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Abstract Heterogeneity and evolutionary behaviour of investors are two of the most
important characteristics of financial markets. This paper incorporates the adaptive
behaviour of agents with heterogeneous beliefs and establishes an evolutionary capital
asset pricing model (ECAPM) within the mean-variance framework. We show that the
rational behaviour of agents switching to better-performing trading strategies can cause
large deviations of the market price from the fundamental value of one asset to spill
over to other assets. Also, this spill-over effect is associated with high trading volumes
and persistent volatility characterized by significantly decaying autocorrelations of,
and positive correlation between, price volatility and trading volume.
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1 Introduction

Within the rational expectations and representative agent paradigm, the Sharpe–
Lintner–Mossin (Sharpe 1964; Lintner 1965; Mossin 1966) Capital Asset Pricing
Model (CAPM) is the most widely used tool to value returns on risky assets. However,
there is considerable empirical evidence documenting cyclical behaviour of market
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186 C. Chiarella et al.

characteristics, including risk premium, volatility, trading volume, price and dividend
ratio, and in particular, market betas. The conditional CAPM has been developed to
provide a convenient way to incorporate time-varying beta and it exhibits empirical
superiority in explaining the cross-section of returns and anomalies.1 There exists a
large literature on time-varying beta models, but most of it is motivated by econo-
metric estimation. It is often assumed that there are discrete changes in betas across
subsamples but constant betas within subsamples.2 It has been shown that when betas
vary over time, the standard OLS inference is misspecified and cannot be used to
assess the fit of a conditional CAPM. In addition, most of the econometric models of
time-varying beta lack any economic explanation and intuition.

Most theoretical models on conditional CAPM are based on the representative agent
economy by assuming perfect rationality and homogeneous beliefs. However, empir-
ical evidence along with unconvincing justification of the assumption of unbounded
rationality and investor psychology, have led to the incorporation of both heterogene-
ity in beliefs and bounded rationality into asset pricing and financial market modelling
(see the survey papers in the edited handbook of Hens and Schenk-Hoppé (2009) for
developments in this literature). Heterogeneous beliefs and bounded rationality have
become important parts of the asset pricing literature in recent years. Over the last two
decades, there has been a growing body of literature on heterogeneous agent models
(HAMs) in economics and finance. HAMs consider financial markets as a nonlin-
ear expectation-feedback system and reflect the interaction of heterogeneity, bounded
rationality and adaptive behaviour of agents. Following the seminal work of Brock
and Hommes (1997, 1998), various HAMs have been developed to show that, when
agents increasingly switch to better performing strategies, this rational behaviour of
agents can lead to instability of financial markets. This framework can also explain
various types of market behaviour, such as the long-term swing of market prices from
the fundamental prices, asset bubbles, market crashes, the stylized facts and various
kinds of power law behaviour observed in financial markets.3

However, most of the HAMs analysed in the literature involve a financial mar-
ket with only one risky asset and are not in the context of the CAPM. Recently,
some attempts have been made to develop HAMs with many assets.4 Within a mean-
variance framework, Chiarella et al. (2010, 2011) study a multi-asset CAPM through a
consensus belief. In a dynamic setting, Chiarella et al. (2012) demonstrate the stochas-

1 See, for example, Engle (1982), Bollerslev (1986), Bollerslev et al. (1988), Dybvig and Ross (1985),
Hansen and Richard (1987), Hamilton (1989, 1990), Braun et al. (1990) and Jagannathan and Wang (1996).
2 See Campbell and Vuolteenaho (2004), Fama and French (2006) and Lewellen and Nagel (2006). We
point out that Ang and Chen (2007) treat betas as endogenous variables that vary slowly and continuously
over time.
3 We refer the reader to Hommes (2006), LeBaron (2006), Lux (2009), Chiarella et al. (2009), Evstigneev
et al. (2009) for surveys of the recent developments in this literature.
4 We refer the reader to Chiarella et al. (2005), Westerhoff and Dieci (2006), Chen and Huang (2008), Marsili
et al. (2009) for developments in multi-asset market dynamics in the literature of HAMs. In particular,
Westerhoff (2004) considers a multi-asset model with fundamentalists who concentrate on only one market
and trend followers who invest in all markets; Dieci and Westerhoff (2010a,b) explore deterministic models
to study two stock markets denominated in different currencies, which are linked via the related foreign
exchange market; Chen and Huang (2008) develop a computational multi-asset artificial stock market
to examine the relevance of risk preferences and forcasting accuracy to the survival of investors; and
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tic behavior of time-varying betas and show that there can be inconsistency between
ex-ante and ex-post estimates of asset betas when agents are heterogeneous and bound-
edly rational.

