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Abstract We show that nonlinearly discounted nonlinear martingales are related to
no arbitrage in two price economies as linearly discounted martingales were related
to no arbitrage in economies satisfying the law of one price. Furthermore, assum-
ing risk acceptability requires a positive physical expectation, we demonstrate that
expected rates of return on ask prices should be dominated by expected rates of return
on bid prices. A preliminary investigation conducted here, supports this hypothe-
sis. In general we observe that asset pricing theory in two price economies leads to
asset pricing inequalities. A model incorporating both nonlinear discounting and non-
linear martingales is developed for the valuation of contingent claims in two price
economies. Examples illustrate the interactions present between the severity of mea-
sure changes and their associated discount rates. As a consequence arbitrage free two
price economies can involve unique discount curves and measure changes that are
however specific to both the product being priced and the trade direction. Further-
more the developed valuation operators call into question the current practice of Debt
Valuation Adjustments.
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2 D. B. Madan

1 Introduction

It has now long been recognized (Harrison and Kreps 1979; Harrison and Pliska 1981;
Delbaen and Schachermayer 1994) that the absence of arbitrage in a financial market
is, under conditions, equivalent to the existence of a probability measure on the space
of price paths, under which discounted asset prices, in the absence of dividends, are
martingales. Furthermore, such a measure, often referred to as a martingale measure,
is also unique when markets are complete (Harrison and Pliska 1983). The finan-
cial markets studied in these papers, are infinitely liquid, permitting trading in both
directions at the same price, or equivalently, the law of one price prevails.

There have, however, been numerous studies where the law of one price is aban-
doned and one may note in particular the literature on transactions costs and the study
of no arbitrage in the presence of bid ask spreads (Jouini and Kallal 1995; Bion-Nadal
2009b; Guasoni et al. 2012). More recently Madan (2012) considers financial equilib-
ria where in equilibrium one has illiquidity by construction. There is a fundamental
illiquidity that is unrelated to considerations of costs in transacting otherwise liquid
markets. In equilibrium there are only the two separate prices at which one may buy
from or sell to the market. The convergence to one price fails on account of an accumu-
lation of aggregate market wide risk exposures that are not financially acceptable. In
such financial economies, financial systems are employed to enhance economic activ-
ity beyond the presumed, unachievable or unrealistic, constraints of market clearing.
The focus of this paper is on the no arbitrage implications for such fundamentally
illiquid economies.

For such two price financial economies with risk exposures related to the absence
of enforcing market clearing, the absence of arbitrage leads to valuation operators
exhibiting nonlinearity in both time value discounting and the choice of martingale
measures. In fact, under fairly general conditions one may have uniqueness of interest
rates employed for discounting and measure changes employed for valuation, that are
product and trade direction specific. Hence the nonlinearity. Each contingent claim
then has, for each of two trade directions, a single time value discount curve and a
single probability assessment of events consistent with its bid price and another such
choice for its ask price. It may be observed that such a theoretical conclusion conforms
with valuation practices being widely adopted across the financial industry since the
financial crisis of 2008.

On the one hand there is the development of multicurve approaches to accounting
for time value of money as studied for example in Ametrano and Bianchetti (2009),
Mercurio (2010), Pallavicini and Tarenghi (2010) and Bianchetti and Carlichhi (2012).
In fact many banks have made substantial investments into the construction of multiple
yield curves that has come to be called n − way cooking. The constructions allow for
considerable product specificity in the construction of yields curves and the magnitude
of investment in their development signals the end of a single curve regime for time
value accounting. We shall observe here that the valuation operators of two price
financial economies characteristically employ n − way cooking of yield curves.

The nonlinearity of two price financial economies is not restricted to yield curves
and links up with other developments in the literature. Yet another strand of the litera-
ture has studied the construction of nonlinear conditional expectation operators related
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Asset pricing theory for two price economies 3

to the solution of backward stochastic differential Eqs. (El Karoui et al. 1997; Peng
2004, 2006; Cohen and Elliott 2010). Peng (2010) has gone on to define nonlinear con-
ditional expectations of a terminal random variable as a nonlinear martingale. We show
here that a two price financial economy is free of arbitrage just if each of its two price
processes when suitably nonlinearly discounted are then also nonlinear martingales.
Hence multicurve time value accounting and nonlinear martingales are to no arbitrage
in two price financial economies as single curve discounting and martingales were to
no arbitrage in one price economies. The economics of two price financial economies
is thereby inherently linked to the mathematics of nonlinear conditional expectations
now called nonlinear martingales and the n − way cooking of yield curves.

The valuation operators of two price financial economies are linked in continuous
time models to the solution of nonlinear partial integro-differential equations. The
embedded nonlinearities simultaneously endogenize worst case or conservative val-
uations for assets at the bid price and similar worst case or ask price valuations for
liabilities. Consequently they provide natural candidates for asset write downs and
liability add-ons for risk management purposes. Additionally the operators may also
serve as corporate objective functions designed to maximize a concave and conserva-
tive market value functional. In contrast the law of one price yields a linear objective
function ill suited to locating interior optimal decisions.

A specific valuation operator synthesizing multicurve accounting and nonlinear
martingales is developed here by extending the discrete time nonlinear martingale
construction formulated in Madan and Schoutens (2012). Interactions between rates
and measure changes are incorporated by providing better discount rates when valua-
tions are subjected to more severe risk charges. Discount rates are reduced when cash
flows are exposed to greater stress in evaluating expectations. The underlying trade-
offs are part of the primitives defining a financial economy. A financial economy must
not only specify a cone of risk acceptability as modeled in Madan (2012) and Madan
and Schoutens (2012), but it must also define the trade-off between risk charges and
time value discounting.

For the valuation operator developed here, one may deduce that ask prices for
nonnegative liabilities must be priced at maximal stress and minimal discount rates.
Nonnegative liabilities may be viewed as true liabilities and the valuation principle
we deduce is in keeping with the Heckman (2004) principle that they be valued as if
they were to be paid. Current Debt Valuation Adjustment (DVA) practices of crediting
oneself with an assessment of an inability to meet ones liabilities is thereby called into
question as a dangerous and fallacious practice.

Furthermore, we note that martingale theory of a one price economy synthesizes
asset pricing theory on recognizing that excess returns are just the negative of return
covariations with the pricing kernel (see for example Back 1991). Similarly one
obtains, here, a nonlinear asset pricing theory for two price economies whereby excess
returns on the two prices may be seen as the infima or suprema of return covariations
with a set of pricing kernels. Just as asset pricing theory has led to an extensive litera-
ture testing this theory on data presumed to be coming from a one price economy, we
anticipate that one may develop similar tests for the nonlinear asset pricing theory on
data presumed to be coming from a two price financial economy. We present here a
first test of one of the early implications of no arbitrage in two price economies. The
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4 D. B. Madan

initial implications are extended by a factor theoretic approach to asset pricing in two
price economies leveraging the built in nonlinearity. This results in a system of asset
pricing inequalities. Research questions related to the development of econometric
procedures for testing asset pricing inequalities are opened up.

Just as the details for connecting no arbitrage and martingales in one price
economies rely on subtle technical considerations related to the topological struc-
ture of infinite dimensional spaces the counterpart result for two price economies will
face similar technical difficulties. With a view to reducing technical considerations and
focusing attention on the economic and financial considerations involved we address
these questions in a finite dimensional space by considering an economy living on a
finite probability space.

