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Abstract Risk premia are related to price probability ratios or for continuous time
pure jump processes the ratios of jump arrival rates under the pricing and physical
measures. The variance gamma model is employed to synthesize densities with risk
premia seen as the ratio of the three parameters. The premia are shown to be mean
reverting, predictable, focused on crashes at shorter horizons and rallies at the longer
horizon. Predicted premiamay be used to adjust physical parameters to develop option
prices based on time series data.

Keywords Variance gamma · Self decomposable law · Vector auto regression ·
Long horizon returns

JEL Classification G11 · G12 · G13

1 Introduction

Option markets provide us with a rich source of data on the risk neutral or pricing
distribution of asset returns. Time series data on returns may be employed to estimate
the corresponding physical return distribution. It is also well recognized that the two
are not the same. In fact the mean return under the pricing distribution must, by spot
forward arbitrage, be the interest rate in the absence of intermediate incomes. On the
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other hand, under the physical distribution we get the mean rate of return on the asset.
The latter generally exceeds the interest rate to reflect risk compensation. The two can
be very different and Bollerslev and Todorov (2011) document the sharp differences
in the probability of tail events under the two distributions. Bakshi et al. (2010) show
that their ratio is generally U shaped.

The objective of this paper is to develop procedures enabling one to relate the two
distributions with a view towards making it possible to go from one to the other. For
this purpose we estimate both distributions in the same parameteric class and study the
relationship between the respective parameters. We do this daily from January 2010
to January 2015, for 45 stocks in the top 50 stocks of the S&P 500 index. The analysis
is carried out for each of seven return horizons from a month, and a quarter to one and
a half years in steps of a quarter.

For the choice of a return distribution we recognize that many independent shocks
affect returns over the large intervals of time being considered. Such an observation
suggests the use of limit distributions of independent but possibly not identically
distributed effects. The entire class of such limit distributions were characterized by
Lévy (1937) and Khintchine (1938) as the self decomposable distributions that are
a subclass of the infinitely divisible distributions. For a more recent proof of this
proposition we cite Sato (1999). It is instructive to note that the Merton (1976) jump
diffusion model is not self decomposable and is hence not a limit law. In fact [see
Sato (1999)] a self decomposable law must have an arrival rate of jumps that when
multiplied by the absolute value of the jump size, decreases with the jump size for
positive jumps and increases with the jump size for negative jumps. In particular, the
integral of jump arrival rates near zero is infinite and all limit laws have infinitely
many jumps in any interval or are processes of infinite activity as described in Carr
et al. (2002).

A particularly simple and tractable self decomposable law is the variance gamma
distribution [Madan and Seneta (1990), Madan et al. (1998)]. The arrival rate of jumps
when inflated by the absolute value of the jump size for this model is a negative
exponential for positive jumps and an exponential for negative moves and hence the
self decomposability. The distribution has three parameters and adequately fits risk
neutral and physical returns. The original parameterization in Madan et al. (1998) was
obtained as Brownian motion with drift θ and volatility σ time changed by a gamma
process with unit mean rate and variance rate ν. Volatility is calibrated by σ, while θ

provides access to skewness and ν gives kurtosis. A high variance rate for the time
change leads to many large and small time changes and hence the heavy tails and the
peakedness associated with kurtosis.

The variance gamma was reparameterized in Carr et al. (2002) in terms of its Lévy
measure with parameters C , G and M. The parameter C scales an overall jump arrival
rate whileG calibrates the exponential rate of increase for negative moves and M cali-
brates the rate of exponential decrease for positive moves. A small value forG coupled
with a high value for M yields more negative moves and a left skewed distribution.
We estimate all risk neutral and physical distributions in the variance gamma class
with the (C,G, M) parameterization. The physical parameters are denoted C,G, M
with the risk neutral counterparts being ˜C, ˜G and ˜M .
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In relating the two probabilities we employ the concept of risk premia. Risk is
characterized by describing the probabilities with which different mutually exclusive
and exhaustive sets of events occur. In addition to the probability of events, in developed
financial markets, there are also prices of events possibly observed through the market
price of securities paying unity on the occurence of the event and zero otherwise.
These prices are also known as the Arrow Debreu prices of events [Arrow (1953),
Debreu (1959)].

For any event, denoted by A, let p(A) be the event probability while q(A) is the
event price in the forward market delivered at event resolution. The expected return
of the security paying unity on event occurrence is given by

μ(A) = p(A)

q(A)
− 1.

This expected return is positive when p(A) exceeds q(A) and negative otherwise.
In general when events are hurtful to market participants the prices will exceed prob-
abilities and rates of return are negative as people are willing to pay a premium to
ensure against their occurrence. The structure of risk premia in markets is described
by the ratios of price to probability and events have risk premia depending on whether
q(A) exceeds p(A) or not. However, though there is an interpretation here in terms of
expected rates of return on particular securities the fundamental entity is the ratio of
price to probability that in continuous time will be transformed to the ratios of event
arrival rates under the twomeasures. The latter is just a relativity of a description of the
instantaneous risk with no direct connection to any particular expected rate of return.
Risk premia are just price probability ratios.

In continuous time the probabilities of events like a jump in the price of an asset are
proportional to the arrival rates for the different jump sizes. Risk premia are then given
by the ratio of risk neutral arrival rates to their physical counterparts. Given that the
relevant distributions vary with the investment horizon and the arrival rates of jumps
vary with the jump sizes the risk premia to be extracted from a joint analysis of time
series data and option prices vary jointly with jump size and horizon.

We note that holding a risky asset exposes the holder to instantaneous moves of
different sizes in the price of an asset. By way of contrast however, if price paths are
continuous with no jumps in asset prices then there are no instantaneous risks and
both risks and rewards are only experienced over time. Rates of return are earned over
periods of time. These rates of return are compensation for covariation risk between
asset returns and the factors driving the ratio of price price to probability (Cochrane
(2005)). The covariations also occur over time and risk premia at a point of time are
given by the relevant covariation number, lacking both, the variation by jump size and
the investment horizon.

