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Abstract We consider systems of interacting diffusion processes which generalize the
volatility-stabilized market models introduced in Fernholz and Karatzas (Ann Finance
1(2):149–177, 2005). We show how to construct a weak solution of the underlying
system of stochastic differential equations. In particular, we express the solution in
terms of time changed squared-Bessel processes, and discuss sufficient conditions
under which one can show that this solution is unique in distribution (respectively,
does not explode). Sufficient conditions for the existence of a strong solution are also
provided. Moreover, we discuss the significance of these processes in the context of
arbitrage relative to the market portfolio within the framework of Stochastic Portfolio
Theory.

Keywords Stochastic differential equations · Time-change · Stochastic portfolio
theory · Arbitrage

JEL Classification G10

1 Introduction

Let us consider a vector process X (t) = (
X1(t), . . . , Xn(t)

)
, t ∈ [0,∞) with values

in the state space (0,∞)n , that solves the following system of stochastic differential
equations
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d
(
logXi (t)

) = αi

2
(
μi (t)

)2β

[
K

(
X (t)

)]2
dt + σ

(
μi (t)

)β
K

(
X (t)

)
dWi (t),

Xi (0) = xi > 0 , i = 1, . . . , n. (1)

Here αi ≥ 0, σ > 0, β > 0 are given real numbers, μ(·) = (
μ1(·), . . . , μn(·)) is the

vector of market weights

μi (t) = Xi (t)

X1(t) + · · · + Xn(t)
, i = 1, . . . , n, (2)

the given function K (·) : (0,∞)n → (0,∞) is measurable, and W1(·), . . . , Wn(·)
are independent Brownian motions. Sufficient conditions on K (·) so that the system in
(1) has a weak solution which is unique in distribution (and does not explode in finite
time) will be provided in Sect. 3 below. Moreover, sufficient conditions for path-wise
uniqueness and the existence of a strong solution for the system of equations (1) are
stated in Sect. 4. Introducing the function T (·) : (0,∞)n → (0,∞) given by

T (x) :=
( n∑

i=1

xi

)β

K (x) , x ∈ (0,∞)n, (3)

we shall seek a solution to the equivalent system of stochastic differential equations

dXi (t) = αi + σ 2

2

[
Xi (t)

]1−2β
[
T

(
X (t)

)]2
dt + σ

[
Xi (t)

]1−βT
(
X (t)

)
dWi (t)

(4)

for i = 1, . . . , n, with state space (0,∞)n and independent Brownian motions
W1(·), . . . , Wn(·).

Notice two special cases: first, if K (·) ≡ 1 and if we allow β = 0, then the system
of equations (1) corresponds to the setting, where

Xi (t) = xi e(α/2)t+σ Wi (t), i = 1, . . . , n

are independent Geometric Brownian motions; secondly, the case of K (·) ≡ 1 and
β = 1/2 corresponds to the volatility-stabilized market models, introduced and studied
by Fernholz and Karatzas (2005) and studied in further detail by Goia (2009) and Pal
(2011).

If K (·) ≡ 1 (or any other positive real constant) and β > 0 is arbitrary, it is possible
to use the theory of degenerate differential equations developed by Bass and Perkins
(2002) and show that the system of equations (1) in this case has a weak solution,
unique in the sense of the probability distribution.

With more general (possibly discontinuous) drift and volatility coefficients, the
system in (1) fails to satisfy the conditions required in Bass and Perkins (2002).
However, as we will discuss in the following sections (especially in Sects. 2 and 3),
it is still possible to construct a weak solution from first principles, and express it in
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Generalized volatility-stabilized processes 103

terms of time-changed squared-Bessel processes. We shall describe this construction
below and argue that under certain assumptions (see Sect. 3) this weak solution is
unique in the sense of the probability distribution and does not explode in finite time.

Sufficient assumptions on K (·) so that the system in (1) has a weak solution which
is unique in distribution are provided in Sect. 3, and are relatively weak, in the sense
that the coefficients of the system in (1) for these choices of K (·) would not satisfy
the classical sufficient conditions for existence and uniqueness of general systems
of stochastic differential equations stated in most well-known theorems. Namely, the
function K (·) is not even assumed to be continuous; thus, the coefficients of the
systems in (1) need not be continuous, or bounded, and therefore results of many
classical theorems would not apply. For instance, the foundational results of Itô require
Lipschitz continuity of coefficients (see Theorem 2.9 in Karatzas and Shreve 1991),
Skorokhod’s theorem also requires continuous, bounded coefficients (see Theorem
23.5 in Rogers and Williams 2000), so does Stroock and Varadhan (see Theorem 4.22
in Karatzas and Shreve 1991), whereas Krylov (1969) does not require continuity but
does assume bounded coefficients.

The remainder of this paper is organized as follows. In Sect. 2, a weak solution to
the system in (1) is constructed following the steps first of Analysis and consequently
of Synthesis. Under certain conditions on the function K (·), this approach also allows
to argue that the constructed solution is unique in distribution (respectively, does not
explode in finite time). Section 3 discusses these conditions on the function K (·)
that are sufficient for the existence of a weak solution which is unique in distribution
(respectively, for the existence of a non-exploding solution), whereas Sect. 4 focuses
on conditions on the function K (·) that lead to pathwise uniqueness, and hence to the
existence of a strong solution, for the system in (1). Section 5 reviews briefly the basic
concepts of Stochastic Portfolio Theory and discusses arbitrage opportunities in the
context of a financial market, where the underlying model follows the system in (1).

2 Construction of a weak solution

In this section, we shall show that it is possible to construct a weak solution of the
system in (1) using appropriately scaled and time-changed squared-Bessel processes.
We shall also argue that under certain conditions the solution is unique in distribution
and does not explode in finite time. Indeed, whether these conditions are satisfied
depends on the particular choice of the function K (·), which will be discussed in
detail in Sect. 3.

2.1 Analysis

Suppose we have constructed a weak solution of the system (4); in other words, suppose
that on some filtered probability space (Ω,F , P), F = {

F(t)
}

0≤t<∞ we have con-

structed independent Brownian motions
(
W1(·), . . . , Wn(·)) and continuous, strictly

positive and adapted processes
(
X1(·), . . . , Xn(·)), such that the integral version of
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(4) is satisfied, namely, for 0 ≤ t < ∞, i = 1, . . . n,

Xi (t) = xi + αi + σ 2

2

t∫

0

[
T

(
X (s)

)]2

(
Xi (s)

)2β−1 ds + σ

t∫

0

T
(
X (s)

)

(
Xi (s)

)β−1 dWi (s).