Section 2 formulates the structure of a two price financial economy living on this
finite probability space and develops the consequences of no arbitrage. Section 3
addresses issues related to the span of the set of zero cost attainable claims and com-
pleteness in two price financial economies. Section 4 introduces the concept of risk
acceptability and develops the equations for the prices of an arbitrage free two price
financial economy. Section 5 establishes the link to nonlinearly discounted nonlinear
martingales. Section 6 develops a specific valuation model incorporating interactions
between risk resiliency and discount rates. Section 7 presents the related nonlinear
asset pricing theory and develops an initial testable implication. The test is conducted
on data for daily ask high and bid low prices as presumed to be that of a two price
economy in Sect. 8. Factor theoretic extensions are taken up in Sect. 9. Section 10
concludes.

2 Two price financial economy on a finite state space

We adopt the structure of a finite probability space as described, for example, in
Delbaen and Schachermayer (2000). The probability space is � = {ω1, ω2, . . . , ωN },
with a probability P , and P [ωn] = pn > 0, n = 1, . . . , N . Denote by F the power
set of �. In addition there are finitely many time points t = 0, 1, . . . , T at which
trading may occur. The information filtration is given by an increasing sequence of
σ − algebras (Ft )

T
t=0 with FT = F .

In a one price economy it is customary to begin with a specification of the price
process. Two price economies have also been studied, for example in Jouini and
Kallal (1995) by a specification of the price processes. Here we wish to go beyond
characterizing no arbitrage and to eventually develop operators relating prices to the
associated promised cash flows. As a consequence, though the mathematical methods
we shall employ relate to those of the classical analysis of Kreps (1981) and Yan
(1980), the context is substantially different. First we do not have price processes but
processes for the two prices at which the remaining uncertainty may be transacted
with the market. As a result the prices are those of different assets and depart from the
classical view of the current price, be it in a one or two price market, for some terminal
random variable. Additionally, given the absence of unique discount curves, monies
cannot be moved across time on predetermined terms and we are forced to work with
the mathematics of processes as opposed to an aggregated analysis on the space of
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Asset pricing theory for two price economies 5

terminal random variables. Alternatively put, we do not have numeraire assets that
one may use to account for values, as we shall take the law of one price as failing
essentially universally.

Hence we begin by specifying the set of promised cash flows being traded in
the market. Given the focus on synthesizing nonlinear discounting or multi curve
accounting with nonlinear martingales we introduce two sets of traded cash flows.

The first consists of state contingent cash flows ci
t , i = 1, . . . , M that pay the sum

ci
t at time t . The cash flows ci = (ci

t , 0 ≤ t ≤ T ) are adapted to the filtration (Ft )
T
t=0.

The values ci
t may be signed and the receipt of a negative magnitude is read as the

payment of the absolute value.
The second consists of trading at all times t , pure discount bonds indexed by u > t

that pay at u the unit cash flow. These are traded at all times t < u with cash flows
denoted as 1u .

Definition 2.1 The set of traded state contingent cash flows consist of c = (c1, . . . cM )

where for each i , ci = (ci
t )

T
t=0 is a process adapted to the filtered stochastic base(

�,F , (Ft )
T
t=0 , P

)
. We assume ci

0 = 0 for all i . Also traded are pure discount bonds
with cash flows 1u paying unity at time u.

A two price financial economy consists of a pair of adapted price processes ai
t ≥ bi

t
allowing all economic agents to, access or deliver, the cash flows ci

t ′ for t ′ > t , that
are to be delivered or received by the market. The market is viewed as an abstract
counterparty to all transactions by all agents. There are then two associated zero cost
cash flows associated with each c for each t . There is one zero cost cash flow for
buying contingent claim i at time t , denoted Uit = (Uit

s )T
s=0 where

Uit
s =

⎧
⎨

⎩

0 s < t
−ai

s s = t
ci

s s > t

Similarly the agent may sell the contingent claim i at time t to receive the bid price

and access the zero cost cash flow V it = (
V it

s

)T
s=0 where

V it
s =

⎧
⎨

⎩

0 s < t
bi

s s = t
−ci

s s > t
(1)

We also have a pair of bid and ask prices for the pure discount bonds denoted by
gu

t ≤ hu
t ≤ 1 for t < u that access the zero cost cash flows

(
W ut

s

)T
s=0 and

(
Xut

s

)T
s=0

where

W ut
s =

⎧
⎨

⎩

0 s �= t, u
−hu

t s = t
1 s = u

and

Xut
s =

⎧
⎨

⎩

0 s �= t, u
gu

t s = t
−1 s = u

(2)
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6 D. B. Madan

Remark 2.1 The ask prices may be reduced to bid prices by closing the set of traded
cash flows under negation. By allowing for the trading of the negative cash flow
c̃i

t = −ci
t we see that the ask price for c̃i at time t , say ãi

t accesses for times t and
above the cash flows

−ãi
t , c̃i

t ′ for t ′ > t.

By construction this is the cash flow

− ãi
t ,−ci

t ′ for t ′ > t. (3)

On the other hand the bid price for the original cash flow c accesses the zero cost
cash flow

bi
t ,−ci

t ′ for t ′ > t. (4)

Comparing (3) and (4) we thus deduce that one must have

ãi
t = −bi

t .

Thus the ask price for c̃ equal to −c is the negative of the bid price for c. Equivalently,
on changing signs, we conclude that the ask price for c is the negative of the bid price
for −c.

Thus by relating selling to buying the negative and allowing the negative to trade,
we reduce the two price financial economy to just the study of the bid prices, for both c
and −c. With this remark we focus attention on just the bid prices bi

t and gu
t , supposing

that the set of securities traded have claims to cash flows closed under a change of
sign. We therefore have cash flows ci

t , c̃i
t , 1u , 1̃u where the superscript ∼ denotes the

negative cash flow and the pure discount bonds for time u are traded at times t < u.
There are associated bid prices bi

t , b̃i
t , for i = 1, . . . , M and gu

t , g̃u
t , for t < u ≤ T

and zero cost cash flows V it = (V it
s )s=0T , Ṽ i t = (Ṽ i t

s )T
s=0, Xut = (Xut

s )T
s=0 and

X̃ut = (X̃ut
s )T

s=0.

Definition 2.2 The financial market consists of the zero cost cash flows V = (
V it

)
,

i = 1, . . . , M , and t = 0, . . . T − 1 where V it = (
V it

s

)T
s=0 is defined as in (1). Other

zero cost cash flow include Ṽ = (
Ṽ i t

)
, i = 1, . . . , M and t = 0, . . . , T − 1 with

Ṽ i t = (
Ṽ i t

s

)T
s=0 defined in accordance with (1). In addition we have the pure discount

bonds X = (Xut ), u = 1, . . . , T , t = 0, . . . u − 1 and X̃ = (X̃ut ), u = 1, . . . , T, t =
0, . . . u − 1.

Definition 2.3 The set of trading strategies consists of nonnegative adapted processes
(H, H̃ , K , K̃ ), H = (Hi )N

i=1, H̃ = (H̃ i )N
i=1, Hi = (Hi

t )
T −1
t=0 , H̃ i = (H̃ i

t )
T −1
t=0 , and

K = (K u
t ), K̃ = (K̃ u

t ), t < u, 1 ≤ u ≤ T .

The trading strategy (H, H̃ , K , K̃ ) receives the zero cost cash flow z = (zt )
T
t=0

where

zt =
∑

s≤t

N∑

i=1

(
Hi

s V is
t + H̃ i

s Ṽ is
t

)
+

∑

s≤t≤u
1≤u≤T

(
K u

s Xus
t + K̃ us

s X̃us
t

)
.
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Asset pricing theory for two price economies 7

Definition 2.4 We call Z the set of all cash flows accessible by trading strategies(
H, H̃ , K , K̃

)
, the set of zero cost attainable cash flows.