For jump sizes x, and return horizon h there are in principle risk premia λ(x, h)

measured by the ratio of arrival rates for jump sizes x as embedded in the ratio of risk
neutral and physical arrival rates seen in the two densities for returns over the time
horizon h. We employ our parsimonious parametric model for these arrival rates to
construct just three risk premia at each horizon. We term these premia to be the level,
up and down premia as given by the ratios
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πL(h) = ˜C(h)

C(h)

πU (h) = ˜M(h)

M(h)

πD(h) = ˜G(h)

G(h)
.

An added benefit of working with risk represented by jump arrival rate func-
tions for different jump sizes is that risk premia are described in terms of relative
arrival rates, risk neutral to physical, that describe the risk. We work purely with
centered or driftless variates and given the well known difficulties of estimating
drifts it is a benefit to describe risk premia directly in terms of the risk itself
with no reference to drift. This occurs as pure jump processes experience risk at
each instant via jump arrival rates and at the level of the instant there are no
drifts to speak off. The theory of continuous processes removed instantaneous risk
by assumption and was left with risk reward relations over time via drift and
covariations.

The three risk premia are estimated daily for each of the 45 stocks and 6 maturities.
We report on the predictability and mean reversion observed in the risk premia and
note that onemay transform physical to risk neutral densities onmultiplying estimated
physical parameters in the (C,G, M) format by the appropriate risk premia. The
result allows for the construction of option prices from purely time series data and
a judgement on three risk premia for which we provide a number of observations.
Option prices may be viewed as exaggerated if the implied risk premia are way out
of line with historical observations on such premia. Recognizing, nonetheless, that
markets can stay exaggerated for long times.

We observe the risk premia to be mean reverting as seen univariately or in terms of
a first order three dimensional vector autoregression. They also satisfy some degree
of predictability. Downside premia fall with the return horizon while upside premia
rise with the length of the return horizon. The longer horizon is thereby more focused
on rallies while the short term is focused on crashes. The downside premium moves
in opposite directions to the level and up side premium, though the level and upside
premiums move positively with the downside premium.

The outline of the rest of the paper is as follows. Section 2 presents the details
of the variance gamma model as it is employed in the analysis of this paper.
Details for the risk neutral estimation are presented in Sect. 3. Section 4 takes up
the estimation of the physical return distribution at arbitrary horizons. Section 5
presents aggregate results on the estimated risk premia. Predictability and mean
reversion in risk premia are taken up in Sect. 6. Section 7 addresses the structure
of dynamic responses in risk premia. Results on constructing option prices based
on the physical return distribution parameters and predicted risk premia are pre-
sented in Sect. 8. Section 9 develops the equations for mean returns from those
for the two densities. Section 10 relates these equations for mean returns to a
more classical formulation like the Ross (1976), arbitrage pricing theory. Section 11
concludes.
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Risk premia in option markets 75

2 The variance gamma model as a density synthesizer

The variance gamma model was introduced in the symmetric case in Madan and
Seneta (1990) and generalized to allow for skewness in Madan et al. (1998). In this
formulation it has three parameters σ, ν, θ and a variance gamma random variable X
may be constructed from a standard normal variate Z and a gamma variate g with unit
mean and variance ν as

X
(d)= θg + σ

√
gZ .

The characteristic function is given by

φX (u) = E
[

eiuX
]

=
(

1

1 − iuθν + σ 2ν
2 u2

) 1
ν

.

The density is infinitely divisible and all the components are variance gamma dis-
tributed. The Lévy density or arrival rates k(x) of jumps x is given by

k(x) = C

|x | exp
(

−G + M

2
|x | + G − M

2
x

)

.

The parameters C,G, M introduced in Carr et al. (2002) are related to σ, ν, θ by

C = 1

ν
(1)

G =
⎛

⎝

√

θ2ν2

4
+ σ 2ν

2
− θν

2

⎞

⎠

−1

(2)

M =
⎛

⎝

√

θ2ν2

4
+ σ 2ν

2
+ θν

2

⎞

⎠

−1

. (3)

The inverse map is given by

ν = 1

C

θ = C
G − M

GM

σ =
√

2C

GM
.

The density has a closed form in the (C,G, M) format presented in Carr and Madan
(2014) and given by
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fCGM (x) = (GM)C

2C−1�(C)
√
2π

(G+M
2

)C−1/2

× exp

(

G − M

2
x

)

|x |C−1/2KC−1/2

(

G + M

2
|x |

)

where Kν(x) is the modified Bessel function.
Weobserve that as |x |k(x) is a negative exponential for positive x and an exponential

for negative x the variance gamma law is self decomposable and thus is a limit law
(Sato (1999)). In this regard we may note that as the negative exponential function is
among the simpler decreasing positive functions defined on the half line the variance
gamma law is a relatively simple example of a self decomposable law. It is therefore a
limit law capable of calibrating the skewness and kurtosis of a distribution, beyond just
the volatility. Given the observed variations in these entities we employ it as a return
density synthesizerwith parameters easily interpretable in terms of the embedded jump
arrival rate function. One may further note that an exponential decay for arrival rates is
necessary if one is to employ the model to describe log price relatives of continuously
compounded returns, thereby requiring the existence of exponential moments.