The aim of this paper is to extend the HAMs with one risky asset to an evolutionary
CAPM within the framework of HAMs to examine the impact of adaptive behaviour of
heterogeneous agents in a market with many risky assets. This paper is closely related
to Chiarella et al. (2012), but also differs from it in several respects. In Chiarella et al.
(2012), the heterogeneous beliefs are modelled at the return level and agents do not
change their strategies. A spill-over effect of market instability from one asset to others
due to behavioural change of agents is demonstrated through numerical simulations.
In this paper, the heterogeneous beliefs are modelled at the price level and agents are
allowed to change their strategies based on a fitness function similar to that used by
Brock and Hommes (1997, 1998). The advantage of this setting is that we are able to
examine the stability and spill-over effects analytically. We extend the single-period
static model in Chiarella et al. (2011) to a dynamic equilibrium asset pricing model. As
in Chiarella et al. (2012), we incorporate two types of investors, fundamentalists and
trend followers, into the model. It is found that the instability of one asset, characterized
by large fluctuations of market prices from the fundamental prices, can spill over
to other assets when agents increasingly switch to better performing strategies. The
spill-over effect is also associated with high trading volumes and persistent volatility,
characterized by significantly positive and geometrically decaying autocorrelations in
volume and volatility over long time horizons. Also the correlations between trading
volume and volatility of risky assets are positive when asset payoffs are less correlated.
These implications show that the evolutionary CAPM developed in this paper can
provide insights into market characteristics related to trading volume and volatility.
Also consistent with Chiarella et al. (2012), we show that the commonly used rolling
window estimates of time-varying betas may not be consistent with the ex-ante betas
implied by the equilibrium model.

The paper is organized as follows. Section 2 sets up a dynamical equilibrium asset
pricing model in the context of the CAPM to incorporate heterogeneous beliefs and
adaptive behaviour of agents. Section 3 examines analytically the stability of the
steady state equilibrium prices of the corresponding deterministic model. In Sect. 4,
we conduct a numerical analysis of the stochastic model to explore the spill-over
effects, together with the relation between trading volumes and volatility, and the
consistency of time-varying betas between ex-ante and rolling window estimates.
Section 5 concludes. All proofs are given in the Appendix.

2 The model

We consider an economy with I agents, indexed by i = 1, . . . , I , who invest in
portfolios consisting of a riskless asset with risk free rate r f and N risky assets,

Footnote 4 continued
Marsili et al. (2009) introduce a generic model of a multi-asset financial market to show that correlation
feedback can lead to market instability when trading volumes are high.
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indexed by j = 1, . . . , N (with N ≥ 1). Let pt = (p1,t , . . . , pN ,t )
� be the prices,

dt = (d1,t , . . . , dN ,t )
� be the dividends and xt := pt + dt be the payoffs of the risky

assets in period t (from t − 1 to t). Let zi,t be the risky portfolio of agent i (in terms
of the number of shares of each risky asset), then the end-of-period portfolio wealth
of agent i is given by Wi,t+1 = z�

i,t (xt+1 − R f pt ) + R f Wi,t , where R f = 1 + r f .

2.1 Optimal portfolio

Assume that agent i has a constant absolute risk aversion (CARA) utility ui (x) =
−e−θi x , where θi is the CARA coefficient. Assuming that the wealth of agent i is
conditionally normally distributed, agent i’s optimal investment portfolio is obtained
by maximizing the certainty-equivalent utility of one-period-ahead wealth5

Ui,t (Wi,t+1) = Ei,t (Wi,t+1) − θi

2
V ari,t (Wi,t+1). (1)

Following Chiarella et al. (2011), the optimal portfolio of agent i at time t for time
period t + 1 is then given by

zi,t = θ−1
i �−1

i,t [Ei,t (xt+1) − R f pt ], (2)

where Ei,t (xt+1) and �i,t = [Covi,t (x j,t+1, xk,t+1)]N×N are respectively the condi-
tional expectation and variance-covariance matrix of agent i about the end-of-period
payoffs of the risky assets, evaluated at time t .

