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Abstract Stochastic dividend discount models (Hurley and Johnson in Financ Anal
J 50–54. http://www.jstor.org/stable/4479761, 1994, J Portf Manag 27–31. doi:10.
3905/jpm.1998.409658, 1998; Yao in J Portf Manag 99–103. doi:10.3905/jpm.1997.
409618, 1997) present expressions for the expected value of stock prices when future
dividends, periodically received by shareholders as a reward for their risky investment,
evolve through time in a Markovian setting by the means of a discretely distributed
random rate of growth. Such result extends and makes more flexible the classical
textbook formula for stock prices known as Gordon model. This paper introduces
a closed-form expression for the variance of random stock prices, determines how
their variance is affected by the variance of the dividend rate of growth, establishes
that, in this framework, the dividend process is non-stationary, and perform a simple
econometric analysis applying real market data.
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1 Introduction

To determine the theoretical price of a common stock, equity valuation has always
relied on the dividend discount model (DDM). Such model (Williams 1938; Gordon
and Shapiro 1956) determines the market value of a stock by discounting, at a suitable
risk-adjusted rate, all future dividends a stock will pay to its owner. In the basic setting
dividends are assumed to grow at a constant rate and the valuation formula has closed-
form expression if this rate, as well as the discount one, is deterministic and constant
through time.

Hurley and Johnson (1994, 1998) enhance DDM by allowing dividends to be ran-
dom, following either an arithmetic or a geometric discrete-time stochastic evolution.
Yao (1997) further contributes to this extension considering a trinomial evolution for
future dividends and allowing the firm to go bankrupt.

More recently, Hurley (2013) imposes the growth rate of the stochastic dividend to
be a continuous random variable with any given density function.

Under a theoretical point of view, this approach can be encompassed into aMarkov-
ian setting, as proved byGhezzi andPiccardi (2003).D’Amico (2013), applying amore
general semi-Markov chain, further generalizes their result.

So far, stochastic DDM have presented expressions for the expected value of ran-
dom stock prices. Needless to say, for proper investment decisions a measure of
risk should be taken into consideration. Mean-variance analysis is a standard, well
established and largely applied framework for dealing with financial decisions under
uncertainty. In modern portfolio theory stocks can be partially ranked according to
the mean-variance principle: out of two stocks, one is preferred to the other if the
expected value of its random return is greater and, at the same time, the variance is
smaller.

This suggests that, for a sharper look into stochastic DDM, an expression for the
variance of random stock prices is necessary as well as useful.

This motivates the result presented in this article, where a closed-form formula for
the variance of random stock prices when their future dividends evolve according to
a discrete stochastic process, is found.

The paper is organized as follows: Sect. 2 summarizes the previous results presented
in existing literature while Sect. 3 carries a closed-form expression for the variance of
stock prices. Section 4 is devoted to an econometric analysis of the stochastic DDM
applied to real market data while Sect. 5 concludes.

2 A dividend model for stock pricing

In the deterministic setting, DDM allows to derive a closed-form expression for the
price of a stock if the following hypotheses hold:

(a) dividends per share evolve through time at the constant geometric rate g > −1.
This means that d j+1 = d j (1 + g), being d j the dividends per share at time j . It
also follows that d j = d0 (1 + g) j , j = 1, 2, . . ., where d0 is the actual dividend;

(b) companies are not subject to default; they will continue paying dividends forever,
and
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Variance matters 285

(c) the discount rate k, i.e. the return a rational investor requires to hold the stock, is
constant and such that k > g.

The market value at time 0 of the stock is

P0 =
+∞∑

j=1

d j

(1 + k) j
=

+∞∑

j=1

d0 (1 + g) j

(1 + k) j
= d0 (1 + g)

k − g
.

Hurley and Johnson (1998) propose an interesting extension to DDM assuming that
the dividends’ growth rate is a discrete random variable with n possible outcomes

g̃ =
{
rates of growth g1 . . . gn
probabilities q1 . . . qn

, (1)

where −1 < g1 < · · · < gn, qs = P
[
g̃ = gs

]
> 0, s = 1, . . . , n, and

∑n
s=1 qs = 1.

Given the current dividend per share d0, future dividends at time j, d̃ j , are random
variables themselves and follow the recursive condition d̃ j+1 = d̃ j (1 + g̃).