Remark 2.2 Unlike the situation with the law of one price when the set of zero cost
attainable cash flows forms a subspace of the space of adapted cash flows, the set Z
of zero cost attainable cash flows here is just a convex cone in the space of adapted
processes. Furthermore in the classical case we may transfer all funds to the final date
via an accounting with the bank account in a numeraire asset. For the attainable cash
flows, we thereby focus attention on the space of terminal random variables. Here
we cannot make such aggregations as transfers across time depend on agent choices
at loan rates that are different for borrowing and lending. Hence the space of cash
flows is different from the space of terminal random variables and remains the space
of adapted cash flows.

Definition 2.5 We call the convex cone C of adapted processes defined by

C = {y|y is an adapted process and there exists z ∈ Z with z ≥ y } ,

the set of processes super-replicable at zero cost.

Let W be the set of nonnegative adapted processes.

Definition 2.6 A financial market (V, Ṽ , X, X̃) satisfies the no-arbitrage condition
(N A) if

C ∩ W = {0}
where 0 denotes the identically zero adapted process.

Let L denote the subspace of liquid zero cost attainable claims or cash flows that
may be traded in both directions at the same price. For a financial market satisfying
no arbitrage the set of zero cost attainable cash flows may contain some liquid cash
flows z for which both z and −z are in Z .

Proposition 2.7 Assume the financial market satisfies (N A) then

C ∩ (−C) = L

Proof Clearly L ⊆ C ∩ (−C). Suppose y ∈ C ∩ (−C) then y = z1 − h1 for h1
nonnegative and z1 ∈ Z but also −y = z2 − h2 for h2 nonnegative and z2 ∈ Z .
It follows that z1 + z2 = h1 + h2 belongs to C ∩ W and hence h1 = h2 = 0 and
y = z1 ∈ Z , also −y = z2 ∈ Z and hence y ∈ L . 
�
Definition 2.8 A two price financial economy has no liquid assets if the cone C is
pointed and

C ∩ (−C) = {0}.
We shall suppose, except when explicitly indicated otherwise, that we are dealing

with economies with no liquid assets.
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8 D. B. Madan

Proposition 2.9 A financial market satisfies no arbitrage (NA) if and only if there
exists a strictly positive adapted process θ = (θt )

T
t=0 satisfying

E

[
T∑

t=0

θt yt

]

≤ 0, for all y ∈ C, y = (yt )
T
t=0 . (5)

Proof Application of the Kreps–Yan theorem (See for example Rokhlin 2005) to the
separating duality between the Banach spaces of adapted processes y = (yt , t =
0, 1, . . . , T ) and θ = (θt , t = 0, 1, . . . , T ) for the bilinear form

〈θ, y〉 = E

[
∑

t

θt yt

]

.


�

2.1 Separating hyperplanes, time value and measure changes

We decompose in this subsection every separating hyperplane into the product of a
multicurve discounting function and a measure change martingale. Consider first the
pure discount bond trading at time t of maturity t + 1. The cash flows

gt+1
t ,−1t+1 ∈ Z

−ht+1
t , 1t+1 ∈ Z

and hence by the separation property (5) it follows that

θt g
t+1
t − Et [θt+1] ≤ 0

−θt h
t+1
t + Et [θt+1] ≤ 0

or

θt g
t+1
t ≤ Et [θt+1] ≤ θt h

t+1
t .

In particular we may write

gt+1
t ≤ Et

[
θt+1

]

θt
≤ ht+1

t ≤ 1

Define the candidate one period spot rate process rt by

1

1 + rt
= Et

[
θt+1

]

θt
.
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Asset pricing theory for two price economies 9

Define inductively the following entities

πt = 1

1 + rt

�t+1 = �tπt

�0 = 1.

We may now write

θt = Et [θt+1]
πt

and hence

θt

�t
= Et [θt+1]

�tπt

= Et [θt+1]
�t+1

= Et

[
θt+1

�t+1

]

where the last equality follows on noting that �t+1 is Ft measurable.
We observe that the process

Mt = θt

�t

is a positive martingale and one may use it to define a measure change to the measure
Q by

d Q

d P
= θT

�T
= MT .

We thus associate with the separating hyperplane a spot rate process rt or equiva-
lently

�t =
∏

s<t

1

1 + rs

and a probability measure Q defined by the martingale θt/�t . We now see our sepa-
rating hyperplane as

θt = �t Mt .

Every separating hyperplane is the product of a discount function �t , at the spot
rate process rt and a change of measure martingale Mt .

2.2 Bid, ask, multi curve discounting, and risk neutral measures

The separation property (5) and the observation that V it , Ṽ i t ∈ Z imply that

θt b
i
t ≤ Et

[
∑

t ′>t

θt ′c
i
t ′

]

≤ θt a
i
t .
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10 D. B. Madan

Consequently,

�t Mt b
i
t ≤ Et

[
∑

t ′>t

�t ′ Mt ′c
i
t ′

]

≤ �t Mt a
i
t .

We may then write

bi
t ≤ Et

[
∑

t ′>t

�t ′ Mt ′

�t Mt
ci

t ′

]

≤ ai
t

or that

bi
t ≤ E Q

t

[
∑

t ′>t

�t ′

�t
ci

t ′

]

≤ ai
t .

The bid price is bounded above by a discounted expectation of the future cash flows
while the ask price is bounded below by the same using the multi curve discounting
process �t for time value accounting and the associated martingale Mt for the measure
change.

3 Acceptable risks in a two price economy

We now define by M the set of all separating hyperplanes θ = (θt )
T
t=0 that perform

a separation of the set of zero cost attainable claims Z from the set of nonnegative
nonzero cash flows. Associated with each such hyperplane is a discount process � =
(�t )

T
t=0 and a measure Q defined by the change of measure martingale M = (Mt )

T
t=0

with Mt = θt/�t .

Definition 3.1 For each t define the set At to be the set of all adapted processes
x = (

xt ′ , t ′ ≥ t
)

satisfying

xt + E Q
t

[
∑

t ′>t

�t ′

�t
xt ′

]

≥ 0, for all (�, Q) ∈ M.

By construction At is a convex cone containing the nonnegative adapted processes
and we define it to be the set of current and future cash flows acceptable at time t .

Furthermore we have shown by virtue of V it , Ṽ i t ∈ Z that the process c =
(bt ,−ci

t ′ , t ′ > t) with bt < bi
t , is not an element of At . Define by Zt the set of

processes in Z that are zero before time t . Consider the set Zt ∩ At , for z ∈ Zt ∩ At

we have that

zt + E Q
t

[
∑

t ′>t

�t ′

�t
zt ′

]

≥ 0, for all (�, Q) ∈ M

But as z ∈ Z then for all θ ∈ M

E

[
∑

t

θt zt

]

≤ 0
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Asset pricing theory for two price economies 11

or

E

⎡

⎣
∑

t ′≥t

θt ′ zt ′

⎤

⎦ ≤ 0

and equivalently that

zt + E Q
t

[
∑

t ′>t

�t ′

�t
zt ′

]

≤ 0, for all (�, Q) ∈ M.

Hence

E

⎡

⎣
∑

t ′≥t

θt ′ zt ′

⎤

⎦ = 0.

As a consequence both z and −z belong to Zt ∩ At and this set is the subspace of
liquid zero cost cash flows as one may trade these cash flows at zero cost in both
directions. If there are no liquid cash flows for which the law of one price holds then
Zt ∩ At = {0}. In fact At = −Zt and Zt is a pointed cone in the absence of liquid
assets. We assume henceforth the absence of liquid assets.

In particular one may conclude that for all zero cost traded cash flows we have that
bi

i < ai
t and there exists �, M and �′, M ′ satisfying

bi
t < E Q

t

[
∑

t ′>t

�t ′

�t
ci

t ′

]

,

and

E Q
′

t

[
∑

t ′>t

�
′
t ′

�
′
t

ci
t ′

]

< ai
t .

3.1 Best bid price

Consider V it ∈ Z by which for all θ ∈ M we have

bi
t ≤ E Q

t

[
∑

t ′>t

�t ′

�t
ci

t ′

]

.