3 Risk neutral densities at arbitrary maturities

The estimation of risk premia require both an estimation of the pricing density and the
physical return density at each investment horizon. We wish to develop procedures
permitting such estimation at all arbitrary horizons that are not necessarily restricted
to traded option maturities. It is therefore useful to be able to calibrate option prices
simultaneously across all traded maturities with models that will deliver risk neutral
densities at all intermediate maturities as well. Lévy process models have this ability
but unfortunately as noted in Carr et al. (2007) they are unable to fit option prices
across the maturity dimension. This is because all Lévy process models by virtue of
their identically and independently distributed increments have skewness and excess
kurtosis falling like the reciprocal of the square root of maturity and maturity respec-
tively. One may observe, model free, in market data that such decreases do not occur.
These observations led Carr et al. (2007) to propose and investigate the Sato process
associated with a self decomposable law at unit time. The marginal distributions for
the Sato process are obtained on scaling the unit time distribution by a power of the
time horizon variable. They found the scaling coefficient to be near a half. Sato (1991)
showed the existence of an additive process with independent by time inhomogeneous
increments consistent with these scaledmarginal distributions. Carr et al. (2007) report
on the calibration performance of a large number of Sato processes associated with
a variety of different self decomposable laws at unit time. They also reported that
the Sato process associated with the variance gamma law at unit time was among the
better performing models. Here we estimate the risk neutral law across all strikes and
maturities simultaneously using the model VGSSD or the Sato process associated
with the variance gamma law at unit time. This is a four parameter model with para-
meters σ, ν, θ, γ with the log price relative at horizon t , X (t) related to the unit time
log price relative by
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X (t)
(d)= tγ X (1).

By the scaling property the distribution at all maturities is variance gamma with
parameters (σ tγ , ν, θ tγ ) where (σ, ν, θ) are the unit time parameters. We may then
transform to (C,G, M) format at each maturity to get a variance gamma risk neutral
density for each maturity.

The specific risk neutral stock price model for maturity t is given by

S(t) = S(0) exp ((r(t) − q(t)) t + X (t) + ω(t))

where r(t), q(t) are the continuously compounded interest rate and dividend yield
for the maturity t and ω(t) is the convexity correction to get the right forward. More
exactly

ω(t) = − log E
[

exp (X (t))
]

.

The calibrations were done using the Fast Fourier Transform (FFT) technology
introduced in Carr and Madan (1999).

4 Physical return densities at arbitrary horizons

One may employ data on daily returns to estimate a variety of models for the daily
return distribution. But our interest is in the distribution of returns over longer horizons
matching or between two traded option maturities. Non overlapping and relevant data
at such long horizons is just not available. One possibility is to treat H days as H
independent copies of a single day and to then form H successive convolutions to
get to the H day distribution. However, as already noted, such a strategy leads to a
fast reduction in skewness and excess kurtosis. Another alternative is to just scale the
daily return distribution by a power of the horizon H. In this case skewness and excess
kurtosis remain constant at any longer horizon.

Eberlein and Madan (2010) conducted a study of nonoverlapping 10 and 20 day
returns to observe that both skewness and excess kurtosis fall with the return hori-
zon, but not as fast they do for i.i.d. increments. They proposed a mixture model
exploiting the characteristic decomposition of a self decomposable random variable.
For every self decomposable random variable X and any constant c < 1 there exists
an independent random variable denoted X (c) such that

X
(d)= cX + X (c).

The principles of i.i.d. and scaling were combined by taking H independent copies
of cX and adding them up and scaling X (c) by a power of the horizon. This gave a
model for the H day returns as

XH = (cX)H + Hγ X (c),

where (cX)H is the sum of H independent copies of cX or the Lé vy process cX taken
at time H.The random variable XH can easily be simulated and it has an easily derived

123



78 D. B. Madan

characteristic function that may be used to build the density or the distribution function
by Fourier inversion. Eberlein and Madan (2010) show that for c < 1 the speed at
which skewness and excess kurtosis fall may be slowed down. They also estimate the
parameters c, γ with a view to modeling 10 and 20 day target return distributions and
show in this case that optimal median values for c, γ were 1/2 for both. Here we go
to the longer horizon using the setting c = γ = 1/2.

Wecomeback to the variance gamma class at the longer horizon byfitting a variance
gamma distribution to a sample drawn from the distribution of XH . In this way we
obtain physical variance gamma parameters for each return horizon.

In estimating the parameters of the variance gamma model for daily return data
and then again for the simulated long horizon retrun data we follow Madan (2014)
and employ digital moment estimation as a more robust approach employing bounded
moments. We minimize the root mean square percentage error between the observed
and theoretical moments. The theoretical tail probabilities of centered variance gamma
variates on the left and the right are obtained on integrating with respect to the closed
form for the density.

5 The risk premia

The data employed consisted of time series data on 45 stocks in the top 50 as on
February 28 2015. The data covered 1349 days from January 4 2010 to March 5
2015. In addition we employed for each of the 45 stocks, data on the prices of all
traded options each day with a moneyness range of 33% out of the money relative to
the forward for maturities ranging from under a month to two and half years. Three
risk premia are computed for each of 45 stocks, one each of 1349 days, at each of 6
maturities ranging from a quarter to a year and a half at steps of a quarter. The total
number of cases for each of the three premia are 364,230 = 45 ∗ 1349 ∗ 6.

Risk neutral estimates for eachmaturity one each day and for each stock are obtained
from the calibration of the Sato process based on the variance gamma law at unit time.
The physical parameters for daily returns are obtained from 600 immediately prior
returns. The density for the specific return horizon is obtained by combining shaving
the self decomposable daily return by a half and running it as an i.i.d. process to
the horizon coupled with scaling the independent component by the square root of the
horizon. The long horizon return is then approximated using digitalmoment estimation
by its own variance gamma law. The premia are given by the ratios of parameters in
the (C,G, M) format.

5.1 Aggregate distributions

We first report the distribution of the three premia across names, days and maturities.
Outliers defined as observations in the top and bottomqunitiles, and nanswere replaced
by zeros. Nonnumeric premia may arise when a parameter is estimated in the time
series data at zero. This may occur as a consequence of a bad starting value. Instead
of finding these values and redoing the estimation in these cases, we merely deleted
the cases as we had sufficiently many cases where this did not occur. The proportion
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Fig. 1 Distribution of Level, Down and Up premia on 45 of the top 50 stocks in the S&P across 1349 days
and 6 maturities. The period covered is January 4, 2010 to March 5, 2015

of nonzero premia in the three cases of level, down and up were 0.9554, 0.9130 and
0.9460 respectively. For the remaining cases we present in Fig. 1 the distributions on
deleting the top and bottom quintiles.