The random price of the stock is, then, the sum of an infinite sequence of discounted
random dividends

P̃0 =
+∞∑

j=1

d̃ j

(1 + k) j
. (2)

If hypotheses (b) and (c) above hold, Hurley and Johnson (1998) find that the
expected value of P̃0 is

E
[
P̃0
]

= d0
(
1 + E

[
g̃
])

k − E
[
g̃
] , (3)

as long as k > E[g̃], being E[g̃] = ∑n
s=1 gsqs the expected value of g̃.

It is worth noting that, in (3), the expected stock price depends only on E[g̃]. No
other moments of g̃ affect E[P̃0] so that, in particular, the variance of g̃ has no effect
on E[P̃0]. In other words, any choice of g̃ with a given expected value will return,
cœteris paribus, the same expected stock price, regardless of the distribution of g̃.

3 Variance of stock prices

The result we present in this section is twofold: we obtain a closed-form expression
for the variance of a random stock price Var [P̃0] and we explicitly show how the
variance of the random rate of growth and the expected value of the stock price affect
its variance.

Recalling (2), the variance of P̃0 is

Var
[
P̃0
]

=
+∞∑

j=1

+∞∑

p=1

Cov
(
d̃ j ; d̃p

)

(1 + k) j+p
,
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where the covariance between the stochastic dividend d̃ j at time j and the stochastic
dividend d̃p at time p comes from the standard expression

Cov
(
d̃ j ; d̃p

)
= E

[
d̃ j · d̃p

]
− E

[
d̃ j

]
E
[
d̃p
]
.

Determining E
[
d̃ j · d̃p

]
requires the joint distribution of d̃ j and d̃p.

Assuming g̃ is distributed as in (1), let

d j (s1, . . . , sn) = d0 (1 + g1)
s1 . . . (1 + gn)

sn

denote the possible outcomes of random dividend in j when it has grown, in j steps,
st , 0 ≤ st ≤ j times at rate gt , t = 1, . . . , n with s1 + · · · + sn = j . It results that the
probability that these outcomes occur is

P
[
d̃ j = d j (s1, . . . , sn)

]
=
(

j

s1, . . . , sn

)
qs11 . . . qsnn (4)

where
( j
s1,...,sn

) = j !
s1!...sn ! is the multinomial coefficient. The expected value of the

random dividend in j is1

E
[
d̃ j

]
=

s1∑

a1=0

. . .

sn∑

an=0

1{A}d0 (1 + g1)
a1 . . . (1 + gn)

an

(
j

a1, . . . , an

)
qa11 . . . qann

= d0

⎛

⎝
s1∑

a1=0

. . .

sn∑

an=0

1{A}
(

j

a1, . . . , an

)
((1 + g1) q1)

a1 . . . ((1 + gn) qn)
an

⎞

⎠

= d0

(
n∑

t=1

(qt + gtqt )

) j

= d0

(
1 +

n∑

t=1

gtqt

) j

= d0
(
1 + E

[
g̃
]) j , (5)

being A = {a1 + · · · + an = j}. If rt ≥ 0 is the number of times dividend d̃p has
grown at rate gt , t = 1, . . . , n, in p ≥ j steps with r1 + · · · + rn = p, to determine
joint probabilities

P
[(

d̃p = dp (r1, . . . , rn)
)

∩
(
d̃ j = d j (s1, . . . , sn)

)]

=P
[(

d̃p=dp (r1, . . . , rn)
)

|
(
d̃ j=d j (s1, . . . , sn)

)]
· P
[(

d̃ j=d j (s1, . . . , sn)
)]

;

1 1A is the indicator function. It is equal to 1 if event A is true and 0 otherwise.
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it is firstly required to find conditional probability

P
[(

d̃p = dp (r1, . . . , rn)
)∣∣∣
(
d̃ j = d j (s1, . . . , sn)

)]
.

To do this it is necessary to introduce auxiliary variables zt ≥ 0, t = 1, . . . , n, that
denote the number of times the random dividend grows at rate gt from step j + 1 to
step p. The above probabilities can be strictly positive only if

(C1) 0 ≤ zt ≤ p − j, t = 1, .., n,
(C2) st + zt ≤ rt , t = 1, .., n, and
(C3) z1 + · · · + zn = p − j .

In all other cases, given d̃ j = d j (s1, . . . , sn) , d̃p = dp (r1, . . . , rn) is an impossible
event.

To justify condition (C1), it is sufficient to think that the random dividend can grow
at the same rate gt at most p − j times from step j + 1 to step p. (C2) is required
as dividend cannot overall grow at rate gt more than rt times in p steps. Finally, (C3)
stems from the fact that from j + 1 to p random dividend grows, at some rate gt ,
exactly p − j times.