Equivalently for all θ ∈ M it is the case that

E Q
t

[
∑

t ′>t

�t ′

�t
ci

t ′

]

− bi
t ≥ 0

or that
(−bi

t , ci
t ′ for t ′ > t) ∈ At .
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12 D. B. Madan

It then follows that for any b < bi
t we have that (−b, ci

t ′ , t ′ > t) ∈ At . There is
then a maximal value b∗ such that

(−b∗, ci
t ′ , t ′ > t

) ∈ At and is either a boundary
point or an extreme point of At .

For this best or maximal bid price there is a separating hyperplane θ∗ = (θ∗
t ′ , t ′ ≥ t)

for which the lower bound of zero is attained

θ∗
t bi∗t = Et

[
∑

t ′>t

θ∗
t ′c

i
t ′

]

.

Hence θ∗ is positive and for this best bid price we have �∗, M∗ and Q∗ such that

bi∗t = E Q∗
t

[
∑

t ′>t

�∗
t ′

�∗
t

ci
t ′

]

It follows that for general probability spaces

bi∗t = ess inf
(�,Q)∈M

E Q
t

[
∑

t ′>t

�t ′

�t
ci

t ′

]

. (6)

By the relationship between bid and ask prices we also have that

ai∗t = ess sup
(�,Q)∈M

E Q
t

[
∑

t ′>t

�t ′

�t
ci

t ′

]

(7)

The best bid and ask prices defined in Eqs. (6) and (7) are nonlinear prices with the
bid price being a concave functional while the ask price is a convex functional. The
nonlinearities involve both a selection of a discounting function and the choice of a
probability measure and in general one would expect some interactions being involved
in these choices.

For future reference we also observe that since

bi
∗(t+1) ≤ E Q∗

t+1

⎡

⎣
∑

t ′>t+1

�∗
t ′

�∗
t

ci
t ′

⎤

⎦

we have that

bi∗t = E Q∗
t

⎡

⎣�∗
t+1

�∗
t

ci
t+1 + E Q∗

t+1

⎡

⎣
∑

t ′>t+1

�∗
t ′

�∗
t

ci
t ′

⎤

⎦

⎤

⎦

≥ E Q∗
t

[
�∗

t+1

�∗
t

ci
t+1 + bi

∗(t+1)

]
(8)
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3.2 Uniqueness of product and trade direction specific discount functions
and martingale measures

A recent paper by He and Xu (2013) establishes that the support hyperplanes of convex
sets A defined as the level sets

A = {x |φ(x) ≤ 0}

for a convex function φ are unique. This suggests that if we model a convex cone
of acceptable claims as cones generated by scaling such convex level sets then every
financial cash flow or contingent claim will have a bid price consistent with a unique
discount function and measure change. The ask price being associated with a cash flow
in the other direction will also have its own discount function and measure change. As
a result we would have product and trade direction specific unique multi-curve time
value accounting and measure changes or probability assessments. We shall use these
considerations in formulating an example of a valuation model.

4 Dynamic consistency and nonlinearly discounted nonlinear martingales

We now introduce a dynamic consistency hypothesis with respect to the best bid prices
for future cash flows.

Definition 4.1 Markets are said to be dynamically consistent if for x ∈ At and bt+1
the best bid price for (xt ′ , t ′ > t + 1) we have that

(xt , xt+1 + bt+1) ∈ At .

Under this dynamic consistency hypothesis, we have c∗ = (−bi∗t , ci
t ′ , t ′ > t) ∈ At

and assuming no liquid assets so that Zt = −At we have that (bi∗t ,−ci
t ′ , t ′ > t) ∈ Zt .

The dynamic consistency then yields that

(−bi∗t , ci
t+1 + bi

∗(t+1)) ∈ At .

It follows that

bi∗t ≤ E Q
t

[
�t+1

�t

(
ci

t+1 + bi
∗(t+1)

)]

Coupled with Eq. (8) we conclude that

bi∗t = inf
(Q,�)∈M

E Q
t

[
�t+1

�t

(
ci

t+1 + bi
∗(t+1)

)]
. (9)

Equation (9) expresses the bid prices of an arbitrage free two price financial econ-
omy as a nonlinearly discounted nonlinear martingale. At each time step the price is a
suitably selected discounted conditional expectation of its value at the next time point.
Note that both the discount factor and the measure change depend in principle via the
infimum operation on the cash flow being priced, and hence the dual nonlinearity.
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14 D. B. Madan

From the relationship between bid and ask prices one may write

ai∗t = sup
(Q,�)∈M

E Q
t

[
�t+1

�t

(
ci

t+1 + ai
∗(t+1)

)]

One then infers that the ask prices of a two price financial economy are also nonlin-
early discounted nonlinear martingales where the nonlinearity comes from the dual
supremum operation over both discount functions and measure changes.

It is interesting to note that post the financial crisis the financial world has become
accustomed to multiple discount curves and much has been written in the growing
literature on Credit, Debt and Funding Valuation Adjustments (CVA, DVA and FVA)
on how to work with these curves within the context of the law of one price. For two
price financial economies however, both the discount rates and the associated proba-
bility measures are product and trade direction dependent and we have a multitude of
discount curves and measures. Under the dynamic consistency hypothesis and Eq. (9)
these product and trade direction dependent discount rates and probability measures
may be constructed one time step at a time by solving at each time step for the one
period discount rate and the one step ahead conditional probabilities that put the one
step ahead cash flow on the boundary of the set of zero cost tradeable cash flows.
Both the discount rate and the conditional probabilities are then to be inferred from
the supporting and separating hyperplane.

5 Spanning and completeness for two price financial economies

In a classical one price economy the set of zero cost attainable and adapted cash flows
is a subspace by virtue of being able to trade in both directions at the same price.
Completeness is then defined as all cash flows lying in the linear span of the zero cost
traded claims modula a constant that constitutes the price. The linear span is relevant
as one may combine the zero cost cash flows by freely going long or short. For a
two price economy, however, the set Z of zero cost attainable claims may only be
combined by taking long positions in the separate cash flows for buying or selling at
different terms. One might then ask what are the set of cash flows now spanned by the
zero cost claims.

Definition 5.1 An arbitrary cash flow process w = (ws) that is zero before t with
ws = 0 for s < t is in the span of Z if there exists a constant a and x ∈ Z with xs = 0,
for s < t satisfying

w = a1t + x .

The constant a allows for an initial price at time t that may be coupled with a zero
cost claim to create c.

For an arbitrary cash flow w in a two price economy one may use the cones of
acceptability At to define the bid and ask prices for arbitrary claims.
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Definition 5.2 We say that the time t bid price for the arbitrary cash flow w is the
largest constant b for which the cash flow d defined by

ds = 0, s < t; dt = −b; du = wu

satisfies
d ∈ At .

It follows then that for all separating hyperplanes �t Mt and measure Q defined by
MT we must have that

−b + E Q
t

[
∑

u>t

�u

�t
wu

]

≥ 0.

Proposition 5.3 The bid and ask prices of arbitrary cash flow w in a two price econ-
omy are given by b(w), a(w) where

b(w) = inf
�t Mt ∈M

E Q
t

[
∑

u>t

�u

�t
wu

]

a(w) = sup
�t Mt ∈M

E Q
t

[
∑

u>t

�u

�t
wu

]

Definition 5.4 The two price economy is complete if every cash flow w is in the span
of Z .

Proposition 5.5 A two price economy is complete if and only if every cash flow has a
finite bid and ask price.

Proof Suppose an arbitrary cash flow process w, starting at t , takes the form

w = a1t + x


�
Since x ∈ Z we have that for every separating hyperplane �t Mt and measure Q

defined by MT it is the case that

xt + E Q
t

[
∑

t ′>t

�t ′

�t
xt ′

]

≤ 0.