2.2 Market equilibrium

Assume that the I investors can be grouped into H agent-types, indexed by h =
1, . . . , H , where the agents within the same group are homogeneous in their beliefs
as well as risk aversion. The risk aversion of agents of type h is denoted by θh .
We also denote by Ih,t the number of investors in group h and by nh,t := Ih,t/I
the market fraction of agents of type h in period t . Let Eh,t (xt+1) and �h,t =
[Covh,t (x j,t+1, xk,t+1)]N×N be respectively the conditional expectation and variance-
covariance matrix of type-h agents at time t . Let s = (s1, . . . , sN )� be the N -
dimensional vector of average risky asset supply per agent. A supply shock to the
market, denoted by a vector of random processes,6 is assumed to follow ξ t+1 =
ξ t + σ κκ t+1, where κ t+1 is a standard normal i.i.d. random variable with E(κ t ) = 0

5 As is well known, the maximization of (1) is equivalent to maximizing the expected value of the above-
defined CARA utility of wealth, maxzi,t Ei,t (ui (Wi,t+1)), provided that Wi is conditionally normally
distributed in agent i’s beliefs.
6 The matrix σ κ is not necessarily a diagonal matrix, that is, the supply noise processes of the N assets
can be correlated. The same also holds for σ ζ in the dividend processes (5).
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and Cov(κ t ) = I. Then the market clearing condition becomes

H∑

h=1

nh,tθ
−1
h �−1

h,t [Eh,t (xt+1) − R f pt ] = s + ξ t . (3)

2.3 Consensus belief

We follow the construction in Chiarella et al (2011, 2012) to define an aggre-
gate or consensus belief. Define the “average” risk aversion coefficient θa,t :=
(
∑H

h=1 nh,tθ
−1
h )−1, which is a market population fraction weighted harmonic mean of

the risk aversions of different types of heterogeneous agents. Specifically, if all agents
have the same risk aversion coefficient θh = θ , then the “average” risk aversion coef-
ficient θa,t = θ .7 Then the aggregate beliefs at time t about variances/covariances and
expected payoffs over the time interval (t, t + 1) are specified, respectively, as

�a,t = θ−1
a,t

(
H∑

h=1

nh,tθ
−1
h �−1

h,t

)−1

,

Ea,t (xt+1) = θa,t�a,t

H∑

h=1

nh,tθ
−1
h �−1

h,t Eh,t (xt+1). (4)

The dividend process dt is assumed to follow a martingale process

dt+1 = dt + σ ζ ζ t+1, (5)

where ζ t+1 is a standard normal i.i.d. random variable with E(ζ t ) = 0 and Cov(ζ t ) =
I, independent of κ t+1. Moreover, agents are assumed to have homogeneous and
correct conditional beliefs about the dividends (the unconditional expectation of which
is assumed to be constant, E(dt ) = d). Following Chiarella et al (2011, 2012), the
market equilibrium prices (3) can therefore be rewritten as if they were determined
by a homogeneous agent endowed with average risk aversion θa,t and the consensus
beliefs {Ea,t ,�a,t }, namely

pt = 1

R f
[Ea,t (pt+1) + dt − θa,t�a,t (s + ξ t )]. (6)

Note that at time t the dividends dt are realized and agents formulate their beliefs
about the next period payoff xt+1 = pt+1 + dt+1, based on the realized prices up to
time t − 1 and the dividends dt .

7 This is the case that we use for the numerical analysis in Sect. 4.
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2.4 Fitness

Following the discrete choice model (discussed for instance by Brock and Hommes
1997, 1998) the market fractions nh,t of agents of type h are determined by their fitness
vh,t−1, where the subscript t − 1 indicates that fitness depends only on past observed
prices and dividends. The fraction of agents using a strategy of type h is thus driven
by “experience” through reinforcement learning. That is, given the fitness vh,t−1, the
fraction of agents using a strategy of type h is determined by the discrete choice model,

nh,t = eηvh,t−1

Zt
, Zt =

∑

h

eηvh,t−1, (7)

where η > 0 is the switching intensity of choice parameter measuring how sensitive
agents are to selecting a better performing strategy.8 If η = 0, then agents are insen-
sitive to past performance and pick a strategy at random with equal probability. In the
other extreme case η → ∞, all agents choose the forecast that performed best in the
last period. An increase in the intensity of choice η can therefore represent an increase
in the degree of rationality with respect to the evolutionary selection of strategies.