This being said, it is easy to see that the required conditional probability follows
a multinomial distribution; this is so because once some dividend level is reached in
j , the subsequent ones will evolve at each step according again to g̃. This allows to
write

P
[(

d̃p = dp (r1, . . . , rn)
) ∣∣∣
(
d̃ j = d j (s1, . . . , sn)

)]

=
{( j

z1,...,zn

)
qz11 . . . qznn if (C1) , (C2) , and (C3) hold

0 otherwise

so that, recalling (4), it is possible to express the joint probability

P
[(

d̃p = dp (r1, . . . , rn)
)

∩
(
d̃ j = d j (s1, . . . , sn)

)]

=
{( j

z1,...,zn

)( j
s1,...,sn

)
qz1+s1
1 . . . qzs+sn

n if (C1), (C2), and (C3) hold
0 otherwise.

The expression for the expected value of the product between d̃p and d̃ j is
(Appendix 1)

E
[
d̃p · d̃ j

]
=

j∑

s1=0

. . .

j∑

sn=0

s1+p− j∑

z1=s1

. . .

sn+p− j∑

zn=sn

d20 (1 + g1)
z1+s1 . . . (1 + gn)

zn+sn

·P
[(

d̃p = dp (r1, . . . , rn)
)

∩
(
d̃ j = d j (s1, . . . , sn)

)]

= d20
(
1 + E

[
g̃
])p− j

E j
[
(1 + g̃)2

]
. (6)
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Recalling (5), the covariance between random dividends d̃ j and d̃p is

Cov
(
d̃ j ; d̃p

)
= d20

((
1 + E

[
g̃
])p− j

E j
[
(1 + g̃)2

]
− (

1 + E
[
g̃
])p+ j

)

= d20
(
1 + E

[
g̃
])p− j

(
E j
[
(1 + g̃)2

]
− (

1 + E
[
g̃
])2 j)

so that the variance of random dividend d̃ j can be expressed as

Var
[
d̃ j

]
= d20

(
E j
[
(1 + g̃)2

]
− (

1 + E
[
g̃
])2 j)

.

Eventually, the covariance can be written in a more compact form as follows:

Cov
(
d̃ j ; d̃p

)
= (

1 + E
[
g̃
])p− j

V ar
[
d̃ j

]
.

It is straightforward to see that all covariances between randomdividends are strictly
positive as, being gt > −1, t = 1, . . . , n, 1 + E[g̃] > 0.

An interesting feature to stress is that the dividends process, as defined here, is
non-stationary. In fact, covariance between d̃ j and d̃p depends not only on p − j , the
time number of time steps between the two dividends, but also explicitly on j .

Further, correlation between d̃ j and d̃p is

(
1 + E

[
g̃
])p− j

V ar
[
d̃ j

]

√
Var

[
d̃ j

]
Var

[
d̃p
] =

(
1 + E

[
g̃
])p

σ
[
d̃p
]

σ
[
d̃ j

]

(
1 + E

[
g̃
]) j

being σ
[
d̃ j

]
the standard deviation of d̃ j .

Finally (Appendix 2), the variance of P̃0

Var
[
P̃0
]

=
E2
[
P̃0
]
Var

[
g̃
]
(1 + k)

((
1 + E

[
g̃
]) (

k − E
[
g̃
])− Var

[
g̃
]) (

1 + E
[
g̃
]) (7)

is positive and finite when k >
E
[
g̃
]+ E

[
g̃2
]

1 + E[g̃] . Appendix 3 shows that this condition

encompasses inequality k > E[g̃], required for the convergence of (3). This means
that when

E
[
g̃
]

< k <
E
[
g̃
]+ E

[
g̃2
]

1 + E
[
g̃
]

the random stock price P̃0 has a positive expected value but no acceptable value for its
variance. Formula (7) clearly expresses how the expected stock price and the variance
of the rate of growth influence the variance of P̃0. As can be expected, the larger
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Var[g̃], the larger Var[P̃0]. Formula (7) also shows a linear link between Var[P̃0] and
E2[P̃0].

To conclude this section, we present a simple example. Assume that random future
dividends of two stocks with the same current dividends per share d0 = 2 and discount
rate k = 0.05 have the following binomial random rates of growth

g̃1 =
{−0.02 0.04

0.5 0.5
and g̃2 =

{−0.08 0.1
0.5 0.5

.