5.2 Response of premia to the return horizon

We report here on the behavior of the three risk premia with respect to the return
horizon.We regressed the three premia across names, days andmaturities on a constant
term and dummy variables for the five maturities exceeding a quarter. The correlation
coefficients are low as expected but the t-statistics are significant.

The coefficients and t-statistics are as follows.

Coefficients and associated t-statistics

Maturity L t-stat D t-stat U t-stat

Constant 0.8037 439.85 1.1644 2343.04 0.9166 1921.27
0.5 −0.0307 −11.87 −0.0184 −26.41 0.0266 41.23
0.75 −0.0374 −14.44 −0.0287 −41.25 0.0426 66.58
1.0 −0.0347 −13.36 −0.0347 −49.88 0.0545 85.46
1.25 −0.0258 −9.87 −0.0439 −62.99 0.0582 91.26
1.5 −0.0132 −5.05 −0.0503 −72.08 0.0610 95.83

We observe that the level and down premia fall with maturity while the up premium
rises. The down premia fall consistently, the up premia rise consistently, while the level
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premia fall and then rise. This suggests that over the longer term the concern is with
rallying markets while over the shorter term the concern is with market crashes. This
premium structure is in line with the observation that over the longer term markets
are expected to rise and hence sudden up moves are more critical and to be charged
for, though in the interim one may get a rough ride and seek compensation for sudden
down moves that are less of an issue over the longer horizon. The level premium
aggregates across all move sizes and is less directional. It may be viewed as a charge
for quadratic variation that is eventually expected to rise with the horizon. However,
in the shorter term it may be charged for substantially at the lower end like a quarter
with a slight downward adjustment at six and nine months before rising again.

5.3 Mean reversion in premia

For each of the 45 names and six maturities we performed a robust regression of the
premia across the 1349 days on a constant term and its lagged value. The equation is

πt = a + bπt−1 + ut

The equilibrium value is given by

πe = a

1 − b

and the rate of convergence to equilibrium is the coefficient b as in the absence of
shocks

πt = πe + (π0 − πe)b
t .

We present in Tables the quantiles across names for the convergence rates and
equilibrium values by maturity for all three premia.

Level premia convergence rate quantiles

Quantile Maturity

.25 .5 .75 1 1.25 1.5

5 0.4997 0.5092 0.4637 0.4769 0.5186 0.4119
10 0.7401 0.7236 0.6936 0.7206 0.6956 0.7149
25 0.8072 0.8053 0.8067 0.8044 0.8246 0.8173
50 0.9022 0.8942 0.8846 0.8632 0.8763 0.8708
75 0.9249 0.9214 0.9173 0.9139 0.9118 0.9171
90 0.9408 0.9444 0.9374 0.9339 0.9304 0.9279
95 0.9475 0.9487 0.9521 0.9501 0.9533 0.9474
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Level premia equilibrium level quantiles

Quantile Maturity

.25 .5 .75 1 1.25 1.5

5 0.2799 0.2451 0.2306 0.2320 0.2382 0.2093
10 0.3939 0.3700 0.3549 0.3475 0.3357 0.3346
25 0.5210 0.4810 0.4712 0.4667 0.4897 0.4903
50 0.7284 0.6957 0.6834 0.6973 0.7008 0.7498
75 0.8318 0.8228 0.8202 0.8297 0.8715 0.9185
90 1.0742 1.0189 1.0182 1.0519 1.2025 1.2932
95 1.1465 1.1078 1.1659 1.2233 1.2793 1.4147

Down premia convergence rate quantiles

Quantile Maturity

.25 .5 .75 1 1.25 1.5

5 −0.0014 −0.0019 −0.0013 −0.0001 −0.0015 −0.0011
10 −0.0014 −0.0010 0 0 0 −0.0001
25 −0.0001 0.0003 0.0025 0.0072 0.0016 0.0028
50 0.0367 0.1257 0.1732 0.1288 0.2558 0.1126
75 0.7380 0.7024 0.7298 0.4623 0.7380 0.6061
90 0.8952 0.9021 0.9167 0.8165 0.9395 0.8877
95 0.9120 0.9357 0.9512 0.8912 0.9815 0.9352

Down premia equilibrium level quantiles

Quantile Maturity

.25 .5 .75 1 1.25 1.5

5 0.7667 0.7495 0.7289 0.7694 0.7554 0.7639
10 1.0578 1.0556 1.0331 1.0531 1.0291 1.0365
25 1.0731 1.0732 1.0704 1.0700 1.0651 1.0596
50 1.1148 1.1123 1.1047 1.1039 1.0914 1.0842
75 1.1823 1.1651 1.1516 1.1490 1.1429 1.1316
90 1.2098 1.2054 1.1883 1.1776 1.1643 1.1442
95 1.2491 1.2184 1.2057 1.1878 1.1842 1.1632
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Up premia convergence rate quantiles

Quantile Maturity

.25 .5 .75 1 1.25 1.5

5 0.0017 0.0073 0.0078 0.0283 0.1388 0.1044
10 0.0132 0.0500 0.0569 0.0987 0.3208 0.3394
25 0.1032 0.2836 0.4288 0.4986 0.6031 0.7187
50 0.6372 0.8173 0.8369 0.8150 0.8499 0.8472
75 0.8561 0.8901 0.9099 0.8703 0.9139 0.9239
90 0.9208 0.9327 0.9425 0.9202 0.9566 0.9597
95 0.9528 0.9632 0.9718 0.9322 0.9719 0.9749

Up premia equilibrium level quantiles

Quantile Maturity

.25 .5 .75 1 1.25 1.5

5 0.5718 0.6370 0.6628 0.6808 0.6806 0.6862
10 0.8046 0.8633 0.8945 0.9145 0.9097 0.9159
25 0.8177 0.8836 0.9069 0.9303 0.9296 0.9341
50 0.8635 0.9175 0.9396 0.9537 0.9541 0.9573
75 0.9129 0.9586 0.9719 0.9875 0.9887 0.9889
90 0.9887 1.0193 1.0276 1.0392 1.0268 1.0216
95 1.0262 1.0520 1.0673 1.0708 1.0612 1.0550

We observe, focusing attention on the rows related to the median that the level
premium reverts relatively slowly but with a speed that increases with the horizon.
The down premia are fast revertingwhile the up premia are intermediate but slow down
with an increase in the return horizon. The equilibrium levels for the level premia is
around 0.7, while it is near 1.1 for the down premium and 0.95 for the up premium.