As a consequence

wt + E Q
t

[
∑

t ′>t

�t ′

�t
wt ′

]

≤ a, for all �, Q.

Suppose on the other hand that we have a finite ask price and there exists a constant
a such that
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16 D. B. Madan

wt + E Q
t

[
∑

t ′>t

�t ′

�t
wt ′

]

≤ a, for all �, Q.

Now define
x = −a1t + w

and observe that as Zt = −At that x ∈ Zt . It follows that w is in the span of the zero
cost traded claims.

The span therefore contains cash flows with discounted expectations uniformly
bounded above for all the admissible discount functions and associated measures.
Market completeness is then equivalent to the upper bound for all discounted expecta-
tions being finite for all cash flows. Working with −w in place of w one obtains finite
lower bounds for all cash flows as well under completeness. A two price economy is
then complete if all cash flows have finite bid and ask prices. The gap between them
may be large but there is a finite market price for buying from or selling to the market.
Market completeness in a one price economy is a strong proposition delivering unique
pricing of all cash flows. For a two price economy it merely requires the bid and ask
prices to be finite.

6 A valuation model with rate risk interactions

We move in this section from an analysis of the abstract structure for the pricing
operators for arbitrage free two price economies towards the explicit modeling of
such nonlinear pricing operators. In this regard we follow literature that has already
exhibited such operators when discount curves or time value accounting may be con-
ducted under the law of one price. Our contribution here is to extend these operators
to simultaneously modeling nonlinearity with respect to time value accounting along
with nonlinear martingale constructions with a particular focus on the interactions
possibly present between them.

The literature has recently introduced nonlinear dynamic valuation operators that
are conservative valuation methodologies connected to the theory of coherent risk
measures. From a static perspective one may cite Carr et al. (2001), Föllmer and
Schied (2004), Staum (2004), Barrieu and El Karoui (2005) and Cherny and Madan
(2010). Dynamic generalizations for a discrete time context may be found in Cheridito
et al. (2006), Jobert and Rogers (2008), Detlefsen and Scandolo (2005), Föllmer and
Penner (2006), and Madan and Schoutens (2012). Continuous time formulations may
be found in Bion-Nadal (2008, 2009a) and Eberlein et al. (2014a, b). In the special
case when the set of risks acceptable to the market at any point of time are closed
under the scaling of positions by a positive multiple they form a cone and we refer to
the resulting economy as a conic one. We restrict attention in this paper to such conic
economies.

The nonlinearity in these studies was restricted to measure changes with discount-
ing accomplished at rates obtained from an underlying law of one price for loans.
The above analysis of no arbitrage in two price economies makes it clear that the
nonlinearity involved is dual and operates over both discount functions and measure
changes. The objective of this section is to build explicit models for the valuation of
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Asset pricing theory for two price economies 17

financial claims in two price economies that exhibits interactions between choices for
discount functions and measure changes.

6.1 Review of nonlinear martingale constructions in the absence of interactions

We begin by briefly reviewing the construction with nonlinearity restricted to measure
changes. Once the discount function is fixed the dynamically time consistent bid price
bw = (bw

s , 0 ≤ s ≤ T ) for w = (ws, 0 ≤ s ≤ T ) may be written locally at a single
time step as

bw
t = 1

1 + rt
inf

Q∈M
E Q

t
(
wt+1 + bw

t+1

)

and the construction is completed on specifying the one step ahead conditional prob-
ability laws over which one has to take the infimum. Financial risk acceptability is
equivalently modeled by requiring

(−bw
t , wt+1 + bw

t+1

) ∈ At ⇔ 1

1 + rt
E Q

t
(
wt+1 + bw

t+1

) − bw
t ≥ 0, all Q ∈ M.

Two hypotheses lead to an explicit construction for the one step ahead bid price. The
first hypothesis is that of additivity for comonotone risks. In general via the infimum
operator and the resulting concavity the bid price for the sum of two risks X, Y is above
the sum of component bid prices. When the two risks have no negative comovements,
they are said to be comonotone, and we ask for the additivity in this case or that
b(X + Y ) = b(X) + b(Y ) for X, Y comonotone. The second hypothesis is that of
law invariance whereby the bid price of a risk is just a function of the probability law
of the risk and independent of how the random variable is defined. Kusuoka (2001)
studied the restriction of defining acceptability under these two hypotheses. In the
current context the relevant distribution function would be the distribution function
for wt+1 + bw

t+1 conditional on Ft that we denote by Fw
t (x). Kusuoka (2001) showed

that the bid price must then be of the form

bw
t = 1

1 + rt

∫ ∞

−∞
xd	(Fw

t (x)) (10)

for some concave distribution 	 on the unit interval. The computation in Eq. (10) is
referred to as a distorted expectation or an expectation under a concave distortion.
Expectation under a concave distortion (10) can also be seen as an expectation under
a change of measure whereby

∫ ∞

−∞
xd	(Fw

t (x)) =
∫ ∞

−∞
x	 ′(Fw

t (x)) f w
t (x)dx

where f w
t (x) = Fw′

t (x) is the original probability density, and the measure change is
then seen to be 	 ′(Fw

t (x)) and is based on the risk quantile.
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18 D. B. Madan

The set of probability measures M defining such local acceptability are shown in
Madan et al. (2013) to consist of all measures Q equivalent to the base probability P
that satisfy

Q(A) ≤ 	(P(A)), all A ∈ F.

Cherny and Madan (2009) introduced a sequence of concave distortions 	γ for
γ ≥ 0 that are pointwise increasing in γ , thereby requiring approval by a larger and
larger set of measures to gain acceptability with respect to 	γ . The parameter γ may
be viewed as an index of acceptability. The desire to reweight losses upwards to infinity
and gains down to zero led to the choice of the functional form termed minmaxvar
in Cherny and Madan (2009),

	γ (u) = 1 − (1 − u
1

1+γ )1+γ. (11)

The nonlinear martingales constructed in Madan and Schoutens (2012), for example,
employed a fixed choice of γ and the recursion of Eq. (10).

6.2 Introducing rate measure change interactions

We now wish to incorporate in our modeling choices, an interaction between discount
rate choices and measure changes in modeling risk acceptability. Consider momen-
tarily first a one period two date case. The two dates are 0, 1 and time one states are
indexed by s. We have acceptability just if

∑

s

θ1s X1s + θ0 X0 ≥ 0

Consider the acceptability to the market of market paying b and receiving at time 1
the random cash flow X1 = (X1s). This acceptability now requires that

∑

s

θ1s X1s − θ0b ≥ 0

It follows that we must have

b ≤
∑

s θ1s

θ0

∑

s

θ1s X1s∑
s θis

and this is a discounted expectation under a measure change. We may keep in line
with the prior literature we seek to generalize, by introducing in it some rate measure
change interactions, and choose to continue to model the measure change by a suitably
selected and parametric distorted expectation

h(γ ) =
∫ ∞

−∞
xd	γ (FX (x)).
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On the interpretation of the ratio

∑
s θ1s

θ0
= 1

1 + r

We have acceptability at stress level γ provided

b(1 + r) ≤ h(γ ).

For a zero stress level the discount factor merely adjusts for time value between the two
periods. In fact at a zero stress level, if the base probability is the real world physical
probability then the discount rate should be a risk adjusted rate possibly close to the
mean rate of return. Once we raise γ , thereby introducing a substantial risk adjustment
we anticipate that h(γ ) will fall and we may demand acceptability at the larger values
of γ provided we lower the discount rate closer to a risk free rate by accommodating
a rebate say of (1 + ρ(γ )) for 0 ≤ γ ≤ γ . More specifically, letting δ be the zero
stress rate, we define acceptability if at all stress levels in the range 0 ≤ γ ≤ γ

b(1 + δ) ≤ h(γ ) (1 + ρ(γ )). (12)

We anticipate that ρ(γ ) is near zero for low values of γ but then rises to accom-
modate rebates for high stress levels. The best bid price is then given by

b = inf
0≤γ≤γ

h(γ )(1 + ρ(γ ))

1 + δ
.