The expected values of g̃1 and g̃2 are the same: E
[
g̃1
] = E

[
g̃2
] = 0.01 so that the

expected prices of the two stocks turn out being the same as, from (3),

E
[
P̃0
]

= 2 · 1.01
0.05 − 0.01

= 50.5.

Now, E
[
g̃21
] = (−0.02)2 · 0.5 + 0.042 · 0.5 = 0.001, E

[
g̃22
] = (−0.08)2 · 0.5 +

0.12 · 0.5 = 0.0082, Var
[
g̃1
] = 0.001− 0.012 = 0.0009 and Var

[
g̃2
] = 0.0082−

0.012 = 0.0081, nine times greater then Var
[
g̃1
]
.

From (7) the two variances are:

Var1
[
P̃0
]

= 50.52 · 0.0009 · 1.05
(1.01 · (0.05 − 0.01) − 0.0009) · 1.01 = 60.408

and

Var2
[
P̃0
]

= 50.52 · 0.0081 · 1.05
(1.01 · (0.05 − 0.01) − 0.0081) · 1.01 = 664.865.

where the latter is eleven times larger then the first.

4 An econometric application

In this section we perform an econometric analysis whose aim is to evaluate the
relevance of the formula for the variance of stock prices when applied to real data. We
exploit stock market data from the dataset2 maintained by Prof. Robert J. Shiller, and
consisting of S&P 500 index monthly stock prices, dividends and earnings starting
January 1871. The 10-year Treasury constant maturity rate is also available in the
dataset. The time series of dividends we analyze covers the period from December
1993 to December 2013. As monthly dividends are computed from quarterly data by
linear interpolation, to avoid mis-specification we decide to consider quarterly data,
so that we end up with T = 80 observations.

The objective is to provide an example of how the variance of stock price, deter-
mined by the model, changes depending on the definition of the random variable g̃ that

2 http://www.econ.yale.edu/~shiller/data.htm.
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Table 1 Dividend growth rate data summary

# Obs. 80 Mean 0.012787 Q1 0.004444

Min −0.068323 SD 0.023578 Median 0.015465

Max 0.054583 d0 12.58 Q3 0.027873

Quarterly data: Dec. 1993–Dec. 2013

describes the behavior of the dividend growth rate. For sake of simplicity, we consider
the binomial case: g̃ has two outcomes. The analysis could be easily generalized into
the multinomial case.

Our analysis develops as follows:

– we compute the observed quarterly dividend growth rate for each period t =
1, . . . , 80 as gt = log dt − log dt−1, where dt is the observed dividend value at
time t . Data are summarized in Table 1;

– for each threshold value ai ∈ A, we define as a “success” the case in which
the observed growth rate gt is less or equal then ai . Let #ai be the variable that
counts the number of successes. We then estimate, by maximum likelihood, the
probability of having a “success” as the frequency qi = #ai

T . This is done because
the empirical frequency qi is the maximum likelihood estimator of the probability
in a binomial distribution. In other words, we define a dichotomic event (i.e. the
growth rate is either greater or less than ai ) that allows to apply the binomial
distribution to the unknown dynamics of g̃t . We also define A as the set containing
the following thresholds:

A={−0.05,−0.04,−0.03,−0.02,−0.01, 0, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05}

– for each i = 1, . . . , 12we apply (3) taking as discount rate the rate obtained adding
to the average yearly long-term interest rate in the analyzed period, 0.0462, an ad-
hoc spread equal to 0.02 so that the yearly discount rate turns out being k = 0.0662.
The initial dividend is d0 = 12.58. The random dividends growth rate is defined
as:
– if 0 < #ai < T

g̃i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1i =
∑T

t=1
gt I{gt�ai }
#ai

with probability q1i = #ai
T

g2i =
∑T

t=1
gt I{gt>ai }

T−#ai
with probability q2i = T−#ai

T

– if #ai = 0,

g2i =
∑T

t=1
gt

T
with probability q2i = 1;
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– if #ai = T ,

g1i =
∑T

t=1
gt

T
with probability q1i = 1.

It results that, for all ai ,

E
[
g̃i
] =

∑T

t=1
gt I{gt�ai }
#ai

· #ai
T

+
∑T

t=1
gt I{gt>ai }

T − #ai
· T − #ai

T

=
∑T

t=1
gt I{gt�ai } +

∑T

t=1
gt I{gt>ai }

T
=
∑T

t=1
gt

T
.