The speed of convergence of down premia reinforces our earlier observation about
short term rough rides being charged for. However, over the longer term it is quadratic
variation and up moves that are the issue and the premia move slowly as they reflect
long term considerations thatmust be allowed for and charged for in risk neutralization.
The interquartile range for the equilibrium up premia contracts somewhat while it is
maintained for the down and level premia. This may reflect a greater level of market
confidence in the charges for up moves, while those for down moves and quadratic
variation generally are dispersed. Testing hypotheses in these directions are a subject
matter for future research.

6 Predictability and multivariate mean reversion of risk premia

This section reports on a more general analysis of risk premia predictability and their
mean reversion properties. Specifically we treat the three premia as a vector in a first
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order vector auto regression driven by the level of the current physical arrival rates.
The economic logic of the formulation is that premia are risk charges for exposure
to unhedgeable surprise movements and hence they should respond dynamically to
innovations in the physical reality as reflected by movements observed in the para-
meters for the physical distributions. If the resulting dynamics is explosive with no
convergence thenmarkets are in equilibriumpossibly arbitrary in the activity of pricing
risks. Efficient and competitive markets should reflect stable equilibria and dynamics
for their pricing activities.

Letπt denote the vector of the three premia at time t for a specific return horizon, and
xt the level of the contemporaneous physical parameters for the same return horizon.
The vector autoregression is given by

πt = a + Aπt−1 + Bxt + ut .

There are seven coefficients to be estimated for each of three premia at each of
seven return horizons for each of the 45 stocks. By way of predictability we report
the root mean square of each regression. By way of multivariate mean reversion we
report the three roots of the characteristic polynomial associated with matrix of lagged
dependent variables. For some parsimony in reporting we report results just for the
quarterly and annual horizon. With respect to predictability and mean reversion we
then have six R2′s and six roots, three each for each of two return horizons, for each
stock. These are presented in two tables, one for the R2′s (Table 1) and one for the
roots (Table 2). We observe fairly high levels for the root mean square error especially
for the Up and Down premia with slightly lower level for the level premia. The eigen
values are all below unity indicating the consistent presence of mean reversion in the
premia (Table 2).

With a view to understanding how the risk premia respond to each other we present
the average t − statistics across all stocks at the quarterly return horizon. The results
are similar at other horizons.

Average t-statistics

Variable Level Down Up

Constant 14.87 13.67 43.52
Level lagged 25.03 −6.19 −22.08
Down lagged 5.49 34.48 20.92
Up lagged −6.31 −2.99 84.67
C physical −5.01 −4.19 −10.04
G physical 0.40 −3.11 7.92
M physical −4.66 −0.97 −23.47

We observe that all premia react strongly and positively to their lagged values in
what we know to be a mean reverting way. The level premium moves up with the
down premium and down with the up premium. The down premiummoves down with
both the level premium and the up premium. The up premium moves down with the
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Table 1 Root mean square errors

Ticker 3 months One year

Level Down Up Level Down Up

aapl 0.4179 0.7418 0.6873 0.5131 0.7837 0.7996

xom 0.7889 0.9111 0.9319 0.7740 0.8774 0.8892

msft 0.8378 0.8578 0.9029 0.8458 0.9007 0.9465

jnj 0.8958 0.9294 0.9134 0.8728 0.8944 0.8731

wfc 0.7678 0.8539 0.8600 0.5459 0.6496 0.6990

wmt 0.8200 0.8538 0.8754 0.8104 0.8373 0.8476

ge 0.8113 0.8986 0.9069 0.7595 0.7817 0.8421

pg 0.7969 0.9014 0.9089 0.8186 0.8937 0.9069

jpm 0.8535 0.9041 0.9057 0.8581 0.8286 0.9089

pfe 0.8186 0.8407 0.7977 0.7443 0.8229 0.7338

vz 0.8535 0.9241 0.8913 0.8436 0.9074 0.9139

cvx 0.8906 0.9445 0.9555 0.9247 0.9573 0.9546

orcl 0.8504 0.9056 0.9452 0.9125 0.9267 0.9599

ko 0.7916 0.8234 0.8720 0.8033 0.8595 0.8945

t 0.7526 0.8889 0.7083 0.7629 0.8970 0.7230

dis 0.8759 0.8998 0.9351 0.8109 0.8619 0.9217

amzn 0.7993 0.8596 0.9071 0.7346 0.7268 0.8284

v 0.8018 0.8921 0.9324 0.8132 0.8639 0.8831

mrk 0.7896 0.8471 0.9116 0.8245 0.8520 0.9239

level premium but up with the down premium. One may say that the up premium has
momentum with the down premium but the down premium moves opposite to the
up premium. The level premium has momentum with the down premium but moves
opposite to the up premium. The down premium moves opposite to both the other
premia.

It is reasonable that up and down premia fall when the level premia rises as the letter
provides across the board risk coverage. On the other hand when the down premium
rises the dynamic response for both the level and up premia is to rise. This possibly
reflects an interpretation of increased uncertainty across the board with the crash fear
embedded in down premia. In contrast an increase in the up premium is probably more
focused on a rally with consequent falls in the level and down premia.