Consider the continuous, strictly increasing process A(·) defined as follows

A(t) �
t∫

0

[
T

(
X (s)

)]2
ds, 0 ≤ t < ∞. (5)

This process A(·) is clearly adapted to the filtration FX = {
F X (t)

}
0≤t<∞, where

F X (t) � σ
(
Xi (s) : 0 ≤ s ≤ t, i = 1, . . . , n

)
, 0 ≤ t < ∞, and

F X (∞) � σ
( ⋃

0≤t<∞
F X (t)

)

We have A(0) = 0, let us denote A(∞) := limt→∞ A(t), and assume that

A(t) < ∞ a.s., for t ∈ (0,∞). (6)

Sufficient conditions for (6) to be satisfied are discussed in Sect. 3. Let us also denote
by

Υ (θ) � inf
{
t ≥ 0 : A(t) > θ

}
, 0 ≤ θ < ∞ (7)

the inverse of this strictly increasing process, with the standard convention that inf ∅ =
∞; thus, if A(∞) < ∞, then Υ (θ) = ∞ for all θ ≥ A(∞). We note that each Υ (θ)

is an FX -stopping time, so that

H = {
H(θ)

}
0≤θ<A(∞)

, with H(θ) � F X (
Υ (θ)

)
, 0 ≤ θ < A(∞) (8)

defines another filtration on this space. Note also that, if we define

Ni (θ) � Xi
(
Υ (θ)

)
, 0 ≤ θ < A(∞) , i = 1, . . . , n (9)

N (θ) = (
N1(θ), . . . , Nn(θ)

) = X
(
Υ (θ)

)
, 0 ≤ θ < A(∞)

and

G(θ) �
[
T

(
N (θ)

)]2
, 0 ≤ θ < A(∞),
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we have by virtue of Υ
(

A(t)
) = t , respectively, A

(
Υ (θ)

) = θ ∧ A(∞), the represen-
tation A(·) = ∫ ·

0 G
(

A(t)
)

dt , as well as

Υ (θ) =
θ∫

0

1

A′(Υ (ξ)
) dξ =

θ∫

0

1
[
T

(
X

(
Υ (ξ)

))]2 dξ,

hence we obtain

Υ (θ) =
θ∫

0

1
[
T

(
N (ξ)

)]2 dξ =
θ∫

0

1

G(ξ)
dξ, (10)

for 0 ≤ θ < A(∞). In particular, with FN = {
F N (θ)

}
0≤θ<A(∞)

where

F N (θ) � σ
(
N j (ξ) : 0 ≤ ξ ≤ θ, j = 1, . . . , n

)
, 0 ≤ θ < A(∞),

we see that the processes G(·), Υ (·) are FN -adapted.
Consider now for i = 1, . . . , n and 0 ≤ θ < A(∞) the continuous local martingales

Vi (θ) �
Υ (θ)∫

0

√
A′(t) dWi (t) =

Υ (θ)∫

0

T
(
X (t)

)
dWi (t) (11)

of the filtration H in (8). They satisfy, for 0 ≤ θ < A(∞)

〈Vi , Vj 〉(θ) = δi j

Υ (θ)∫

0

A′(t) dt = δi j A
(
Υ (θ)

) = δi jθ,

therefore V1(·), . . . , Vn(·) are independent stopped Brownian motions by the P. Lévy
theorem (see for instance Theorem 3.16 in Karatzas and Shreve 1991) of the fil-
tration H on the interval θ ∈ [0, A(∞)). Note, that in order to extend the defini-
tion of the processes V1(·), . . . , Vn(·) of (11) on the interval θ ∈ [0,∞) one would
need to introduce a set of n independent Brownian motions that are independent of
(W1(·), . . . , Wn(·)) on a possibly extended probability space. However, this is not
necessary since we can construct the solution only considering θ ∈ [0, A(∞)) below.

In terms of the processes V1(·), . . . , Vn(·) of (11), and in conjunction with the
consequence

Xi (t) = Ni
(

A(t)
)
, 0 ≤ t < ∞, i = 1, . . . , n (12)
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of (9), we may rewrite the system of equations (4) as

dXi (t) = αi + σ 2

2
(
Xi (t)

)2β−1 dA(t) + σ
(
Xi (t)

)β−1 dVi
(

A(t)
)

= αi + σ 2

2
(

Ni
(

A(t)
))2β−1 dA(t) + σ

(
Ni

(
A(t)

))β−1 dVi
(

A(t)
)
,

or equivalently as

Ni
(

A(t)
) = xi + αi + σ 2

2

A(t)∫

0

1
(
Ni (ξ)

)2β−1 dξ + σ

A(t)∫

0

1
(
Ni (ξ)

)β−1 dVi (ξ). (13)

This leads us to the system of stochastic differential equations

dNi (θ) = αi + σ 2

2

(
Ni (θ)

)1−2βdθ + σ
(
Ni (θ)

)1−βdVi (θ), 0 ≤ θ < A(∞)

Ni (0) = xi ∈ (0,∞) , i = 1, . . . , n
(14)

for the processes of (9).
Next, we define

Zi (θ) � 1

(βσ)2

(
Ni (θ)

)2β
, 0 ≤ θ < A(∞), (15)

and note from (14) that this process satisfies the stochastic differential equation

dZi (θ) = mi dθ + 2
√

Zi (θ) dVi (θ) , 0 ≤ θ < A(∞)

Zi (0) = 1

(βσ)2 x2β
i =: zi > 0

(16)

for a squared-Bessel process in “dimension” mi � 2 + αi/(βσ 2) ≥ 2, for each
i = 1, . . . , n.

It is well known that the squared-Bessel SDE of (16) with dimension mi ≥ 2 admits
a pathwise unique, strong and strictly positive solution (see, for instance Revuz and
Yor 1999, p. 439); in other words, we have

F N
i (θ) = F Z

i (θ) = FV
i (θ) , 0 ≤ θ < A(∞) , i = 1, . . . , n (17)

where we have defined the filtrations F N
i (θ) � σ

(
Ni (ξ) : 0 ≤ ξ ≤ θ

)
,F Z

i (θ) �
σ
(
Zi (ξ) : 0 ≤ ξ ≤ θ

)
, and FV

i (θ) � σ
(
Vi (ξ) : 0 ≤ ξ ≤ θ

)
for each i = 1, . . . , n

and every 0 ≤ θ < A(∞). Since the processes V1(·), . . . , Vn(·) are independent, (17)
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implies that the squared-Bessel processes Z1(·), . . . , Zn(·) of (15) are also indepen-
dent; and thus so are the processes N1(·), . . . , Nn(·) of (14).

It follows also from (10), (12) and (15) that the inverse of the time-change A(·) of
(5) is given for 0 ≤ θ < A(∞) as

Υ (θ) = inf
{
t ≥ 0; A(t) > θ

} =
θ∫

0

[
T

(
N (ξ)

)]−2
dξ

=
θ∫

0

[
T

(
(βσ)

1
β
(
Z1(ξ)

) 1
2β , . . . , (βσ )

1
β
(
Zn(ξ)

) 1
2β

)]−2
dξ. (18)

Now it is clear, recalling (12) and (15) once more, that the processes

Xi (t) = Ni
(

A(t)
) = (βσ)

1
β

(
Zi

(
A(t)

)) 1
2β

, 0 ≤ t < ∞, i = 1, . . . , n (19)

are all F Z
(

A(∞)
)
-measurable, since the process A(·) is the inverse of the FZ -adapted

process Υ (·) in (18).
In conclusion, we see that, if (6) is satisfied and if the vector processes X (·) and

W (·) are parts of a weak solution of the equation (1) or (4), then X (.) is necessarily of
the form (19), expressible in terms of some appropriate independent squared-Bessel
processes Z1(.), . . . , Zn(.) as in (16), in dimensions m1, . . . , mn , respectively. In
particular, since the paths of (X1(·), . . . , Xn(·)) are determined uniquely from the paths
of (Z1(·), . . . , Zn(·)), the joint distributions of (X1(·), . . . , Xn(·)) are determined
uniquely. In other words, uniqueness in distribution holds for the system of equations
(1), as well as for the system of equations (4).

Remark For a specific choice of the function K (·), and the corresponding function
T (·) as in (3), one can use the representation in (18) and the properties of squared
Bessel processes to decide whether this choice of K (·) implies limθ→∞ Υ (θ) = ∞
a.s. (thus (6) also holds). An example of a sufficient condition on K (·) for this to be
satisfied is provided in Sect. 3.