– we finally compute, exploiting (7), Var[P̃0] for each ai ∈ A.

With regards to the data, as

∑T

t=1
gt

T
= 0.012787,

the expected stock price is

E
[
P̃0
]

= 12.58 · 1.012787
0.01655 − 0.012787

= 3 385.758.

Computed variances are shown in Table 2. For each threshold ai (columns 1 and 4),
the frequency qi that the growth rate is smaller than ai (columns 2 and 5) and the
standard deviation (columns 3 and 6) are reported.

Further, Fig. 1 depicts graphically the behavior of the standard deviation.
Some comments on the results are due. The standard deviation reaches a (rather

flat) maximum around a = −0.01 and remains relatively constant for smaller thresh-
old values. As a grows, though, standard deviation decreases rapidly. It turns out that

Table 2 Results for the S&P 500 index price

a q σ [P̃0] a q σ [P̃0]
−0.05 0.0375 873.173 0.01 0.325 1,003.647

−0.04 0.0500 940.789 0.015 0.4625 946.129

−0.03 0.0500 940.789 0.02 0.6125 892.700

−0.02 0.0750 969.863 0.03 0.775 742.692

−0.01 0.1375 1,051.750 0.04 0.95 454.180

0 0.2125 1,039.606 0.05 0.9875 259.129

Quarterly data: Dec. 1993–Dec. 2013 in the binomial model
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Fig. 1 Different values of the standard deviation of the stock price with respect to varying threshold levels

the behavior of the standard deviation is not symmetric with respect to the thresh-
old’s absolute value. It is well known that the largest variance for a binomial random
variable occurs when the probability of a success is 0.5. Our result shows that the
largest variance is obtained when threshold ai is chosen close to 0. This is indeed
the case in which the a priori knowledge on the rate of growth of dividends is weak
so that the two possible outcomes for g̃ has to be trivially divided into ‘positive’ and
‘negative’.

5 Conclusions

In this article we have presented a closed-form expression for the variance of the
price of a stock whose dividends evolve stochastically, according to a discrete-time
multinomial scheme.

Such formula has to be intended as a necessary companion for the expected price
of the stock; these two values should be used together to determine the convenience
in buying, holding, or selling a stock, or to perform stock picking exploiting a mean-
variance framework.

Recently, a lot of research has been focused on the so-called ‘Minimum Variance’
portfolios that carry some interesting features and, as pinpointed by Coqueret (2014),
are not affected by estimation errors. If covariances between random stock prices were
known, an optimal risk-minimizing portfolio, according to modern portfolio theory,
could be derived in the DDM setting. To do this joint probabilities of random rates of
growth of different stocks have to be derived.

As a final remark, it is very well known that variance is not a coherent risk measure,
in the sense introduced by Artzner et al. (1999). Recently, Guégan and Tarrant (2012)
show that as many as five risk measures are needed to have a full picture of com-
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plex risk structures. Using only variance in risk management and portfolio analysis
has then to be cautious. Stochastic dividend discount models, determining explicitly
the random behavior of all future dividends, are a well grounded stepping-stone for
computing a coherent risk measure of a stock price, as, for instance, its expected
shortfall.

The goals of determining riskmeasures for stock prices determined using a stochas-
tic DDM and of performing a full portfolio analysis of two or more stocks combined
together seem promising fields and are left for subsequent research.
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previous version of this article.

Disclaimer Any views or opinions presented in this article are solely those of the authors and do not
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Appendix 1

Let conditions (C1), (C2) and (C3) hold. The inner sums in (6) return

n∏

t=1

(1 + gt )
2st

s1+p− j∑

z1=s1

. . .

sn+p− j∑

zn=sn

1{B}
(

p − j

(z1 − s1) . . . (zn − sn)

)

((1 + g1) q1)
z1−s1 . . . ((1 + gn) qn)

zn−sn =
n∏

t=1

(1 + gt )
2st

(
n∑

t=1

(1 + gt ) qt

)p− j

=
n∏

t=1

(1 + gt )
2st

(
n∑

t=1

qt +
n∑

t=1

gtqt

)p− j

= (
1 + E

[
g̃
])p− j

n∏

t=1

(1 + gt )
2st

where B = {z1 − s1 + · · · + zn − sn = p − j}.
Letting, instead, C = {s1 + · · · + sn = j}, the outer sums become

E
[
d̃p · d̃ j

]
= d20

(
1 + E

[
g̃
])p− j

·
j∑

s1=0

. . .

