regressions

Slope Coeff. 0.008 0.059 0.038  —0.093 —-1.118  -7.402 —-0.132 —1.661
p-Value (%) 73.8 10.6 20.6 41.3 58.8 2.5%% 86.4 31.6
Adj.R? -1.0 1.9 0.7 —-0.4 —-0.8 4.6 —1.1 0.0

The sample period extends from January 1990 to August 2012. We obtain monthly P/E ratios (pe) and
dividend yields (dy) for the S&P 500 directly from Standard&Poor’s. Data on the three-month T-bill, the
high-yield spread (hys) (between Moody’s BAA and AAA corporate bond yields), and the term spread (ts)
(between the ten-year T-bond and the three-month T-bill yields) are taken from the Thomson Reuters Data
Stream

Table 7 Summary statistics for the CAY

Tm,t —Tf¢ cay vp skp
(A) Summary statistics
(1) Mean 0.29 % 0.21% 0.94 % -132.51%
(2) SD 4.38% 2.38% 1.55% 75.83 %
(3) Skewness -0.59 -0.11 -2.27 0.18
(4) Kurtosis 1.12 -1.40 10.02 0.08
(5) AR(1) 0.08 0.98 0.23 0.75
(B) Correlation matrix
Tm,t —Tft 1
cay 0.09 1
vp 0.24 0.17 1
skp 0.14 0.26 0.01 1

The sample period extends from January 1990 to January 2012. The CAY is the aggregate-consumption
wealth ratio defined in Lettau and Ludvigson (2001), which is quarterly-based data and downloaded from
Lettau and Ludvigson’s web site

defined in Lettau and Ludvigson (2001). The CAY is quarterly-based data and down-
loaded from Lettau and Ludvigson’s web site. The downloaded data covers January
1990 to January 2012. Table 7 shows summary statistics for the CAY as well as the
variance and skewness risk premiums under the period from January 1990 to January
2012. For the monthly return regressions, we define a monthly CAY series from the
most recent quarterly observation.

As shown in Table 8, we can find that the CAY does not seem to be superior predictor
variable in comparison with the variance and skewness risk premiums. This result is
similar to the results in Table 6 and also suggests that the skewness risk premium, as
well as the variance risk premium, has superior predictive power for future aggregate
stock market index returns.
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Table 8 The univariate regressions with the CAY

cay vp skp
(A) Monthly return regressions
Slope coeff. 0.157 0.683 0.008
p value (%) 17.2 0.0%*:* 2.3%*
Adj.R? (%) 0.3 55 1.6
(B) Quarterly return regressions
Slope coeff. 0.418 1.618 0.016
p value (%) 274 0.2%%% 21.5
Adj.R? (%) 0.2 9.3 0.7

The sample period extends from January 1990 to January 2012. The CAY is the aggregate-consumption
wealth ratio defined in Lettau and Ludvigson (2001), which is quarterly-based data and downloaded from
Lettau and Ludvigson’s web site. For the monthly return regressions, we define a monthly CAY series from
the most recent quarterly observation

5 Concluding remarks

In this study, we investigate the skewness risk premium in the financial market under
a general equilibrium setting. Extending the long-run risks (LRR) model proposed
by Bansal and Yaron (2004) by introducing a stochastic jump intensity for jumps in
the LRR factor and the variance of consumption growth rate, we provide an explicit
representation for the skewness risk premium, as well as the volatility risk premium,
in equilibrium.

On the basis of the representation for the skewness risk premium, we propose
a possible reason for the empirical facts of time-varying and negative risk-neutral
skewness. Moreover, we also provide an equity risk premium representation of a linear
factor pricing model with the variance and skewness risk premiums. The empirical
results imply that the skewness risk premium, as well as the variance risk premium,
has superior predictive power for future aggregate stock market index returns, which
are consistent with the theoretical implication derived by our model. Compared with
the variance risk premium, the results show that the skewness risk premium plays an
independent and essential role for predicting the market index returns.