2.2 Synthesis

Let us follow now this same thread in reverse, in an effort actually to construct a
weak solution to the system of (4). On a filtered probability space (Ω,F , P), F ={
F(t)

}
0≤t<∞ rich enough to carry n independent standard Brownian motions

V1(·), . . . , Vn(·), we construct the squared-Bessel processes described by stochastic
equations of the form

dZi (θ) = mi dθ + 2
√

Zi (θ) dVi (θ) , Zi (0) = 1

(βσ)2 x2β
i > 0
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with mi = 2 + αi/(βσ 2) ≥ 2 for i = 1, . . . , n as in (16). These equations admit
pathwise unique, strong and strictly positive solutions, so

F Z
i (θ) = FV

i (θ) , 0 ≤ θ < ∞ , i = 1, . . . , n,

where F Z
i (θ) � σ

(
Zi (ξ) : 0 ≤ ξ ≤ θ

)
and FV

i (θ) � σ
(
Vi (ξ) : 0 ≤ ξ ≤ θ

)
. Let us

also denote FZ = {
F Z (θ)

}
0≤θ<∞, where

F Z (θ) � σ
(
Zi (ξ) : 0 ≤ ξ ≤ θ, i = 1, . . . , n

)
, 0 ≤ θ < ∞.

In terms of the squared-Bessel processes Z(·) = (
Z1(·), . . . , Zn(·)) and by analogy

with (18), we define then the continuous, strictly increasing and FZ -adapted time
change

Υ (θ) �
θ∫

0

[
T

(
(βσ)

1
β
(
Z1(ξ)

) 1
2β , . . . , (βσ )

1
β
(
Zn(ξ)

) 1
2β

)]−2
dξ (20)

for 0 ≤ θ < ∞, as in (18). The function T (·) is defined in (3). Obviously we have
Υ (0) = 0 a.s.

Let us now assume that the process Υ (·) satisfies the following property

(N E) lim
θ→∞ Υ (θ) = ∞ a.s. (21)

Next, we define the process A(·) as the inverse of Υ (·), that is

A(t) � inf
{
θ ≥ 0 : Υ (θ) > t

}
, 0 ≤ t < ∞,

and denote A(∞) := limt→∞ A(t) = inf
{
θ ≥ 0 : Υ (θ) = ∞} ∈ (0,∞]. Notice

that the process A(·) is strictly increasing, continuous and satisfies A(0) = 0 and
A(t) < ∞, a.s for all t ∈ (0,∞). Note that, in fact, we have A(t) < A(∞), a.s for
all t ∈ (0,∞).

Moreover, each A(t) is a stopping time of the filtration FZ , therefore

G = {
G(t)

}
0≤t<∞ , where G(t) � F Z (

A(t)
)
, 0 ≤ t < ∞ (22)

is also a filtration. The processes

Ni (θ) � (βσ)
1
β
(
Zi (θ)

) 1
2β , 0 ≤ θ < A(∞) (23)

Xi (t) � Ni
(

A(t)
)
, 0 ≤ t < ∞ (24)

defined for i = 1, . . . , n according to (15) and (12), are respectively FZ -adapted and
G-adapted. Furthermore, X (·) = (

X1(·), . . . , Xn(·)) is F Z (∞)-measurable since the
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process A(·) is the inverse of the FZ -adapted process Υ (·). This means that the paths
of X (·) are determined uniquely from those of Z(·).

Note furthermore, that we have

A(t) =
t∫

0

1

Υ ′(A(s)
) ds =

t∫

0

[
T

(
N

(
A(s)

))]2
ds =

t∫

0

[
T

(
X (s)

)]2
ds (25)

in accordance with (5); this means that the process A(·) is adapted to the filtration
FX = {

F X (t)
}

0≤t<∞, where

F X (t) � σ
(
Xi (s) : 0 ≤ s ≤ t, i = 1, . . . , n

)
, 0 ≤ t < ∞.

The processes Ni (·) of (23) are themselves independent one-dimensional diffusions
with state-space I = (0,∞) and dynamics

dNi (θ) = αi + σ 2

2

(
Ni (θ)

)1−2β dθ + σ
(
Ni (θ)

)1−β dVi (θ) , 0 ≤ θ < A(∞)

Ni (0) = xi > 0 , i = 1, . . . , n

as in (14). Hence, for the processes Xi (·) defined in (24) we obtain the following
equations

Xi (t) = Ni
(

A(t)
)

(26)

= xi + αi + σ 2

2

t∫

0

(
Ni

(
A(s)

))1−2β

A′(s)ds + σ

t∫

0

(
Ni (θ)

)1−βdVi
(

A(s)
)

Consider now the continuous local martingales

Wi (t) �
t∫

0

dVi
(

A(s)
)

√
A′(s)

=
t∫

0

dVi
(

A(s)
)

T
(

N
(

A(s)
)) =

A(t)∫

0

dVi (ξ)

T
(
N (ξ)

) , 0 ≤ t < ∞

of the filtration G defined in (22), for i = 1, . . . , n. Their (cross-)variations are given
as

〈Wi , W j 〉(t) = δi j

A(t)∫

0

1
[
T

(
N (ξ)

)]2 dξ = δi j

A(t)∫

0

Υ ′(ξ) dξ = δi j t , t ≥ 0,

thus W1(·), . . . , Wn(·) are independent Brownian motions. Moreover, in terms of these
processes and using the representation in (25), we can write the equations in (26) as
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Xi (t) = xi + αi + σ 2

2

t∫

0

[
T

(
N

(
A(s)

))]2

(
Ni

(
A(s)

))2β−1 ds + σ

t∫

0

T
(

N
(

A(s)
))

(
Ni

(
A(s)

))β−1 dWi (s)

= xi + αi + σ 2

2

t∫

0

[
T

(
X (s)

)]2

(
Xi (s)

)2β−1 ds + σ

t∫

0

T
(
X (s)

)

(
Xi (s)

)β−1 dWi (s),

which is precisely (4). Note also that each

Wi (t) =
t∫

0

[(
Xi (s)

)β−1

σT
(
X (s)

) dXi (s) − αi + σ 2

2

T
(
X (s)

)

(
Xi (s)

)β
ds

]

is F X (t)-measurable, so the independent Brownian motions W1(·), . . . , Wn(·) are
FX -adapted.

In other words,
(
Ω,F , P), FX , (X (·), W (·)) constitutes a weak solution of the

system of equations (4), which is equivalent to the system in (1). According to our
discussion in the Analysis section, uniqueness in distribution holds for this system
assuming that (6) is satisfied, i.e. the property (NE) stated in (21) is satisfied. Let us
summarize the results of this section in the following proposition.

Proposition Assume K (·) : (0,∞)n → (0,∞) is a measurable function chosen so
that the non-explosiveness property (NE) stated in (21) is satisfied. Then there exists
a unique in distribution weak solution of the system of equations (1) which does not
explode in finite time.

Remark The non-explosiveness condition (N E) stated in (21) is equivalent to the
condition (6), which ensures that the process A(·) does not explode in finite time, and
is sufficient to argue that there exists a weak solution which is unique in distribution
(respectively, does not explode). We will discuss sufficient conditions for this in more
detail in the following section.

Remark It is possible to extend the results of this section also for path-dependent
function K (·); one would need to introduce slightly more complicated notation, but
the whole construction would still hold and the solution will be unique in distribution,
once the appropriate version of condition (NE) is satisfied.