j∑

sn=0

1{C}
(
(1 + g1)

2s1 qs11

)
. . .
(
(1 + gn)

2sn qsnn
)( j

s1 . . . sn

)

= d20
(
1 + E

[
g̃
])p− j

(
n∑

t=1

(1 + gt )
2 qt

) j

= d20
(
1 + E

[
g̃
])p− j

E j
[
(1 + g̃)2

]

Appendix 2

Recalling that, when −1 < y < 1,
∑+∞

u=1 y
u = y

1−y , the variance of P̃0, if E[g̃] < k,
is obtained as follows
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Var
[
P̃0
]

=
+∞∑

j=1

+∞∑

p=1

Cov
(
d̃ j ; d̃p

)

(1 + k) j+p

= d20

+∞∑

j=1

+∞∑

p=1

(
1 + E

[
g̃
])p− j

[
E j
[
(1 + g̃)2

]
− (

1 + E
[
g̃
])2 j]

(1 + k) j+p

= d20

+∞∑

j=1

E j
[
(1 + g̃)2

]
− (

1 + E
[
g̃
])2 j

[(
1 + E

[
g̃
])

(1 + k)
] j

+∞∑

p=1

(
1 + E

[
g̃
]

1 + k

)p

= d20
1 + E

[
g̃
]

k − E
[
g̃
]

⎡

⎣
+∞∑

j=1

[
1 + 2E

[
g̃
]+ E

[
g̃2
]

(
1 + E

[
g̃
])

(1 + k)

] j

−
+∞∑

j=1

(
1 + E

[
g̃
]

1 + k

) j
⎤

⎦

= d20
1 + E

[
g̃
]

k − E
[
g̃
]
(

1 + 2E
[
g̃
]+ E

[
g̃2
]

k − E
[
g̃
]+ kE

[
g̃
]− E

[
g̃2
] − 1 + E

[
g̃
]

k − E
[
g̃
]
)

.

Summing up the two fractions into brackets results a fraction whose numerator can
be written as Var

[
g̃
]
(1 + k) so that

Var
[
P̃0
]

= d20Var
[
g̃
] (
1 + E

[
g̃
])

(1 + k)
(
k − E

[
g̃
]+ kE

[
g̃
]− E

[
g̃2
]) (

k − E
[
g̃
])2

=
E
[
P̃0
]
Var

[
g̃
]
d0 (1 + k)

(
k − E

[
g̃
]+ kE

[
g̃
]− E

[
g̃2
]) (

k − E
[
g̃
]) . (8)

Consider the first parenthesis in the denominator of the expression above. By summing
and subtracting E2[g̃] one gets

k + kE
[
g̃
]− E

[
g̃
]− E2 [g̃

]−
(
E
[
g̃2
]

− E2 [g̃
]) = (

1 + E
[
g̃
]) (

k − E
[
g̃
])

−Var
[
g̃
]
.

This means that

Var
[
P̃0
]

=
E
[
P̃0
]
Var

[
g̃
]
d0 (1 + k)

((
1 + E

[
g̃
]) (

k − E
[
g̃
])− Var

[
g̃
]) (

k − E
[
g̃
]) .

Finally, recalling once again (3), the variance can be expressed as

Var
[
P̃0
]

=
E2
[
P̃0
]
Var

[
g̃
]
(1 + k)

((
1 + E

[
g̃
]) (

k − E
[
g̃
])− Var

[
g̃
]) (

1 + E
[
g̃
]) .
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Appendix 3

From (8), for the convergence and positiveness of Var
[
P̃0
]
both

k − E
[
g̃
]+ kE

[
g̃
]− E

[
g̃2
]

and k − E
[
g̃
]
must be strictly positive. This is the case if

k > max

(
E
[
g̃
]+ E

[
g̃2
]

1 + E
[
g̃
] ; E [g̃]

)
.

Inequality

E
[
g̃
]+ E

[
g̃2
]

1 + E
[
g̃
] > E

[
g̃
]

is always true as, being equivalent to E
[
g̃
]+ E

[
g̃2
]

> E
[
g̃
]+ E2

[
g̃
]
, it boils down

to E
[
g̃2
]− E2[g̃] = Var

[
g̃
]

> 0.

This implies that Var
[
P̃0
]
returns positive and finite values as long as

k >
E
[
g̃
]+ E

[
g̃2
]

1 + E
[
g̃
] .
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