The fact that premia respond dynamically to movements in the physical structure
of return distributions addresses favorably the physics of finance or the econmic logic
embedded in risk neutralization. The risk charges embodied in risk neutralization are
by and large the insurance premia that markets must charge for risk exposures that
cannot be hedged away by dynamic trading. For pure jump processes these exposures
are always present and must be charged for. However, they are competitive charges
determined by equilibrating markets and so reflect movements in real risk exposures
that dissipate to equilibrium levels in the absence of shocks to the system. Hence the
strong levels of reversion displayed in the eigenvalues of the associated dynamical
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Table 2 Eigen values

3 months One year

Ticker Largest Second Third Largest Second Third

aapl 0.9627 0.8154 0.4302 0.9611 0.7748 0.4476

xom 0.9633 0.8957 0.6129 0.9471 0.8569 0.5826

msft 0.9295 0.8872 0.5842 0.9425 0.8800 0.4713

jnj 0.9485 0.9036 0.7925 0.9000 0.8885 0.7709

wfc 0.8854 0.8725 0.3978 0.7356 0.4524 0.2333

wmt 0.9532 0.7487 0.3942 0.9465 0.6606 0.4507

ge 0.9462 0.8366 0.5771 0.8423 0.7872 0.6518

pg 0.9551 0.8565 0.5070 0.9566 0.8423 0.6107

jpm 0.9180 0.8978 0.4932 0.8604 0.3948 0.3948

pfe 0.9489 0.8577 0.4779 0.8995 0.8545 0.2367

vz 0.9207 0.9207 0.7792 0.9090 0.8817 0.7530

cvx 0.9693 0.9398 0.6713 0.9703 0.8896 0.5858

orcl 0.9508 0.7932 0.6343 0.9512 0.8263 0.6887

ko 0.9446 0.9374 0.8274 0.9498 0.9498 0.8021

t 0.8664 0.8140 0.4809 0.8724 0.6340 0.4786

dis 0.9529 0.8394 0.5132 0.9196 0.7996 0.4584

amzn 0.9346 0.8659 0.8596 0.7765 0.7209 0.7209

v 0.9574 0.8586 0.5951 0.9183 0.8555 0.5209

mrk 0.9310 0.8382 0.7253 0.9350 0.7839 0.6394

ibm 0.9641 0.8304 0.5774 0.9785 0.8134 0.5234

c 0.8339 0.7262 0.3625 0.5958 0.3152 0.2482

intc 0.9459 0.6769 0.5367 0.9404 0.7168 0.5865

gild 0.9524 0.7700 0.6283 0.9462 0.7039 0.5312

cmcsa 0.9454 0.8916 0.5827 0.9110 0.7803 0.5949

csco 0.9381 0.8809 0.7235 0.9013 0.8132 0.4190

hd 0.9454 0.8691 0.6563 0.9623 0.8526 0.6408

pep 0.8898 0.8898 0.6530 0.8760 0.8218 0.3597

pm 0.8745 0.8260 0.7694 0.8707 0.7233 0.6942

amgn 0.9167 0.8141 0.4353 0.9305 0.6943 0.4740

qcom 0.9474 0.9240 0.7342 0.9080 0.8249 0.3969

cvs 0.8996 0.7282 0.6156 0.8912 0.6118 0.6118

mo 0.9065 0.8489 0.5561 0.9592 0.8680 0.5882

utx 0.9577 0.7524 0.5632 0.9616 0.8159 0.5024

unh 0.9182 0.8166 0.4429 0.8605 0.5871 0.4777

slb 0.9642 0.8478 0.5127 0.8943 0.7637 0.3750

mmm 0.9511 0.8708 0.5691 0.9608 0.8585 0.4604

ba 1.0245 0.4445 0.0478 0.9602 0.4027 0.0711

unp 0.9493 0.8863 0.6518 0.9647 0.7949 0.5903

ma 0.9475 0.8488 0.6914 0.8276 0.7297 0.5253
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Table 2 continued

3 months One year

Ticker Largest Second Third Largest Second Third

celg 0.9682 0.8523 0.6888 0.9712 0.8545 0.7838

mcd 0.9306 0.8157 0.5729 0.9595 0.9595 0.5151

biib 0.6389 0.4589 0.2246 0.5617 0.5617 0.1556

ups 0.9481 0.8430 0.7695 0.9438 0.8576 0.6622

systems. For eigenvalues at or below .9 the effects are essentially dissolved by a
quarter.

7 Construction of option prices based on physical parameters
and predicted premia

We may use the prediction equations for risk premia to risk neutralize an estimated
physical law. Figure 2 presents such a construction for options on AAPL for January
26, 2015 for thematurity 0.97.Weobserve in this case that the downside puts are being
overpriced in the market while the upside calls are underpriced. In this circumstance
one would consider buying the upside calls and selling the downside puts.

Such an analysis could be conducted for each stock, each day, each maturity and
each strike. The strikes could be represented by moneyness relative to the forward but
the structure ofmaturities varieswith the stocks involved and herewe have interpolated
premia from our prespecified maturities to the actual maturity for the stock involved

Strike
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Fig. 2 Market prices of options on AAPL contrasted with those based on predicting risk premia and using
these to adjust physical parameters
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on the specific day being considered. Our purpose in this section was just to illustrate
one such construction. At this point we do not anticipate any statistical hypothesis to
be tested nor have we designed a procedure appropriate for the test of such a specific
hypothesis.

Alternatively, one might consider trading the under and over pricing along with
the profitability of such a trade. However, it is not clear when such positions are to
be unwound and given the wide spreads on out-of-the-money options, trading at mid
quotes is in any case questionable.

Designing and implementing trading strategies around such procedures is an exten-
sive exercise of its own that goes well beyond the objectives of this paper. The same
may be said about the formulation, design and implementation of statistical hypothesis
tests based on such procedures. We are merely taking a small step in the direction of
linking physical and risk neutral densities via risk premia embedded by jump size and
horizon.