One may interpret δ(γ ) defined by

1

1 + δ(γ )
= 1 + ρ(γ )

1 + δ
(13)

as a stress dependent discount rate. There is then an interaction possible between the
severity of the measure change and the discount rate employed by letting the latter
explicitly depend on the former. Specifically the discount rate is reduced for higher
stress levels to accommodate for an expected decline in h(γ ).

More generally let ρt (γ ) be the Ft measurable premium rate to be applied at time
t for the distortion level γ . The bid price at time t for a cash flow w is then given by

bw
t = inf

0≤γ≤γ

h X
t (γ )(1 + ρt (γ ))

1 + δ
.

Given a risk X , tradeability requires that the sale price b satisfy

b ≤ inf
0≤γ≤γ

h X
t (γ ) (1 + ρt (γ ))

1 + δ
.
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or that

b − inf
0≤γ≤γ

h X
t (γ ) (1 + ρt (γ ))

1 + δ
≤ 0 (14)

By virtue of the infimum and the concavity of h X
t (γ ) for fixed γ in X , the inequality

(14) is a scaling of the level set of a convex function.
Since the acceptability cone is the negative of the tradeability cone acceptability

requires
inf

0≤γ≤γ
h X

t (γ ) (1 + ρt (γ )) − b(1 + δ) ≥ 0.

One step ahead acceptability then requires that the distorted expectation at all levels γ

below γ , adjusted for rebate at these levels dominate the one step ahead futures price
b(1 + δ). This is just a restatement of (12).

It follows from the result of He and Xu (2013) referenced earlier that there is an
associated unique discount function and measure change. In fact we have

bw
t = 1 + ρt (γ

∗)
1 + δ

∫ ∞

−∞
x	γ ∗′(F X

t (x)) ft (x)dx .

where

γ ∗ = arg min
0≤γ≤γ

ht (γ ) (1 + ρt (γ ))

1 + δ
.

The risky discount rate is δt (γ
∗) defined analogously with Eq. (13) and the measure

change is
	γ ∗′(F X

t (x))

with respect to ft (x).

6.3 Remark on ask prices of cash flows with a positive bid price

We show in this subsection that cash flows with a positive bid price have ask prices
that are computed at the highest distortion and discounted at the lowest rate. Hence
for such cash flows that include corporate bonds, it is the case that liability valuation
at ask should be evaluated at maximum stress and discounted least. Both operations
lead towards a maximum liability value assessment. Such valuation procedures are
consistent with the principles set out in Heckman (2004) where it is argued that lia-
bilities should be valued as if they would be paid. Here we deduce this property as a
consequence of our bid pricing principles, for all true or nonnegative liabilities. Thus
the current practice of Debt Valuation Adjustments (DVA) that allow entities to credit
themselves with an assessment of their inability to meet their liabilities is thus called
into question.

This feature is a consequence of negative values for h(γ ) at single relevant γ . The
bid price minimizes over γ the expression

v(γ ) = h(γ )(1 + ρ(γ ))
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Now
v′ = h′(1 + ρ(γ )) + hρ′

and if h(γ ) < 0 then as h′ ≤ 0 and ρ′ ≥ 0 we have v′ ≤ 0 and γ must be raised to
the point it reaches γ the maximal stress with the minimal discount of δ(γ ).

For a cash flow X with a positive bid price h X (γ ) > 0 and as the ask price is the
negative of the bid price of −X , the distorted expectation for −X at level γ , h−X (γ )

must be negative as
−h−X (γ ) > h X (γ ) ≥ 0.

6.4 Bid pricing for cash flows distributed as geometric brownian motion

We present in this subsection a stylized construction of bid prices for cash flows
distributed as unit mean log normal variates with different volatilities. The functions
employed to define bid and ask prices and their parameters are modeling choices that
can be varied and finally estimated from market data. One such exercise of calibration
to data is conducted in Madan (2014).

The bid price is given by

b = inf
0≤γ≤γ

∫ ∞
−∞ xd	γ (FX (x))(1 + ρ(γ ))

1 + δ
.

The distribution function is that of a lognormal variate and the distortion employed
will be minmaxvar as introduced earlier. It remains to specify the rebate function.
The rebate function ρ(γ ) is increasing in γ , starts at zero and finishes at say θδ for θ

somewhat below unity for γ = γ . One could write

ρ(γ ) = θδH

(
γ

γ

)

for H a distribution function on the unit interval. We could use a beta cumulative
distribution function where

H(u) = Beta(u, A, B).

In order to have ρ near zero for small γ we want A > 1. At maximum stress the rebate
should speed up towards its maximum and this suggests B < 1. We consider B = 1/A.
We explore the structure for valuing geometric Brownian motion at different levels of
volatility ranging in steps of 2 % from 10 to 80 %, with θ = .9, δ = .05, γ = .75 and
A = 2, 1.5.

We present four graphs in Figs. 1, 2, 3 and 4 for the trade-off between discount
rates and stress levels, the graph of the bid price against the volatility, the graph of
the discount rate against volatility and the graph of the stress level against volatility
for the two different values for the parameter A that controls the speed of the rebate
response to the stress level. The higher volatilities receive higher stress levels, greater
rebates and thus lower discount rates, and lower valuations.
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Fig. 1 Discount rate against the stress level attaining the infimum
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Fig. 2 Bid price against the lognormal cash flow volatility

6.5 The rebate function calibrated to market data

One may observe from Fig. 2 for example that the bid price falls quite rapidly with
volatility for the stylized parameter settings adopted in this graph. This could lead to
spreads of ask relative to bid that are an order of magnitude higher than those observed
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Fig. 3 Discount rate versus the volatility of the cash flow
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Fig. 4 Stress level against the volatility

in markets and one may wish to seek rebate functions that are closer to spreads observed
in markets. With this in mind we constructed first a study of spreads in markets and
in particular their relationship to the underlying volatilities. For this purpose we took
data on the daily ask high and the daily bid low on the top 105 stocks of the S&P
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Fig. 5 Market calibrated rebate response function

500 index and related the ratio of this ask to bid to the underlying volatility. For each
stock and each date between April 3, 2007 and December 31, 2012 we computed the
stock volatility in annualized terms from data on returns for the prior quarter or 63
days. We then regressed the spread on each day on the the prior quarterly volatility and
its square. The data was restricted to prior quarter volatilities below 80 %. The total
number of stockdays in the regression or the sample size was 136, 301. The result of
this regression was

spread = 1.0018 + 0.0877V ol − 0.0245 ∗ vol.∧2.

The R2 was 38.86 % and the t − statistics were 88.50 for volatility and −19.2
for its square. This suggests a positive and concave relationship between spreads and
volatility peaking at a spread of 1.06 for an 80 % volatility.

We then sought parameteric specifications for the rebate function that would gener-
ate comparable spreads for geometric Brownian motion with volatilities in this range.
We reduced the maximum stress from .75 to .15 to get the model spread shown in
Fig. 5. The model spreads are for a holding period of a year. The holding periods for
the market spreads are not clear but are probably considerably less than a year.

6.6 Bid and ask pricing of a simple loan

Consider first a simple loan that pays unity at year end with probability (1 − p) and
defaults with a recovery rate of η = 0.4 otherwise. Let p range from 1 to 500 basis
points and let us price the loan with the acceptability settings at δ = 0.03, γ = 0.15,
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Fig. 7 The interaction between discount rates and stress levels on a loan

θ = 0.9 and A = 1.5. Figure 6 presents a graph of the bid and ask prices as a function
of the default probability. We observe that the ask price is not very sensitive to the
default probability and this reconfirms the remarks made in Eberlein et al. (2012) with
clear implications for DV A computations.