3 Sufficient conditions on K (·) to avoid explosions

In the following proposition, we state conditions on K (·) that are sufficient so that
the process A(·) does not explode in finite time. In other words, the stated conditions
imply that the time-change process Υ (·) defined in (20), with T (·) defined in (3),
satisfies property (NE) in (21), that is Υ (θ) → ∞ a.s. as θ → ∞. The main tool in
proving the statement below is finding bounds in terms of integral functionals of one-
dimensional squared-Bessel processes (respectively, functionals of one-dimensional
Bessel processes), and applying results known for these functionals.
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Proposition Assume K (·) : (0,∞)n → (0,∞) is a measurable function and
there exists a measurable function f : (0,∞) → (0,∞) such that for all x =
(x1, . . . , xn) ∈ (0,∞)n

K (x) ≤ f (||x ||2β), and

∞∫

a

[u f 2(u1/β)]−1 du = ∞, (27)

where a := ∑n
i=1 Zi (0) = 1/(βσ)2 ∑n

i=1 x2β
i > 0, and we denoted ||x ||2β :=

(
x2β

1 + · · · + x2β
n

)1/2β
for any β > 0. Then the time-change process Υ (·) defined in

(20) satisfies the non-explosiveness property (NE) in (21).

Proof Recalling the definition of the process Υ (·) in (20), with T (·) defined in (3),
we have

Υ (θ) =
θ∫

0

[
T

(
(βσ)

1
β
(
Z1(ξ)

) 1
2β , . . . , (βσ )

1
β
(
Zn(ξ)

) 1
2β

)]−2
dξ

= Cβ,σ,n

θ∫

0

[
K

((
Z1(ξ)

) 1
2β , . . . ,

(
Zn(ξ)

) 1
2β

)]−2[ n∑

j=1

(
Z j (ξ)

) 1
2β

]−2β

dξ

where Cβ,σ,n is a scaling constant depending only on β, σ , and n. Noticing the fol-
lowing inequalities

[ n∑

j=1

(
Z j (ξ)

) 1
2β

]−2β ≥
(

n max
1≤ j≤n

{(
Z j (ξ)

) 1
2β

})−2β

= n−2β
(

max
1≤ j≤n

{
Z j (ξ)

})−1 ≥ n−2β
( n∑

j=1

Z j (ξ)
)−1

,

we obtain from (27)

Υ (θ)

Cβ,σ,n
≥

θ∫

0

[
f
(∣∣∣∣((Z1(ξ)

) 1
2β , . . . ,

(
Zn(ξ)

) 1
2β

)∣∣∣∣
2β

)]−2[ n∑

j=1

(
Z j (ξ)

) 1
2β

]−2β

dξ

≥ n−2β

θ∫

0

[
f
(∣∣∣∣(Z1(ξ), . . . ,

(
Zn(ξ)

)∣∣∣∣
1

2β

1

)]−2( n∑

j=1

Z j (ξ)
)−1

dξ

= n−2β

θ∫

0

[
R(ξ) f

((
R(ξ)

) 1
β

)]−2
dξ.
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where we have noted that R(·) := √
Z(·) = √

Z1(·) + · · · + Zn(·) is a Bessel process
in dimension m = m1 + · · · + mn > 2 starting from R(0) = √

a. The claim follows
from Theorem 2 in Engelbert and Schmidt (1987), along with the assumption in (27).

Remark It is easy to see that if K (·) is bounded from above, i.e. if there exists a real
constant Kmax > 0 such that K (x) ≤ Kmax for all x ∈ (0,∞)n , then the condition
(27) is trivially satisfied. Therefore, if K (·) is bounded, the system of equations in (1)
has a weak solution which is unique in the sense of the probability distribution. Notice
that K (·) need not be continuous.

4 Pathwise uniqueness and strength

After constructing a weak solution, a natural question arises: is the constructed solution
strong? In other words, one would like to know if the processes X1(·), . . . , Xn(·) are
adapted to the filtration FW = {

FW (t)
}

0≤t<∞ of the driving Brownian motion W (·)
in (1), where we have denoted

FW (t) � σ
(
Wi (s) : 0 ≤ s ≤ t, i = 1, . . . , n

)
, 0 ≤ t < ∞.

In this section, we argue that under certain additional conditions, pathwise uniqueness
holds for the system of equations (1) in the state space (0,∞)n . As a consequence,
we obtain strength thanks to the results of Yamada and Watanabe (1971).

We will use the following notation for the (Euclidean) L2-norm || · ||2, resp. the
L1-norm || · ||1,

||u||1 �
n∑

ν=1

|uν | , ||u||2 �
( n∑

ν=1

u2
ν

)1/2
, u ∈ R

n .

Assume that K (·) is continuous and bounded from above, i.e., assume there exists
a constant Kmax > 0 such that

K (x) ≤ Kmax , ∀ x ∈ (0,∞)n . (28)

Then the system of stochastic differential equations in (1) has a non-exploding weak
solution which is unique in distribution (according to the results of the previous sec-
tion), and is equivalent to the system

dXi (t) = αi + σ 2

2

[
Xi (t)

]1−2β
( n∑

ν=1

Xν(t)
)2β [

K
(
X (t)

)]2
dt

+ σ
[
Xi (t)

]1−β
( n∑

ν=1

Xν(t)
)β

K
(
X (t)

)
dWi (t), (29)
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for i = 1, . . . , n, with the state process X (·) = (
X1(·), . . . , Xn(·)) taking values in

the strictly positive orthant (0,∞)n . If we define

Yi (t) � logXi (t) , 0 ≤ t < ∞, i = 1, . . . , n, (30)

we can rewrite the system of stochastic differential equations in (29) as

dYi (t) = αi

2
e−2βYi (t)

( n∑

ν=1

eYν (t)
)2β [

K
(
ξ
(
Y (t)

))]2
dt

+ σ e−βYi (t)
( n∑

ν=1

eYν (t)
)β

K
(
ξ
(
Y (t)

))
dWi (t), (31)

for i = 1, . . . , n, where we have defined the continuously differentiable (i.e. C∞)
function ξ(·) : R

n �→ (0,∞)n as ξ(y) := (ey1 , . . . , eyn ), for all y ∈ R
n, and the

state process Y (·) = (
Y1(·), . . . , Yn(·)) takes values in R

n .
In addition to the assumption that K (·) is bounded, assume that K (·) is differentiable

in the strictly positive orthant (0,∞)n , and all of its partial derivatives are locally
bounded. Then, for any positive integer k there exists a constant Dk such that

||∇K
(
ξ(y)

)||1 ≤ Dk, ∀ y ∈ Bk, (32)

where we denoted

Bk := {
u = (u1, . . . , un) ∈ R

n | ||u||1 ≤ k
}
, k ≥ 1. (33)

We claim that under assumptions (28) and (32), namely if the function K (·) is bounded
and has locally bounded partial derivatives, pathwise uniqueness holds for the system
of equations (31) in the state space R

n , thus also for (29) in the strictly positive orthant
(0,∞)n thanks to the definition in (30).