8 Back to mean returns

We may develop the equation for mean returns on the stock directly in terms of the
two densities. Suppose we have estimated the physical and risk risk neutral densities
in the variance gamma class for horizon h by p̃(S), q̃(S) respectively. Let X denote a
variance gamma random variable with density in C,G, M format as

fCGM (x) = (GM)C

2C−1�(C)
√
2π

(G+M
2

)C−1/2

× exp

(

G − M

2
x

)

|x |C−1/2KC−1/2

(

G + M

2
|x |

)

Denote the normalizing constant by

κ(C,G, M) = 2C−1�(C)
√
2π

(G+M
2

)C−1/2

(GM)C

and the unnormalized density by

u(x;C,G, M) = exp

(

G − M

2
x

)

|x |C−1/2KC−1/2

(

G + M

2
|x |

)

,

whereby

fCGM (x) = u(x;C,G, M)

κ(C,G, M)

We may write
S = S(0)eμ+X+ω

where
ω = − ln

(

E
[

exp(X)
])

.
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By definition of risk neutrality we must have in the absence of dividends for time
horizon h that

E

[

S
q̃(S)

p̃(S)

]

= exp(rh)

Let the risk neutral variate X have density q(X) with physical density p(X). We
may also write

E

[

eμ+ω+X q(X)

p(X)

]

= exp(rh)

Let the risk neutral parameters be C ′,G ′, M ′ with physical counterparts C,G, M.

The above equation yields

eμ+ω

∫ ∞

−∞
ex

u(x;C ′,G ′, M ′)
κ(C ′,G ′, M ′)

dx = 1 (4)

We now observe that

exu(x;C ′,G ′, M ′) = u(x;C ′,G ′ + 1, M ′ + 1)

The equality (4) now reads

eμ+ω

∫ ∞

−∞
φ(x;C ′,G ′ + 1, M ′ − 1)

κ(C ′,G ′, M ′)
dx = erh

We may rewrite as

eμ+ω

∫ ∞

−∞
φ(x;C ′,G ′ + 1, M ′ − 1)

κ(C ′,G ′ + 1, M ′ − 1)

κ(C ′,G ′ + 1, M ′ − 1)

κ(C ′,G ′, M ′)
dx = erh

which yields that

eμ+ω κ(C ′,G ′ + 1, M ′ − 1)

κ(C ′,G ′, M ′)
= erh

We next observe that

κ(C ′,G ′ + 1, M ′ − 1)

κ(C ′,G ′, M ′)
=

(

G ′M ′

(G ′ + 1)(M ′ − 1)

)C ′

.

This is the risk neutral expectation of exp(x) which we define as exp(−ω′). Hence

ω′ = C ′ ln
(

(G ′ + 1)(M ′ − 1)

G ′M ′

)

.

It follows that
eμ+ω−ω′ = erh

or that
μ − rh = ω′ − ω.
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In fact we may write for any physical density for X that

E

[

eμ+ω+X q(X)

p(X)

]

= erh

This will always yield
eμ+ω−ω′ = erh

and hence that
μ(h) = ω′(h) − ω(h).

We determine ω′(h) directly from the option surface. If we let

X (h)
(d)= (cX)h + hγ X (c)

we have that

φXh (u) = [φX (uc)]h ×
[

φX (uhγ )

φX (uchγ )

]

or that
ψXh (u) = hψX (uc) + [

ψX (uhγ ) − ψX
(

uchγ
)]

.

Now
E

[

eXh+ω(h)
]

= 1

or that

ω(h) = − ln E
[

eXh
]

= −ψXh (−i)

= −hψX (−ic) − [

ψX (−ihγ ) − ψX
(−ichγ

)]

It follows that

μ(h) = ω′(h) + hψX (−ic) + [

ψX (−ihγ ) − ψX
(−ichγ

)]

(5)

We know that

ψX (u) = −1

ν
ln

(

1 − iθνu + σ 2ν

2
u2

)

ψX (−ic) = −1

ν
ln

(

1 − θνc − σ 2ν

2
c2

)

ψX (−ihγ ) = −1

ν
ln

(

1 − θνhγ − σ 2ν

2
h2γ

)

ψX
(−ichγ

) = −1

ν
ln

(

1 − θνchγ − σ 2ν

2
c2h2γ

)
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So we get that

μ(h) = ω′(h) − h

ν
ln

(

1 − θνc − σ 2ν

2
c2

)

+1

ν
ln

(

1 − θνchγ − σ 2ν

2
c2h2γ

)

−1

ν
ln

(

1 − θνhγ − σ 2ν

2
h2γ

)

8.1 Sample computations of annualized mean returns

We present in Table 3 average values of mean returns computed for each stock and
each return horizon across all the days for which premia were computed. The mean
returns are computed as per equation (5) and they are then annualized for comparison
across return horizons. No interest rate is subtracted.

We observe that the annualized mean returns fall with the return horizon. The mean
returns are made up of compensation for risk embedded in risk premia for surprise
moves. We have observed that level and down premia fall with the horizon while the
up premium rises. The results here are consistent with the view that level and down
premia dominate the construction of mean returns reflected in charges for quadratic
variation and market crashes. The up premium is paid by those who are short and
focused on market rallies and this is generally a less prominent side of the market for
premia.

The mean returns are by and large positive but there are cases when they appear
to be substantially negative, in particular, for CV X, ORCL and MA at all horizons.
In general the risk neutral distribution is fitted quite well by models for the option
price. The physical distribution was fitted on the assumption of independently and
identically distributed returns. To the extent this assumption is called into question
on actual data the physical parameters may be impacted by outliers leading to large
physical convexity corrections and associated negative premia and mean returns.

9 Relation to the Ross arbitrage pricing theory

The focus of attention here is return on the asset over a horizon h and we begin by
writing for any single stock price that

S(h) = S(0) exp (μ + X + ω)

with
ω = − ln

(

E
[

exp (X)
])

.