Some recent studies such as those by Bali and Hovakimian (2009), Yan (2011),
Chang et al. (2013), Driessen et al. (2012), and Rehman and Vilkov (2012) focus on a
significant relationship between skewness or jump risks and expected stock returns and
they provide empirical evidence for a significantly positive link between the expected
stock returns and the jump or skewness risks. To the best of our knowledge, this study
is the first to provide a theoretical implication in their empirical evidence in terms
of the LRR model approach pioneered by Bansal and Yaron (2004). It remains some
challenges for future research on providing more explicit theoretical explanation for
the results presented by the recent studies cited above with the theoretical implication
shown in this paper. And moreover, it also needs a detailed analysis on the reasons why
the skewness and variance risks are priced differently and, in particular, independently
of each other. Further insight into this aspect is left to further work.
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Appendix 1: Proof of Proposition 2

From (14),
Varyy (rmit2) = BLGi11Gly By + Y BHi)Varyy (Jiit2)
i (28)
= B!G/11G', B, + BZw ), (0),
where
B, = Kl,mAm +eq (. (15))
= (B,(1) B,(2) B,(3) B(4) B,(5) B:(6))' €R°,
B! = (BX(1) BX(2) BX(3) BX(4) B(5) BX(6))' € RS,
13
v = (03,097 .0000) RS,
and \If[( +)1 ,(0) and \Ilt o ,(0) are respectively the second derivative of the cgf
(cumulant-generating functlon) for Jy ;41 and Jo2 141 evaluated at 0O, that is,
32 32
2 —
\IJI—H X(O) \Ilt+l x () lu=0= auz)\x,l+1(WX(u) D lu=o0,
(2) 82 2
V020 = W 52(u) u=0= 0 o241 (W2 (@) — 1) |u=0 .
Thus the expression of (28) is rearranged to the following representation,
Varyy | (rmi12) = BLGi1 Gy B, + BY 03, (0)
= B{(Hyool, + Hyqri) By + B diag(v 2 0)) My,
where
9 0.0 0 0 O 00 0 0 0 0
0¢2 00 0 0 000 0 0 0
H 0O 0 0 0 0 O Ho= 001 O 0 0
“=[o 00 0 0 0of"T[0 0 0 ¢ ppo. Of
0 00 0 0 0 0 0 0ppepy 92 O
0 0 0 0 0¢} 000 0 0 0
0 0 0 0 0 O 0
0y 0 0 0 0 Axil
2 A
dia (2)0)5 0 0 w © 0 0 0 VI = o2,t+1
g(w 0) o 0 o 0 0 0 1+1 0
0 0 0 0 0 O 0
0 0 0 0 0 O 0
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Appendix 2: Proof of Proposition 3

From the definition of the variance risk premium (18) and the expressions of the
conditional variance of the market return ry, (42 at time ¢ + 1 under each of the
probability measures, we can derive the following expression,
vpr = —B, [AozHoz + @5 (@ Ag + pqux)Hq]quz
+B Hp2 B BRI 1 - BTG ]

+B7'diag(y @ (~ ANEL (1] - diag(y @ ODEfMen]], (29)

where A, = (1 —0)k1 Ay, Ay = (1 —0)k1 Ay (see (13)), and

0 0 0 0 0 O
0 vP(—A,) 0 00 0
(2)
dia 2) —A)) = 0 0 3 (—AO.Z) 0 0 O i
s(r@ ) o o o0 00 0
0 0 0 0 0 O
0 0 0 0 0 O
t
EX[, 4] = (0 ER [y 1] ER[Ag2,,,110 0 0) :
Ef [Mrg1] = (0 Ef Dyt ] BV hp2,441000)"
Substituting the following facts,
1
B3 11 = ho2 0D (—Ag2),
B 15 0] =22 0D (0),
into (29) and considering (6) and (16), we can obtain the representation (20). O

Appendix 3: The risk-free rate

The explicit expression of the risk-free rate can be obtained by substituting r s, into
rjr+1 in (3). We finally provide the following proposition on the risk-free rate r .

Proposition 6 (The Risk-Free Rate) The risk free rate is expressed as follows with
the state variables of atz, qz, and ;.

rftr = ,Brf,c + ,Brf,xxt + ﬁrf,aatz + ,Brf,qch + ,Brf,)\)\t’
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where

Brf.c =—0logd +yug — (0 — (ko — Ao)
—(0 = Dr1(Ap + Agto + Aging + Ajpz),
Brrx=y — (0 — DAx(k1px — 1),

1
frio = (1= O)Aglipo — 1) = 5[r?62 + @ = DFA36Z].

I
Prig = (1= 0)Aglcipg = 1) = 20 = 1k

[Aﬁ + A2 + 24, Arpspup + Ai(pﬁ],
Brra =1 —0)Ax(kipr — 1)

I, [exp (%(9 - 1)2/<12A§) - 1] — 1, [exp (%(9 - 1)2K12A§) - 1].
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