We shall show that the coefficients in (31) are locally Lipschitz in the state space.
First, fix an arbitrary j ∈ {1, . . . , n} and p > 0, and consider a function g p

j (·) : R
n �→

(0,∞) defined as follows

g p
j (y) � e−py j

( n∑

ν=1

eyν

)p
, y ∈ R

n . (34)

It is easy to see that all partial derivatives of the function g p
j (·) are bounded on compact

sets in R
n . Therefore, for any positive integer k and u, v ∈ Bk , where Bk is defined as

in (33), there exist a constant C p,k (which depends only on k and p) such that

∣∣g p
j (u) − g p

j (v)
∣∣ ≤ C p,k ||u − v||1 , ∀ u, v ∈ Bk . (35)

The constant C p,k can be chosen as C p,k := pepk
[
n|p−1|ek(|p−1|+1) + (nk)p

]
.
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The drift vector b(·) = {
bi (·)

}
1≤i≤n and the dispersion matrix σ(·) =

{
σi j (·)

}
1≤i, j≤n in (31) are given by

bi (y) = αi

2
g2β

i (y)
[

K
(
ξ(y)

)]2
, si j (y) = σ gβ

i (y) K
(
ξ(y)

)
δi j , (36)

respectively, for y ∈ R
n, 1 ≤ i, j ≤ n, recalling the definition in (34). Thanks to

the bounds in (32) and (35), and since for any positive integer k and p > 0 we have∣
∣g p

j (y)
∣
∣ ≤ epk(nek)p for y ∈ Bk , all the partial derivatives of the functions in (36)

are locally bounded, in particular for any 1 ≤ i, j ≤ n, any positive integer k and any
y ∈ Bk , we have

∣
∣∣∣

∂

∂y j
bi (y)

∣
∣∣∣ ≤ αi

2

[
C2β,k · K 2

max + e2β(nek)2β · 2Kmax · Dk · ek
]
,

∣∣
∣∣

∂

∂y j
sii (y)

∣∣
∣∣ ≤ σ

[
Cβ,k · Kmax + eβ(nek)β · Dk · ek

]
.

Therefore, there exists a constant K̃k,α,β,σ,n which depends only on the values of
k, αmax, β, σ and n, such that for any positive integer k and any u, v ∈ Bk

||b(u) − b(v)||2 + ||s(u) − s(v)||2 ≤ K̃k,α,β,σ,n ||u − v||2.

In other words, the coefficients in (31) are locally Lipschitz in the state space R
n .

Hence, pathwise uniqueness holds for (31), thanks to the Itô theory (see for instance
Theorem 5.2.5 in Karatzas and Shreve 1991), which, in conjunction with the existence
of a weak solution, implies strength (thanks to the results of Yamada and Watanabe
1971). In conclusion, the system in (1) admits a pathwise unique strong solution under
the above stated assumptions on K (·). Let us summarize this result in the following
proposition.

Proposition Assume K (·) : (0,∞)n → (0,∞) is a continuous and differentiable
function such that (28) and (32) are satisfied (namely, it is bounded and has locally
bounded partial derivatives). Then the system in (1) admits a pathwise unique strong
solution.

Remark The assumptions on K (·) can be further relaxed. In particular, if K (·) is
bounded and locally Lipschitz, then again the coefficients in (31) are locally Lipschitz
in the state space R

n , and pathwise uniqueness holds for (31), respectively (1).

5 Applications to stochastic portfolio theory

Let us start this section with a brief overview of the basic concepts of stochastic
portfolio theory, introduce some definitions and statements that we will use in the
following subsection. For more details we refer the reader to the monograph Fernholz
(2002) and to the survey paper Fernholz and Karatzas (2009), as well as the references
mentioned there.
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5.1 Basic concepts of stochastic portfolio theory

Consider a model M for a financial market consisting of n stocks with capitalizations
X1(·) . . . , Xn(·)

dXi (t) = Xi (t)
(

bi (t) dt +
d∑

ν=1

siν(t) dWν(t)
)
,

Xi (0) = xi > 0, i = 1, . . . , n,

(37)

driven by the d-dimensional Brownian motion W (·) = (
W1(·), . . . , Wd(·)), with

d ≥ n ≥ 2, on a complete probability space (Ω,F , P) equipped with a filtration
F = {

F(t)
}

0≤t<∞ with F(0) = {∅,Ω}. We shall assume that the vector-valued

process X (·) = (
X1(·), . . . , Xn(·))′ of capitalizations, the vector-valued process

b(·) = (
b1(·), . . . , bn(·))′ of rates of return, and the (n × d)-matrix-valued process

s(·) = (
siν

)
1≤i≤n,1≤ν≤d of stock-price volatilities are all F-progressively measurable,

where the filtration F (which represents the “flow of information” in the market), is
part of a weak solution to the system of stochastic differential equations in (37) and sat-
isfies the usual conditions of right-continuity and augmentation by P-negligible sets.
Note, that it does not necessarily have to be the filtration generated by the Brownian
motion itself.

Elementary stochastic calculus allows us to rewrite the system in (37) in the equiv-
alent form

d
(
logXi (t)

) = γi (t) dt +
d∑

ν=1

siν(t) dWν(t),

Xi (0) = xi > 0, i = 1, . . . , n,

(38)

where we have introduced

γi (t) := bi (t) − 1

2
aii (t), ai j (t) :=

d∑

ν=1

siν(t)s jν(t) = (
s(t)s′(t)

)
i j . (39)

Here a(·) = (
ai j (·)

)
1≤i, j≤n is the nonnegative definite matrix-valued covariance

process of the stocks in the market, and γi (·) will further be referred to as the growth
rate of the i th stock.

Next, we define a long-only portfolio rule π(·) = (
π1(·), . . . , πn(·)), that is, an

F-progressively measurable process, with values in the simplex

�n = {
(x1, . . . , xn) ∈ R

n|x1 ≥ 0, . . . , xn ≥ 0 and x1 + · · · + xn = 1
}
. (40)

The quantity πi (t) is interpreted as the proportion of wealth invested in the i th stock
at time t .

The wealth process V ω,π (t), which corresponds to a portfolio rule π(·) and some
initial capital ω > 0, satisfies the stochastic differential equation
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dV ω,π (t)

V ω,π (t)
=

n∑

i

πi (t)
dXi (t)

Xi (t)
= bπ (t) dt +

d∑

ν=1

sπν(t) dWν(t), V ω,π (0) = ω,

(41)

where

bπ (t) :=
n∑

i

πi (t)bi (t), sπν(t) :=
n∑

i

πi (t)siν(t), for ν = 1, . . . , d, (42)

are, respectively, the rate of return and the volatility coefficients associated with the
portfolio π(·).

Using elementary stochastic calculus as in (38), we can write the dynamics for the
wealth process in the equivalent form

d
(
logV ω,π (t)

) = γπ(t) dt +
d∑

ν=1

sπν(t) dWν(t), V ω,π (0) = ω, (43)

where

γπ(t) :=
n∑

i=1

πi (t)γi (t) + γ ∗
π (t)

is the growth rate of the portfolio rule π(·), and

γ ∗
π (t) = 1

2

( n∑

i=1

πi (t)aii (t) −
n∑

i=1

n∑

j=1

πi (t)ai jπ j (t)
)

(44)

is the excess growth rate of the portfolio π(·). The excess growth rate is always
nonnegative for any long-only portfolio (see Lemma 3.3 in Fernholz and Karatzas
2009, and the alternative expression (45) below). Under certain conditions on the
market (see Remark 3.2 in Fernholz and Karatzas 2009), the excess growth rate is
strictly positive for portfolios that do not concentrate their holdings in just one stock
(that is if πi (t) > 0 holds a.s. for all i = 1, . . . , n and all t ≥ 0).