The interaction between discount rates and stress levels applies to bid prices and
Fig. 7 presents a graph of how the discount rate varied with the stress level at which the
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infimum was attained. The higher default probabilities attain their infimum at higher
stress levels with lower bid prices and discount rates reflecting the rebates.

6.7 A dynamic example illustrating rate and stress level interactions

This subsection illustrates the interaction between the stress in the measure change and
the discount rate across the space and time dimensions. The dependence on time will
occur in line with the time inhomogeneity induced by nonstationarities embedded in
financial products by variations in the time to maturity of finite maturity contracts. For
space inhomogeneity we consider a spatially inhomogeneous process for the under-
lying asset price with volatility, skewness and excess kurtosis depending on the level
of the spot price. We model the logarithm of the stock price as variance gamma dis-
tributed with parameters specified as functionally dependent on the level of the stock
price. The current stock price is set at 100 and the parameters σ, ν, θ of the variance
gamma model are 0.2, 1, and −0.3 respectively when the spot price of the stock is
at 100. When the stock price drops to 67 we model an increase in volatility to 0.5
with an increase in skewness to −0.5 and an increase in excess kurtosis to 2. Simi-
larly when the spot price rises to 150 the parameter σ drops to 0.1 while skewness
falls to −0.1 and excess kurtosis drops to 0.5. Between 67 and 150 the parameters
are interpolated from these values using a cubic interpolation and outside this range
they are extrapolated using nearest neighbor. We simulate the stock price in discrete
time at monthly time points as a positive martingale with this specification for the
intermonthly distribution.

For this underlying discrete time stock price motion we consider the pricing of
locally floored and capped cliquets written on the monthly return. Let xt denote the
monthly gross return at the end of month t then the one year locally floored and capped
cliquet with floor f and cap c has the payoff at year end of

C =
12∑

t=1

ct (xt )

=
12∑

t=1

min(max(xt , 1 + f ), 1 + c).

We consider three cliquets with the settings f = −.1, c = .1; f = −.1, c = ∞;
f = −∞, c = .1. For each of these three products we define bid and ask price matrices
of dimension 101 × 12 where each column contains the appropriate price, bid or ask,
for the remaining cash flows not yet resolved, at month end t conditional on the stock
price being at level Si = 50 + 100i , for i = 0, 1, . . . , 100. Given that the ask price
is the negative of the bid price for the negative cash flow, we define just the recursion
just for bid prices.

Given bid prices at time t +1 as specified by column t +1 of the bid price matrix we
construct the bid price at time t in row i as follows. We simulate M = 10000 readings
for the stock price S j , j = 1, . . . , M at time t + 1 from the appropriate variance
gamma distribution and define the gross return as x j = S j/Si . The bid price b j at
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Table 1 Results for FC

Const S t S2 t2 St

Bid 11.51 −0.0329 −0.9174 0.0056 −0.0033 1.4e − 4

(16954) (−25.83) −(11385) (9.14) (−622.21) (2.80)

R2 1.0

Stress 55.62 411.9 −137.6 −182.4 19.68 −19.66

(1.13) (4.47) (−23.09) (−4.11) (51.53) (−5.37)

R2 0.8816

Rate 829.5 −140.5 54.12 54.68 −7.163 8.889

(34.39) (−3.11) (18.50) (2.51) (−38.21) (4.95)

R2 0.7566

time t +1 is obtained by interpolation from column t +1 of the bid price matrix using
nearest neighbor extrapolation. The remaining unresolved cash flow value is given by

z j = ct (x j ) + b j .

These cash flows are sorted in increasing order as z( j) and the bid price at time i
column t is defined by

bit = inf
0≤γ≤γ

1 + ρ(γ )

1 + δ

M∑

j=1

z( j)

(
	γ

(
j

M

)
− 	γ

(
j − 1

M

))

The stress level γ ∗ attaining the infimum is saved in row i and column t of an associated
stress level matrix Git and the associated discount rate defined by δ − ρ(γ ∗) is stored
in row i and column t of an associated discount rate matrix Dit . The bid and ask price
computations produce price matrices Bit , Ait for the remaining unresolved cash flows
along with associated stress level and discount rate matrices Gb

it , Ga
it and Db

it , Da
it.

We set γ = .15, δ = 0.085, and the rebate parameters were θ = 0.9 and A = 1.5
We wish to present the space time dependence of stress levels and discount rates

embedded in the bid and ask prices. As we are valuing nonnegative cash flows by
construction the bid prices are positive and hence as already observed, the ask prices
are associated maximum stress and minimal discount rates. We therefore need only
present the space time dependence embedded in bid prices. We label the three contracts
as FC , F , and C for, respectively, the floored and capped cliquet, just the floored
cliquet, and just the capped cliquet. For each of these products we regress the bid price
Bit , the associated stress level Git , and the discount rate Dit on a constant, the level
of the stock price relative Si/S0, the calendar time t and the three second order terms.
There are then 6 coefficients for each of three regressions for each product. The results
of these regressions are presented in three Tables (1, 2, 3), one for each product, with
three regressions per table.
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Table 2 Results for F

Const S t S2 t2 St

Bid 11.53 −0.0586 −0.9160 0.0141 −0.0034 6.4e − 4

(14876) (−40.31) (−9747) (20.17) (−568.0) (11.21)

R2 1.0

Stress 198.4 99.07 −111.8 −25.35 19.84 −40.45

(4.34) (1.16) (−20.18) (−.6146) (55.90) (−11.89)

R2 0.9096

Rate 812.7 −82.26 47.53 10.19 −7.82 19.87

(32.97) (−1.78) (15.90) (.4582) (−40.86) (10.83)

R2 0.7974

Table 3 Results for C

Const S t S2 t2 St

Bid 11.44 0.0279 −0.9168 −0.0124 −0.0034 0.0017

(7426) (9.67) (−4905) (−8.89) (−285.2) (14.84)

R2 1.0

Stress 177.68 299.95 −17.44 −230.5 17.67 −73.81

(3.92) (3.53) (−3.18) (−5.64) (50.23) (−21.89)

R2 0.9509

Rate 898.2 −237.4 19.95 64.03 −10.51 55.67

(37.79) (−5.33) (6.92) (2.98) (−56.89) (31.47)

R2 0.9333

We observe that the products have stress levels and discount rates significantly
sensitive to the time of valuation and the level of the spot. The bid price itself clearly
depends on the space variable and the valuation time. In general we anticipate that the
bid prices at arbitrary points in space time employ a variety of measure changes with
discount rates that are related to the embedded stress level. We present in Fig. 8 the
range of stress levels and discount rates encountered in the valuation of the product C
across the space and time dimensions. The stress levels rise and the discount rates fall
as we approach maturity and the number of unresolved cash flows diminishes. This
trade-off will vary over space and time if the cone of acceptability has parameters
varying stochastically with time and space itself. Here it was assumed to be stationary.

7 Asset pricing theory for two price financial economies

We now suppose the existence of a true probability measure P under which one
wishes to explain the expected or mean rates of return of market prices. For two price
economies the only observed prices are the bid or lower price and the ask or upper
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Fig. 8 Stress and rate interactions at different time points in the bid price valuation of locally capped cliquet
with no floor

price, there being no two way price for any financial products, claims or loans. Further
suppose that the set of measures Q associated with separating planes are absolutely
continuous with respect to P and there is a valid density or change of probability �t .
One may then write the bid price as

bt = inf
(rt ,�t+1)∈M

1

1 + rt
E P [

�t+1 (xt+1 + bt+1)
]
.