Given the utility maximization problem (1) of agents, we use a fitness measure
that generalizes the ‘risk-adjusted profit’ introduced in Hommes (2001) (see Hommes
and Wagener 2009 for a discussion about different choice of fitness functions and the
relation between them), namely we set

vh,t = πh,t − π B
h,t − Ch, (8)

where Ch ≥ 0 measures the cost of the strategy,

πh,t := z�
h,t−1(pt + dt − R f pt−1) − θh

2
z�

h,t−1�h,t−1zh,t−1 (9)

and

π B
h,t :=

(
θa,t−1

θh
s
)�

(pt + dt − R f pt−1) − θh

2

(
θa,t−1

θh
s
)�

�h,t−1

(
θa,t−1

θh
s
)

.

(10)

Note that (9) can be naturally interpreted as the risk-adjusted profit of type h agent. It
represents the realized profit adjusted by the subjective risk undertaken by investor h,
which is consistent with investors’ utility-maximizing portfolio choices. Expression
(10) can be interpreted as the (risk-adjusted) profit on portfolio zB

h,t−1 := θa,t−1
θh

s,
which represents a ‘benchmark’ portfolio for agents of type h at time t − 1. The
portfolio zB

h,t−1 is proportional to the market portfolio. The proportionality coefficient
θa,t−1

θh
takes into account the fact that the shares of the market portfolio of agents are

8 In fact, η is inversely related to the variance of the noise in the observation of random utility.
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positively correlated to their risk tolerance (1/θh). In the case that all agents have
the same risk aversion (so that θa,t−1 = θh), they all take the market portfolio. Put
differently, the performance measure (8) views strategy h as a successful strategy only
to the extent it outperforms its market benchmark in terms of risk-adjusted profitability.
More precisely, portfolio zB

h,t represents the portfolio that agents of type h would
select at time t if all agents had identical beliefs (whichever they are) about the first
and second moment of xt+1. In this case agents would (possibly) differ only in terms
of their risk aversion and they would hold zh,t = zB

h,t for all h. According to the

fitness measure vh,t := πh,t − π B
h,t − Ch , their portfolios would thus have identical

performance (apart from the costs). In other words, the selected fitness measure vh,t is
not affected by mere differences in risk aversion and accounts only of the profitability
generated by the competing investment rules. Note that, in the case of zero supply of
outside shares, the market clearing Eq. (3) leads to Ea,t (xt+1)/R f = pt . This is the
case considered in Hommes (2001) for a single-risky-asset model. The market thus
behaves as if it were ‘risk-neutral’ at the aggregate level9 in this particular case and
the performance measure reduces to the risk-adjusted profit considered in Hommes
(2001).

2.5 Fundamentalists

Now we propose a model with classical heterogeneous agent-types and consider
two types of agents, fundamentalists and trend followers, with h = f and h = c,
respectively. Following He and Li (2007), the fundamentalists realize the existence
of non-fundamental traders, such as trend followers to be introduced in the following
discussion. The fundamentalists believe that the stock price may be driven away from
the fundamental value in the short-run, but it will eventually converge to the expected
fundamental value in the long-run. Hence the conditional mean of the fundamental
traders is assumed to follow

E f,t (pt+1) = pt−1 + α(E f,t (p∗
t+1) − pt−1), (11)

where p∗
t = (p∗

1,t , . . . , p∗
N ,t ) is the vector of fundamental prices and the parameter

α = diag[α1, . . . , αN ] with α j ∈ [0, 1] represents the speed of price adjustment
of the fundamentalists toward their expected fundamental value or it reflects how
confident they are in the fundamental value. The parameter α j can be different for
different risky assets. In particular, for α j = 1, the fundamental traders are fully
confident about the fundamental value of risky asset j and adjust their expected
price in the next period instantaneously to the expected fundamental value. For
α j = 0, the fundamentalists become naive traders of asset j . We also assume that the
fundamentalists have constant beliefs about the covariance matrix of the payoffs so
that � f,t = �0 := (σ jk)N×N .