Alternatively, the excess growth rate (44) can be written as

γ ∗
π (t) = 1

2

n∑

i=1

πi (t)τ
π
i i (t), (45)

where we have denoted by τπ
i j (·) the individual stocks’ covariance rates relative to the

portfolio π(·),

τπ
i j (t) :=

n∑

k=1

(
sik(t) − sπk(t)

)(
s jk(t) − sπk(t)

)
, 1 ≤ i, j ≤ n. (46)
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It is of key interest in mathematical finance, whether it is possible to outperform a
given strategy. The assumption that such outperformance is not possible is common in
classical mathematical finance, and one is usually interested in finding what conditions
on the underlying model would prevent such “arbitrage”. Stochastic portfolio theory,
on the contrary, does not rule out arbitrage, and studies the market characteristics
that allow for the possibility of outperformance. We say that a portfolio rule π(·) is
an arbitrage opportunity relative to (equivalently, outperforms) the portfolio rule ρ(·)
over the time horizon [0, T ], with T > 0 a given real number, if

P
[
V ω,π (T ) ≥ V ω,ρ(T )

] = 1 and P
[
V ω,π (T ) > V ω,ρ(T )

]
> 0. (47)

Moreover, if we have

P
[
V ω,π (T ) > V ω,ρ(T )

] = 1, (48)

we say that π(·) is a strong arbitrage opportunity relative to ρ(·) (equivalently, strongly
outperforms ρ(·)). The notion of relative arbitrage was introduced by Fernholz (2002).
Under certain conditions on the market model M, Fernholz and Karatzas (2009) show
that the existence of relative arbitrage implies the absence of equivalent martingale
measure in the market model M. In the following, we shall use the notation V π (t) :=
V 1,π (t) whenever we start with initial capital ω = 1.

An important long-only portfolio (and also a natural choice for a reference portfolio)
is the market portfolio, which invests in all stocks in proportion to their relative weights

μi (t) := Xi (t)

X1(t) + · · · + Xn(t)
, i = 1, . . . n. (49)

It is obvious from (41) that

dV ω,μ(t)

V ω,μ(t)
= d

(
X1(t) + · · · + Xn(t)

)

X1(t) + · · · + Xn(t)
,

and hence

V ω,μ(t) = ω

x

(
X1(t) + · · · + Xn(t)

)
, 0 ≤ t < ∞

where x = X1(0) + · · · + Xn(0). Therefore, holding the market portfolio amounts to
owning the entire market in proportion to the initial capital.

The excess growth rate

γ ∗
μ(·) = 1

2

n∑

i=1

μi (·)τμ
i i (·)

of the market portfolio measures the average relative variance rate of stocks in the
market at any given time, as it is the average of relative market capitalization of
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the individual stocks’ relative variance rates τ
μ
i i (·) with respect to the market. If it is

bounded away from zero over a period of time, i.e., if there exists a constant ζ ∈ (0,∞)

such that

γ ∗
μ(t) ≥ ζ, ∀ 0 ≤ t ≤ T

holds with probability one, then certain types of portfolios outperform the market
portfolio over the fixed time horizon [0, T ], with T ∈ (0,∞) a given real number,
as was shown in Proposition 3.1 in Fernholz and Karatzas (2005). Another way to
construct arbitrage opportunities is using the functionally generated portfolios (see
Chapter III in Fernholz and Karatzas 2009). In the next subsection, we will provide
examples of arbitrage opportunities in a particular financial market, the Generalized
Volatility-stabilized market (GVSM) which assumes the dynamics in (1) for stocks’
capitalizations.

5.2 Arbitrage opportunities in generalized volatility-stabilized markets

As we have already mentioned, the special case of the system in (1) with β = 1/2
and K (·) ≡ 1 corresponds to the volatility-stabilized market models which were
introduced in Fernholz and Karatzas (2005). These markets exhibit one of the features
observed in the real-life equity markets, in particular, the fact that small stocks tend to
have bigger growth rates and are more volatile than the largest stocks in the markets.
Fernholz and Karatzas (2005) discuss arbitrage opportunities that are present in these
markets which we will now extend to the more general system in (1).

Let us first consider the case of the system in (1) with K (·) ≡ 1 but β > 0, not
necessarily 1/2, that is the following system of stochastic differential equations

d
(
logXi (t)

) = αi

2
(
μi (t)

)2β
dt + σ

(
μi (t)

)β
dWi (t) , i = 1, . . . , n (50)

or equivalently

dXi (t) = αi + σ 2

2

[
Xi (t)

]1−2β[
S(t)

]2β dt + σ
[
Xi (t)

]1−β[
S(t)

]β dWi (t) ,

where αi ≥ 0, σ > 0, β > 0 are given constants, μ(·) = (
μ1(·), . . . , μn(·)) is the

vector of market weights

μi (t) = Xi (t)

S(t)
= Xi (t)

X1(t) + · · · + Xn(t)
, i = 1, . . . , n

and
(
W1(·), . . . , Wn(·)) is n-dimensional Brownian motion.
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5.2.1 Excess growth rate of the market portfolio and the diversity weighted portfolio

Assuming that the dynamics of the processes Xi (·) are described by the system of
equations (50), the corresponding growth rates and volatilities are given by

γi (t) = αi

2

(
μi (t)

)−2β
, siν(t) = σ

(
μi (t)

)−β
δiν

respectively. The covariance matrix is given by

ai j (t) = (
s(t)sT (t)

)
i j = σ 2(μi (t)

)−2β
δi j . (51)

Therefore, we have for this model

aμμ(t) := μ(t)a(t)μT (t) = σ 2
n∑

ν=1

(
μν(t)

)2−2β
,

as well as

γ ∗
μ(t) = 1

2

( n∑

i=1

μi (t)aii (t) − aμμ(t)
)

= σ 2

2

( n∑

i=1

(
μi (t)

)1−2β −
n∑

i=1

(
μi (t)

)2−2β
)
.

Hence, the excess growth rate of the market portfolio in the model (50) is given by

γ ∗
μ(t) = σ 2

2

n∑

i=1

(
μi (t)

)1−2β(
1 − μi (t)

)

Let us show that the excess growth rate γ ∗
μ(t) of the market portfolio is bounded

away from zero, if 1/2 ≤ β < ∞; indeed, since all market weights are smaller than
1, we have then

γ ∗
μ(t) ≥ σ 2

2

n∑

i=1

1
(
1 − μi (t)

) = σ 2

2
(n − 1) > 0 (52)

for n ≥ 2. Therefore, in this case, the condition (3.2) in Proposition 3.1 in Fernholz and
Karatzas (2005) is satisfied with Γ (t) = tσ 2 (n − 1)/2, and the model of (50) admits
relative arbitrage opportunities, namely there exist a sufficiently large real number
c > 0 such that the portfolio rule

πi (t) := cμi (t) − μi (t)logμi (t)

c − ∑n
j=1 μ j (t)logμ j (t)

, j = 1, . . . n

outperforms the market portfolio at least on the time-horizons [0, T ] with T >

2log(n)/
[
σ 2(n − 1)

]
(for the proof we refer the reader to Proposition 3.1 in Fern-

holz and Karatzas 2005).
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If β ∈ (0, 1/2), then γ ∗
μ(t) can get arbitrarily close to zero whenever μ(1) =

maxi=1,...,n{μi } approaches one. Hence, condition (3.2) in Fernholz and Karatzas
(2005) is not satisfied in this case.