In the absence of intermediate cash flows and using a more conventional notation one
may also write

bt = inf
(rt ,�t+1)∈M

E P
[

1

1 + rt
�t+1bt+1

]
. (15)

Defining the return on bid prices as

Rbt = bt+1 − bt

bt

with
μbt = E P

t [Rbt ] .

On making elementary transformations to Eq. (15) at a choice of (rb
t ,�b

t+1) attain-
ing the infimum we may write in terms of the covariance operator covt that

μbt − rb
t = −covt

(
�b

t+1 − 1, Rbt

)
(16)
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and equivalently for the ask price at the choice (ra
t ,�a

t+1) attaining the supremum we
have

μat − ra
t = −covt

(
�a

t+1 − 1, Rat
)

(17)

where

Rat = at+1 − at

at

μat = E P
t [Rat ] .

If we further suppose that loans are priced in a one price market at the rate rt then we
may write

μbt − rt = − inf
�t+1∈M

covP (� − 1, Rbt ) (18)

μat − rt = − sup
�t+1∈M

covP (� − 1, Rat ) (19)

The Eqs. (16, 17) and (18, 19) are the asset pricing equations for two price economies
depending respectively on whether loans are priced in a two price or one price market.
The resulting asset pricing theory is a nonlinear pricing theory as discount rates and
pricing kernels are not independent of the asset being priced.

An implication of the joint hypothesis of no arbitrage in two price economies,
dynamically consistent markets, loans being priced in a one price market and the
hypothesis that acceptability requires a positive expected return or P ∈ M is the
following. For P ∈ M the identity function � ∈ M and as a consequence the
infimum on the right of (18) is nonpositive. Similar the supremum on the right of (19)
is nonnegative. It follows that

μat ≤ rt ≤ μbt (20)

and in particular that ask price drifts are dominated by bid price drifts. This implication
is a broad consequence of general structure and follows before we model the set M
of test measures defining risk acceptability. It is however a consequence of supposing
the P ∈ M. Such a hypothesis is of interest in its own right and addresses the issue of
whether a cash flow with a negative mean would be market acceptable. If the market is
viewed as an abstract counterparty with no hedging needs of its own then one should
expect that cash flows with negative means would not be acceptable.

8 Testing the hypothesis that ask drifts are dominated by bid drifts

For a first test of the hypothesis that mean ask returns are dominated by mean bid
returns we took data on the top 105 stocks of the S&P 500 index and proxied the
ask by the daily ask high and the bid by the daily bid low from January 3, 2007 to
December 31, 2012. We had a total of 147663 stock days for which we computed the
return on the ask and the return on the bid. We then formed 147663 excess returns for
the bid return less the ask return. A t-test based on the mean and standard deviation
of these returns gave a t-statistic of 2.7238.
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Table 4 VG MLE results
Parameter Estimate t-statistic

μ 4.1333 2.7279

σ 36.71 384.7

ν 0.7237 81.32

θ −15.33 5.484

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-14

-12

-10

-8

-6

-4

-2

excess bid to ask return

lo
g 

de
ns

ity

vg log density fit to excess bid to ask return

observed log frequency

log vg probability

Fig. 9 Graph of observed log frequency against log probability as predicted by the fitted variance gamma
model

The skewness of the excess return was −0.04 while the kurtosis was 4.91. These
observations suggest a nonnormal distribution and so we also implemented a maximum
likelihood estimation of the variance gamma (V G) model for these 147663 excess
returns. The parameters are μ.σ, ν, θ where the variance gamma density is based on
a gamma density for the gamma distributed variable G with mean unity and variance
ν and a standard normal variate Z . The variance gamma variable X is constructed
(Madan and Seneta 1990; Madan et al. 1998) as

X = μ + θ(G − 1) + σ
√

G Z .

The parameter σ captures the base volatility. The kurtosis is captured by the variance
ν of G and skewness is reflected in θ . Table 4 presents the parameter estimates and
t-statistics. The parameters μ, σ and θ are annualized percentages.

Both tests support the hypothesis that P ∈ M. Figure 9 presents in addition a graph
of the observed log frequency and the fitted variance gamma predicted probability.
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9 Factor models for two price economies

For modeling returns on bid and ask prices, proxied for example by the daily bid low
and ask high respectively, we may begin with Eq. (15). In general one may expect
interactions between the set of probability measure and rate pairs that belong to M.
Empirical studies of Chordia et al. (2002), and Chen et al. (2013) suggest the possibility
that the set of measures implicit in market spreads and thereby the market spreads
themselves may interact with rates or the factors driving rates. If higher rates are
associated with higher spreads then the set of measures associated with a rate level
may depend on the rate level. Abstracting from such interactions and allowing for two
prices in the market for loans we have at any time two rates, one for lending to the
market rL < rB the rate for borrowing from the market. In the absence of interactions
we may assume that ask prices are discounted at rL with a view to attaining the
supremum while bid prices are discounted at rB . This leads to the bid and ask price
equations

bt = inf
�∈M

E P
[

1

1 + rB
�bt+1

]
(21)

at = sup
�∈M

E P
[

1

1 + rL
�at+1

]
(22)

As a consequence we obtain

μb − rB = − inf
�∈M

covP (� − 1, Rb) (23)

μa − rL = − sup
�∈M

covP (� − 1, Ra) (24)

Recognizing that the factor models of interest are those driving (1 − �) or more
exactly correlations with (1/�) we may rewrite as

μb − rB = sup
�∈M

covP (1 − �, Rb) (25)

μa − rL = inf
�∈M

covP (1 − �, Ra) (26)

For different candidate choices of factors for the martingale difference 1 − � as
driven by factors F (k) for the kth candidate �k ∈ M let

1 − � = F (k)λ(k)

where F (k) are a set of zero mean drivers of 1 − � and λ(k) is the associated set
of market prices for factor risk. We then obtain the two price economy asset pricing
inequalities

μa − rL ≤ inf
k

β(k)
a λ(k) (27)

μb − rB ≥ sup
k

β
(k)
b λ(k) (28)
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where

β
(k)
b = covP (F (k), Rb)

β(k)
a = covP

(
F (k), Ra

)
.

Asset pricing theory for two price economies leads to asset pricing inequalities. Econo-
metric methodologies for testing inequalities are what is called for in the development
of asset pricing tests for two price economies.

10 Conclusion

When the law of one price prevails, absence of arbitrage is equivalent to the martingale
property for discounted prices under a change of measure. We show here that the
absence of arbitrage in two price economies is related to both prices being nonlinearly
discounted nonlinear martingales. The nonlinearly discounted nonlinear martingales
are constructed as infima or suprema of valuations with respect to probability measures
and discount rates embedded in the set of hyperplanes separating the convex set of
zero cost attainable claims from the set of nonnegative non zero adapted cash flows.
Acceptable risks are defined as those having a positive discounted expectation under
all discount curves and measures embedded in the separating hyperplanes.

Relying on the uniqueness of supporting hyperplanes for convex sets defined by
the level sets of a convex function one may obtain unique discounting functions and
measure changes for pricing each specific product traded in a specific direction. There
are then a multiplicity of discount functions and measure changes that vary with the
product and trade direction but only one when the product and its trade direction
is fixed. A specific valuation model giving favorable discounting treatment to cash
flows that are resilient to stress is formulated and applied to the valuation of particular
products.

It is shown that for economies with the law of one price for pure discount bonds and
in which risk acceptability requires a positive expectation under the physical measure
the expected rate of return on ask prices should be dominated by the expected rate
of return on bid prices. A preliminary investigation proxying the ask by the daily ask
high and the bid by the daily bid low supports this hypothesis. Asset pricing theory
for two price economies is shown to lead to asset pricing inequalities.
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