9 Of course, risk aversion does affect decisions at the agent-type level.
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2.6 Fundamental prices

To define the fundamental price p∗
t , we consider a ‘standard CAPM’ with homogeneous

beliefs where all agents have correct beliefs about the fundamental prices and are fully
confident about their expected fundamental values (that is α = diag[1, . . . , 1]). We
also assume that their average risk aversion coefficient is constant over time, θa,t = θ ,
and so are their common second-moment beliefs, �0.10 Correspondingly we define
the fundamental price as

p∗
t = 1

r f
(dt − θ�0(s + ξ t )), (12)

which is a martingale process under the assumptions about the exogenous dividend
and market noise processes, so that

p∗
t+1 = p∗

t + εt+1, εt+1 = 1

r f
(σ ζ ζ t+1 − θ�0σ κκ t+1) ∼ Normal i.i.d. (13)

In this case, it follows from Eq. (6) that the equilibrium price is given by pt = p∗
t .

Thus we can treat the benchmark CAPM case as the ‘steady state’ of the dynamics of
the heterogeneous beliefs model.

2.7 Trend followers

Unlike the fundamental traders, trend followers are technical traders who believe the
future price change can be predicted from various patterns or trends generated from
the historical prices. They are assumed to extrapolate the latest observed price change
over a long-run sample mean price and to adjust their variance estimate accordingly.
More precisely, their conditional mean and covariance matrices are assumed to satisfy

Ec,t (pt+1) = pt−1 + γ (pt−1 − ut−1), �c,t = �0 + λVt−1, (14)

where ut−1 and Vt−1 are sample means and covariance matrices of past market prices
pt−1, pt−2, . . ., the constant vector γ = diag[γ1, . . . , γN ] > 0 reflects the trend
following strategy, and γ j measures the extrapolation rate and high (low) values of
γ j correspond to strong (weak) extrapolation by trend followers, and λ measures the
sensitivity of the second-moment estimate to the sample variance. This specification
of the trend followers captures the extrapolative behavior of the trend followers, who
expect price changes to occur in the same direction as the price trend observed over a
past time window. Assume that ut−1 and Vt−1 are computed recursively as

10 Without switching, the average risk aversion θ is constant and corresponds to the harmonic mean of the
risk aversion coefficients of all agents. In our simulations, we will set θ = θ∗

a , the average risk aversion
coefficient at the steady state solution of the model.
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ut−1 = δut−2 + (1 − δ)pt−1,

Vt−1 = δVt−2 + δ(1 − δ)(pt−1 − ut−2)(pt−1 − ut−2)
�. (15)

Effectively, the sample mean vector and variance-covariance matrix are calculated
based on the all historical prices pt−1, pt−2, . . ., spreading back to −∞ with geometric
decaying probability weights (1 − δ){1, δ, δ2, . . .}. Therefore, as δ decreases, the
weights on the latest prices increase but decay geometrically at a common rate of δ. For
γ > 0 and large δ, momentum traders calculate the trend based on a long time horizon.
In particular, when δ = 0, Ec,t (pt+1) = pt−1 and Vt−1 = 0, implying naive behaviour
by the trend followers. However, when δ = 1, ut−1 = u0 and Vt−1 = V0, and
therefore Ec,t (pt+1) = pt−1 + γ (pt−1 − u0), so that trend followers are momentum
traders.

2.8 The complete dynamic model

Based on the analysis above, the optimal demands of the fundamentalists and trend
followers are given, respectively, by

z f,t = θ−1
f �−1

o [pt−1 + dt + α(p∗
t − pt−1) − R f pt ] (16)

and

zc,t = θ−1
c [�0 + λVt−1]−1[pt−1 + dt + γ (pt−1 − ut−1) − R f pt ]. (17)

Finally, the general dynamic model (6) reduces to the random nonlinear dynamical
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt = θa,t
R f

�a,t

[
n f,t
θ f

�−1
0

(
pt−1 + α(p∗

t − pt−1)
)

+ nc,t
θc

(�0 + λVt−1)
−1
(
pt−1 + γ (pt−1 − ut−1)