One may also define the h period return as

R (h) = exp (μ + X + ω) − 1.
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Table 3 Annualized mean returns by return horizon

Horizon

Ticker One month 0.25 0.5 0.75 1 1.25 1.5

aapl 0.4577 0.2006 0.0889 0.0368 0.0047 −0.0161 −0.0332

xom 0.2512 0.1277 0.0710 0.0435 0.0262 0.0152 0.0056

msft 0.3785 0.2138 0.1388 0.1032 0.0821 0.0811 0.0768

jnj 0.2430 0.1434 0.0967 0.0737 0.0590 0.0500 0.0418

wfc 0.5847 0.3802 0.2938 0.2583 0.2437 0.2526 0.2930

wmt 0.4594 0.3708 0.3146 0.2870 0.2698 0.2626 0.2531

ge 0.2355 0.0981 0.0215 −0.0057 −0.0285 −0.0298 −0.0372

pg 0.2515 0.1400 0.0890 0.0644 0.0489 0.0395 0.0311

jpm 0.4917 0.2740 0.1800 0.1383 0.1154 0.1074 0.1029

pfe 0.4428 0.2867 0.2145 0.1839 0.1602 0.1539 0.1456

vz 0.1912 0.0608 −0.0008 −0.0311 −0.0481 −0.0151 −0.0222

cvx −4.0543 −3.8756 −3.8120 −3.7864 −3.7722 −3.8122 −3.8057

orcl −0.6962 −0.8015 −0.8533 −0.8720 −0.8886 −0.8864 −0.8922

ko 0.2358 0.1017 0.0424 0.0176 0.0015 −0.0009 −0.0094

t −0.1235 −0.1022 −0.1503 −0.1791 −0.1979 −0.2039 −0.2112

dis 0.3933 0.2177 0.1392 0.1020 0.0790 0.0657 0.0536

amzn 1.5220 1.1494 0.9931 0.9219 0.8790 0.8628 0.8407

v 0.5150 0.3044 0.2125 0.1696 0.1432 0.1028 0.0890

mrk 0.3601 0.2106 0.1418 0.1085 0.0879 0.0783 0.0666

ibm 1.2051 0.9915 0.8989 0.8557 0.8291 0.8217 0.8075

c 0.2744 0.0096 −0.1333 −0.1212 −0.0418 −0.0736 −0.1342

intc 0.2276 0.0630 −0.0123 −0.0467 −0.0567 −0.0439 −0.0484

gild 1.6579 1.2895 1.1378 1.0695 1.0287 0.9266 0.8980

cmcsa 1.6744 1.3631 1.2317 1.1712 1.1348 1.1212 1.1042

csco 0.3902 0.1886 0.1002 0.0600 0.0372 0.0530 0.0569

hd 0.4519 0.2860 0.2112 0.1754 0.1535 0.1398 0.1274

pep 0.2402 0.1342 0.0851 0.0612 0.0462 0.0379 0.0282

pm 2.5183 2.2078 2.0806 2.0193 1.9809 1.9810 1.9617

amgn 2.2152 1.8719 1.7275 1.6614 1.6212 1.4843 1.4638

qcom 1.0215 0.7743 0.6664 0.6158 0.5856 0.5704 0.5538

cvs 2.1710 1.8661 1.7371 1.6778 1.6420 1.5890 1.5617

mo 0.0726 −0.0402 −0.0906 −0.1152 −0.1232 −0.1309 −0.1388

utx 0.3290 0.1711 0.0993 0.0648 0.0432 0.0295 0.0177

unh 0.3438 0.1408 0.0515 0.0096 −0.0161 −0.0318 −0.0455

slb 0.4801 0.2319 0.1242 0.0742 0.0436 0.0246 0.0086

mmm 0.1908 0.0515 −0.0122 −0.0428 −0.0621 −0.0751 −0.0857

ba 0.1173 −0.0823 −0.1698 −0.2106 −0.2357 −0.2531 −0.2660

unp 0.3045 0.1160 0.0310 −0.0097 −0.0350 −0.0516 −0.0652
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Table 3 continued

Horizon

Ticker One month 0.25 0.5 0.75 1 1.25 1.5

ma −0.3012 −0.4668 −0.5415 −0.5768 −0.5986 −0.6216 −0.6329

celg 1.7999 1.4465 1.2964 1.2273 1.1851 1.1718 1.1496

mcd −0.0519 −0.1407 −0.1826 −0.2033 −0.2164 −0.2249 −0.2322

biib 0.3561 0.0004 −0.1413 −0.2038 −0.2407 −0.2657 −0.2839

ups 0.3588 0.2137 0.1480 0.1166 0.0970 0.0861 0.0754

In the context of the Ross (1976) arbitrage pricing theory framework for h period
returns we would reach the conclusion

μ − r = β ′λ

for factor exposures β and market prices of factor risk λ. This structure assumes that

R(h) = μ + βF + u

and the risk of u is not priced.
Suppose there is a joint physical density y(F, u) satisfying independence of F and

u with
y(F, u) = g(F)k(u)

The physical density for R(h) is then

p(R) =
∫

F
g(F)k(R − β ′F)dF

On the other hand we would have

q(R) =
∫

F
g̃(F)k

(

R − β ′F
)

dF

where g̃ is the risk neutral distribution for F.

The physical expectation of F is zero but risk neutrally we have

∫

Rq (R) dR = r

or that
∫

(

μ + β ′F + u
)

g̃(F)k(u)dFdu = r

It follows that

μ + β ′
∫

Fg̃(F)dF = r
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or that
∫

Fg̃(F)dF = λ.

There are then horizon specificmarket prices of risk, mean rates of return and factor
exposures with mean rates of return simultaneously given by the Ross (1976) APT
and the difference in the risk neutral and physical convexity corrections for X. We
just do not see the factor decomposition in the computation via convexity corrections.
They are just different ways of arriving at the mean returns. It is a more complex
task to formulate a factor model, its physical and risk neutral joint densities and their
potential consistency with quoted option prices across numerous underlying assets.

10 Conclusion

Risk premia though classically seen in terms of expected excess returns are related
to price probability ratios. For continuous time pure jump processes this reduces to
the ratio of arrival rates of jump sizes under the pricing and the physical measure.
There is in general a two dimensional continuum of risk premia depending on the
return horizon and the size of jumps. Using the variance gamma model as a density
synthesizer risk premia in option markets are reduced to the ratio of the three para-
meters evaluated under both measures for each return horizon. The premia are shown
to be mean reverting, predictable, focused on crashes at shorter horizons and rallies
at the longer horizon. Predicted premia may be used to adjust physical parameters to
develop option prices based on time series data. One thus has access to mechanisms
for risk neutralizing physical return distributions.
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