However, one can construct a simple example of an arbitrage relative to the market
portfolio that works for any value of β > 0, as follows. With 0 < p < 1 and p ≤ 2β,
let us consider the so-called diversity-weighted portfolio

μ
(p)
i (t) :=

(
μi (t)

)p

∑n
j=1

(
μ j (t)

)p , i = 1, . . . n. (53)

In model (50) we have ai j (t) = σ 2
(
μi (t)

)−2β
δi j for the elements of the vari-

ance/covariance matrix as in (51), so the excess growth rate of the portfolio μ(p)(·) is
given by

2γ ∗
μ(p) (t) =

n∑

i=1

μ
(p)
i (t)

(
1 − μ

(p)
i (t)

)
aii (t)

=
n∑

i=1

(
μi (t)

)p

∑n
j=1

(
μ j (t)

)p

(
1 − μ

(p)
i (t)

)
σ 2(μi (t)

)−2β

≥ σ 2
n∑

i=1

(
μi (t)

)p

∑n
j=1

(
μ j (t)

)p

(
1 − μ

(p)
i (t)

)(
μi (t)

)−p

= σ 2

∑n
i=1

(
1 − μ

(p)
i (t)

)

∑n
j=1

(
μ j (t)

)p = σ 2 n − 1
∑n

i=1

(
μi (t)

)p

where the inequality is only valid if p ≤ 2β. Since the function �n � π �→ ∑n
i=1(πi )

p

attains its maximum, namely n1−p, over the simplex �n defined in (40), at the point
(1/n, . . . , 1/n), we further have

∑n
i=1

(
μi (t)

)p ≤ n1−p, and therefore

γ ∗
μ(p) (t) ≥ σ 2

2

n − 1
∑n

i=1

(
μi (t)

)p ≥ σ 2

2

n − 1

n1−p
. (54)

If we introduce D(π) :=
( ∑n

i=1 π
p

i

) 1
p
, π ∈ �n , we can derive the following

expression

log

(
V μ(p)

(T )

V μ(T )

)

= log

(
D

(
μ(T )

)

D
(
μ(0)

)

)

+ (1 − p)

T∫

0

γ ∗
μ(p) (t) dt , a.s. (55)

for the wealth process V μ(p)
(·) of the diversity-weighted portfolio μ

(p)
i (·) in (53) (see

(7.5) in Fernholz and Karatzas 2009). Notice that there is no stochastic integral term
on the right hand side of the expression (55); this will allow us to make pathwise
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comparisons as follows: Since the function D(π) takes values in [1, n(1−p)/p] for all
π ∈ �n , and thanks to the lower bound on γ ∗

μ(p) (t) in (54) we obtain

log

(
V μ(p)

(T )

V μ(T )

)

= log

(
D

(
μ(T )

)

D
(
μ(0)

)

)

+ (1 − p)

T∫

0

γ ∗
μ(p) (t) dt

≥ (1 − p)

[
(n − 1)T σ 2

2n1−p
− log(n)

p

]
> 0 , a.s. (56)

provided that

T >
2

pσ 2 · log(n)

n p(1 − 1/n)
=: T ∗(β, σ, n).

In other words, the diversity-weighted portfolio of (53) outperforms the market
portfolio over sufficiently large time horizons [0, T ], namely with T > T ∗(β, σ, n).
Notice, that the threshold T ∗(β, σ, n) depends on the choice of parameter β through the
requirement p ≤ 2β. If the parameter β → 0, we also need to choose p ≤ 2β → 0,
and then the threshold T ∗(β, σ, n) → ∞ (which means one needs to wait longer for
the arbitrage). On the other hand, if either the volatility parameter σ or the number of
stocks n increases to infinity, then T ∗(β, σ, n) → 0.

5.2.2 Generalized excess growth rate of the market portfolio

We can construct a similar example of an arbitrage that is valid for any value of β > 0
using the notion of generalized excess growth rate and Proposition 3.8 in Fernholz
and Karatzas (2005).

Notice that in model (50) we have sμν(t) = ∑n
i=1 μi (t)siν(t) = σ

(
μν(t)

)1−β for
the quantities of (42), and

τ
μ
i i (t) =

n∑

ν=1

(
siν(t) − sμν(t)

)2 =
∑

ν �=i

(
sμν(t)

)2 + (
sii (t) − sμi (t)

)2

= σ 2
∑

ν �=i

(
μν(t)

)2(1−β) + σ 2(μi (t)
)−2β(

1 − μi (t)
)2

= σ 2
n∑

ν=1

(
μν(t)

)2(1−β) + σ 2(μi (t)
)−2β(

1 − 2μi (t)
)

for those of (46). Therefore, the generalized excess growth rate

γ ∗
μ,p(t) := 1

2

n∑

i=1

(
μi (t)

)p
τ

μ
i i (t), 0 < p < 1
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for this market, introduced in (3.24) of Fernholz and Karatzas (2005), now takes the
form

2

σ 2 γ ∗
μ,p(t) =

n∑

i=1

(
μi (t)

)p ·
n∑

ν=1

(
μν(t)

)2(1−β) +
n∑

i=1

(
μi (t)

)p−2β(
1 − 2μi (t)

)
.

(57)

Assume now that we choose p ∈ (0, 1) so that 0 < p ≤ 2β. Then we also have
2(1 − β) ≤ 2 − p, and since obviously μi (t) < 1, we also have

(
μi (t)

)2(1−β) ≥
(
μi (t)

)2−p for all i = 1, . . . , n and all t . Thus, for the first term on the right-hand side
in (57) we have

n∑

i=1

(
μi (t)

)p ·
n∑

ν=1

(
μν(t)

)2(1−β) ≥
n∑

i=1

(
μi (t)

)p ·
n∑

i=1

(
μi (t)

)2−p ≥ 1, (58)

where the last inequality follows from Cauchy–Schwarz, namely

1 =
n∑

i=1

(
μi (t)

) p
2 · (

μi (t)
)1− p

2 ≤
(

n∑

i=1

(
μi (t)

)p ·
n∑

i=1

(
μi (t)

)2−p

) 1
2

.

For the second term on the right-hand side in (57) and for every fixed t , we need to
consider two cases:

First, if all market weights are smaller than 1/2, i.e., 0 < μi (t) ≤ 1/2 for i =
1, . . . , n, then we have

(
μi (t)

)p−2β ≥ (1/2)p−2β = 22β−p ≥ 1, therefore also

n∑

i=1

(
μi (t)

)p−2β(
1 − 2μi (t)

) ≥
n∑

i=1

22β−p(1 − 2μi (t)
) = 22β−p(n − 2) ≥ n − 2.

Secondly, if one of the market weights is bigger than 1/2, i.e., there exist an integer
1 ≤ j ≤ n such that 1/2 < μ j (t) ≤ 1, the remaining market weights must then
all be strictly less than 1/2, i.e., 0 < μi (t) < 1/2 for i �= j . In this case we have
1 ≤ (

μ j (t)
)p−2β ≤ 22β−p, and

(
μi (t)

)p−2β ≥ 22β−p for i �= j , and moreover we
have −1 ≤ (

1 − 2μ j (t)
)

< 0, and
(
1 − 2μi (t)

)
> 0 for i �= j . We obtain

n∑

i=1

(
μi (t)

)p−2β(
1 − 2μi (t)

)

= (
μ j (t)

)p−2β(
1 − 2μ j (t)

) +
∑

i �= j

(
μi (t)

)p−2β(
1 − 2μi (t)

)

≥ −22β−p +
∑

i �= j

22β−p(1 − 2μi (t)
) = 22β−p[ − 1 + (n − 1) − 2(1 − μ j (t))

]

= 22β−p(n − 4 + 2μ j (t)) > 22β−p(n − 3) > n − 3 ;
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Thus, in either case, the second term on the right-hand side of (57) satisfies

n∑

i=1

(
μi (t)

)p−2β(
1 − 2μi (t)

)
> n − 3. (59)

If we combine (57), (58) and (59) together, still under the assumption that 0 < p ≤
2β, we obtain

2

σ 2 γ ∗
μ,p(t) > 1 + n − 3 = n − 2, (60)

and γ ∗
μ,p(t) > 0 for n ≥ 2 and all t . Now, Proposition 3.8 in Fernholz and Karatzas

(2005) guarantees that, over sufficiently long time-horizons [0, T ] (in particular, with

T > 2
pσ 2 · log(n) · n1−p

n−2 ), there exist arbitrages relative to the market portfolio μ(·).
More precisely, it is shown there that the portfolio rule

πi (t) = p

(
μi (t)

)p

∑n
j=1

(
μ j (t)

)p + (1 − p)μi (t), i = 1, . . . n (61)

is a strong arbitrage opportunity relative to the market portfolio μ(t) in the sense of
definition (48).