)− s − ξ t

]
+ 1

R f
dt ,

p∗
t = 1

r f
(dt − θ∗

a �0(s + ξ t )),

ut = δut−1 + (1 − δ)pt ,

Vt = δVt−1 + δ(1 − δ)(pt − ut−1)(pt − ut−1)
�,

n f,t = 1
1 + e−ηv,t−1

,

ξ t = ξ t−1 + σ κκ t ,

dt = dt−1 + σ ζ ζ t ,

(18)

where

θa,t =
(n f,t

θ f
+ nc,t

θc

)−1
, �a,t = 1

θa,t

(n f,t

θ f
�−1

0 + nc,t

θc
(�0 + λVt−1)

−1
)−1

,
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v,t := v f,t − vc,t =
(

z f,t−1 − θa,t−1s
θ f

)�

(
pt + dt − R f pt−1 − θ f

2
�0(z f,t−1 + θa,t−1s

θ f
)

)
−
(

zc,t−1 − θa,t−1s
θc

)�

(
pt + dt − R f pt−1 − θc

2
(�0 + λVt−2)(zc,t−1 + θa,t−1s

θc
)

)
− C,

nc,t = 1 − n f,t , C = C f − Cc ≥ 0.

In summary, we have established an adaptively heterogeneous beliefs model of
asset prices under the CAPM framework. The resulting model is characterized by a
stochastic difference system with seven variables, which is difficult to analyze directly.
To understand the interaction of the deterministic dynamics and noise processes, we
first study the dynamics of the corresponding deterministic model in Sect. 3. The
stochastic model (18) is then analyzed in Sect. 4.

3 Dynamics of the deterministic model

By assuming that the fundamental price and the dividend are constants p∗
t = p∗, dt =

d̄, and there is no supply shock ξ t = 0, the system (18) becomes the deterministic
dynamical system11

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pt = θa,t
R f

�a,t

[
n f,t
θ f

�−1
0

(
pt−1 + α(p∗ − pt−1)

)

+ nc,t
θc

(�0 + λVt−1)
−1
(
pt−1 + γ (pt−1 − ut−1)

)− s
]

+ 1
R f

d̄,

ut = δut−1 + (1 − δ)pt ,

Vt = δVt−1 + δ(1 − δ)(pt − ut−1)(pt − ut−1)
�,

n f,t = 1
1 + e−ηv,t−1

.

(19)

The dynamical system (19) should not be interpreted as a deterministic approxi-
mation of stochastic system (18), based on some type of asymptotic convergence, but
rather just as a system obtained by setting the dividend, the supply and the fundamental
price at their unconditional mean levels. The analysis of this ‘deterministic skeleton’
is a common practice in the heterogeneous-agent literature, and it is aimed at gaining
some initial insights into the impact of the parameters on the underlying dynamics.
Although the properties of the deterministic skeleton do not carry over to the stochas-
tic model in general, important connections between the dynamical structure of the
stochastic model and that of the underlying deterministic model exist and have been

11 The state variables pt , ut , Vt and n f,t in Eq. (19) can be expressed in terms of
pt−1, ut−1, Vt−1, n f,t−1, pt−2, ut−2, Vt−2 and n f,t−2, which have N , N , N (N +1)/2, 1, N , N , N (N +
1)/2 and 1 dimensions respectively. So the dimension of the system (19) is N 2 + 5N + 2. For instance,
when N = 1, it is an 8-dimensional system.
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highlighted in recent literature on stochastic heterogeneous-agent models (see, e.g.
Chiarella et al. 2011; Zhu et al. 2011).

The system (19) has a unique steady state (pt , ut , Vt , n f,t ) = (p∗, p∗, 0, n∗
f ),

where, following Eq. (12), the fundamental steady state price, p∗, is given by

p∗ = 1

r f
(d̄ − θ∗

a �0s) (20)

and n∗
f = 1/(1 + eηC). Hence, at the steady state, n∗

c = 1 − n∗
f and θa,t = θ∗

a =
1/(n∗

f /θ f + n∗
c/θc). Let θ0 := θ f /θc. Note that if θ f = θc = θ , then θa,t = θ and

θ0 = 1.
For the N 2 + 5N + 2 dimensional system (19), we are able to obtain the following

proposition on the local stability of the steady state. The proof is given in the appendix.