Notice that the portfolio of (61) is a convex combination, with fixed weights 1 − p
and p, of the market portfolio and of the diversity-weighted portfolio of (53), respec-
tively. Note also that if β ≥ 1/2 one can choose p ∈ (0, 1) arbitrarily, but if
0 < β < 1/2 one needs to choose p ∈ (0, 2β], in order to get the inequality in
(58).

5.2.3 Arbitrage in the general model

Let us return to the model of (1), in which the stocks’ volatilities are given by

siν(t) = σ
(
μi (t)

)−β
K

(
X (t)

)
δiν,

therefore we have

sμν(t) =
n∑

i=1

μi (t)siν(t) = σ
(
μν(t)

)1−β
K

(
X (t)

)

and the variance relative to the market of the i th stock is

τ
μ
i i (t) =

n∑

ν=1

(
siν(t) − sμν(t)

)2 =
∑

ν �=i

(
sμν(t)

)2 + (
sii (t) − sμi (t)

)2

= σ 2
[

K
(
X (t)

)]2[ n∑

ν=1

(
μν(t)

)2(1−β) + (
μi (t)

)−2β(
1 − 2μi (t)

)]
. (62)
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Consider the case of K (·) bounded away from zero, that is, there exists Kmin > 0
such that Kmin ≤ K (u) for all u ∈ (0,∞)n . Then the excess growth rate of the market
portfolio μ(·) is bounded away from zero as well, namely

γ ∗
μ(t) ≥ σ 2

2
(n − 1)

[
K

(
μ(t)

)]2 ≥ σ 2

2
(n − 1)K 2

min > 0,

whenever β ∈ [1/2,∞), thanks to (52).
Moreover, for any value of β ∈ (0,∞) and arbitrary p ≤ 2β, the excess growth

rate of the diversity-weighted portfolio, defined in (53), is bounded away from zero.
Indeed, using the inequality in (54), we obtain

γ ∗
μ(p) (t) ≥ σ 2

2

n − 1

n1−p

[
K

(
X (t)

)]2 ≥ σ 2

2

n − 1

n1−p
K 2

min > 0.

Therefore, recalling the formula in (55), and the computations in (56), there exist
strong arbitrage opportunities relative to the market portfolio over sufficiently large
time horizons for any value of β > 0. For instance, with p ∈ (0, min{1, 2β}) and

T >
2

pσ 2 K 2
min

· log(n) · n1−p

n − 1
=: T ∗(β, σ, n, Kmin)

the diversity-weighted portfolio μ(p)(·) outperforms the market over [0, T ].
If in addition to the assumption that K (·) is bounded away from zero, we assume

that β ≥ 1/2, then we obtain from (62) a lower bound on the individual stocks’
covariances relative to the market portfolio μ(·), namely

τ
μ
i i (t) ≥ σ 2 K 2

min

( 1

μi (t)
− 1

)
.

This allows to use the same approach as in Proposition 2 in Section 5 of Banner
and Fernholz (2008), and construct a portfolio which is guaranteed to outperform the
market portfolio over arbitrarily short time horizon (“short-term arbitrage”). Note, that
if σ 2 K 2

min ≥ 1, then we can use exactly the same construction (and the same portfolio
rule) as in Proposition 2 in Section 5 of Banner and Fernholz (2008). If σ 2 K 2

min < 1,
then only minor adjustments are needed. Hence, if K (·) is bounded and β ≥ 1/2, then
short-term arbitrage exists in the model of (1).

Example Let us conclude with a simple example of systems that lead to markets in
which both long-term and short-term arbitrage opportunities are present. It is easy
to see that if K (·) is chosen to be the reciprocal of the L p-norm of the market
weights [defined in (2)], with p ≥ 1, then K (·) is bounded on the state space and has
locally bounded partial derivatives. Therefore, the corresponding system of stochastic
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differential equations in (1), which with this choice takes the form

d
(
logXi (t)

) = αi

2
(
μi (t)

)2β ∣∣∣∣μ(t)
∣∣∣∣2

p

dt + σ
(
μi (t)

)β ∣∣∣∣μ(t)
∣∣∣∣

p

dWi (t),

Xi (0) = xi > 0, i = 1, . . . , n,

(63)

has a unique in distribution weak solution, and it also admits a pathwise unique,
strong solution. Moreover, according to the results obove, if β ≥ 1/2, then there exist
arbitrage opportunities over any given time horizon in the model described by (63).

Acknowledgments The author is indebted to Professor Ioannis Karatzas for his suggestion to study this
topic, his careful reading of preliminary versions of the manuscript and invaluable advice. The author
is grateful to Robert Fernholz, Mike Hogan, Tomoyuki Ichiba, Soumik Pal, Johannes Ruf, Mykhaylo
Shkolnikov, and Phillip Whitman for discussions on the subject matter of this paper. The author would
also like to thank an anonymous referee for his/her helpful comments and suggestions. Research partially
supported by the National Science Foundation grant DMS-09-05754.

References

Banner, A., Fernholz, D.: Short-term relative arbitrage in volatility-stabilized markets. Ann Finance 4,
445–454 (2008)

Bass, R.F., Perkins, E.A.: Degenerate stochastic differential equations with Hölder continuous coefficients
and super-Markov chains. Trans Am Math Soc 355, 373–405 (2002)

Engelbert, H.J., Schmidt, W.: On the behaviour of certain Bessel functionals. An application to a class of
stochastic differential equations. Math Nachr 131, 219–234 (1987)

Fernholz, E.R.: Stochastic Portfolio Theory. New York: Springer (2002)
Fernholz, E.R., Karatzas, I.: Relative arbitrage in volatility-stabilized markets. Ann Finance 1(2), 149–177

(2005)
Fernholz, E.R., Karatzas, I.: Stochastic portfolio theory: an overview. Mathematical modelling and numer-

ical methods in finance. In: Bensoussan, A., Zhang, Q. (Guest editors) Ciarlet, P.G. (ed.) Special volume
of Handbook of Numerical Analysis, vol. XV, pp. 89–167. Amsterdam: Elsevier (2009)

Goia, I.: Bessel and volatility-stabilized processes. ProQuest LLC, Ann Arbor, MI, Ph.D. thesis, Columbia
University (2009)

Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. New York: Springer (1991)
Krylov, N.: On Itô’s stochastic differential equations. Theory Probab Appl 14(2), 330–336 (1969)
Pal, S.: Analysis of market weights under volatility-stabilized market models. Ann Appl Probab 21(3),

1180–1213 (2011)
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Berlin: Springer (1999)
Rogers, L., Williams, D.: Diffusions, Markov Processes and Martingales, vol. 2. Cambridge: Cambridge

University Press (2000)
Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J Math Kyoto

Univ 11, 155–167 (1971)

123


	Generalized volatility-stabilized processes
	Abstract
	1 Introduction
	2 Construction of a weak solution
	2.1 Analysis
	2.2 Synthesis

	3 Sufficient conditions on K(cdot) to avoid explosions
	4 Pathwise uniqueness and strength
	5 Applications to stochastic portfolio theory
	5.1 Basic concepts of stochastic portfolio theory
	5.2 Arbitrage opportunities in generalized volatility-stabilized markets
	5.2.1 Excess growth rate of the market portfolio and the diversity weighted portfolio
	5.2.2 Generalized excess growth rate of the market portfolio
	5.2.3 Arbitrage in the general model


	Acknowledgments
	References