Proposition 1 For the system (19),

(i) if R f ≥ δ(1 + γ j ) for all j ∈ {1, . . . , N }, then the steady state (p∗, p∗, 0, n∗
f ) is

locally asymptotically stable;
(ii) if R f < δ(1 + γ j ) for all j ∈ {1, . . . , N }, then the steady state is locally

asymptotically stable when C 	= 0 and η < η̂ j := 1
C

ln
R f − δ(1−α j )

θ0[δ(1 + γ j ) − R f ] for

all j ∈ {1, . . . , N } and undergoes a Hopf bifurcation when η = η̂ j for some
j ∈ {1, . . . , N }. If C = 0, then the steady state is locally asymptotically stable

when θ0γ j < α j + (1 + θ0)(
R f
δ

− 1) for all j ;
(iii) if R f < δ(1 + γ j ) for some j ∈ Jo ⊆ {1, . . . , N }, then the steady state is

locally asymptotically stable when η < η̂m := min j∈Jo η̂ j and undergoes a Hopf
bifurcation when η = η̂m.

The results in Proposition 1 are significant with respect to the intuitive and simple
conditions on the stability of the steady state for such a high dimensional system. First,
when the trend followers are not very active (so that γ j ≤ R f /δ − 1), the steady state
of the system is stable. Second, the stability condition (ii) is equivalent to

R f

δ
− 1 < γ j <

(
R f
δ

− 1)(1 + θ0eηC) + α j

θ0eηC
, j = 1, . . . , N .

Hence, even when the trend followers are active (so that γ j > R f /δ − 1), the system
can still be stable when the fundamentalists dominate the market at the steady state or,
equivalently, the switching intensity is sufficiently small. In short, Proposition 1 shows
clearly that increases in Cc, α j and θc stabilize the system, while increases in C f , δ, γ

and θ f destabilize the system. Intuitively, the fundamentalists play a stabilizing role
in the market. The activity of fundamentalists is enhanced with an increase in α j or
decreases in C f (since a decrease in C f increases the market fraction of fundamen-
talists) and θ f (since a decrease in θ f increases fundamentalists’ long/short position
when the fundamental price moves away from the market price).

To understand how the impact of switching in a market with many risky assets is
different from a market with a single risky asset, we consider a special case where
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agents invest in a market with one risk-free asset and one risky asset, say asset j . In
this case, system (19) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p j,t = d̄ j
R f

+ 1

R f

(
n f,t

θ f σ2
j

+ nc,t
θc(σ2

j + λV j,t−1)

)
[

n f,t

(
p j,t−1 +α j (p∗

j − p j,t−1)
)

θ f σ
2
j

+ nc,t

(
p j,t−1 + γ j (p j,t−1 − u j,t−1)

)

θc(σ
2
j + λVj,t−1)

− s j

]
,

u j,t = δu j,t−1 + (1 − δ)p j,t ,

Vj,t = δVj.t−1 + δ(1 − δ)(p j,t − u j,t−1)
2,

n f,t = 1
1 + e−ηv,t−1

.

(21)

The dynamics of the system (21) can be characterized by the following proposition
(the proof is given in the appendix).

Proposition 2 For the system (21),

(i) if R f ≥ δ(1 + γ j ), then the steady state (p∗
j , p∗

j , 0, n∗
f ) of the system is always

locally asymptotically stable;
(ii) if R f < δ(1+γ j ), then the steady state is locally asymptotically stable when η <

η̂ j and C 	= 0 and undergoes a Hopf bifurcation when η = η̂ j . When C = 0,

the steady state is locally asymptotically stable if θ0γ j < α j + (1 + θ0)(
R f
δ

− 1).

By comparing the local stability conditions in Propositions 1 and 2, one can see that
the stability conditions of each risky asset due to the increasing switching intensity
are independent of the parameters specified to any other asset and, surprisingly, the
correlations among risky assets have no impact on the local stability properties.12

This result is due to the peculiar properties of the Jacobian matrix and the adaptive
behaviour considered (this becomes clear from the proofs in the appendix). Hence the
local stability properties of asset j in the multi-asset model are exactly the same as if
asset j was considered in isolation (that is, in the model with only risky asset j and
the risk-free asset).

Propositions 1 and 2 provide an initial insight into the mechanisms governing the
joint price dynamics of multiple risky assets, showing that locally instability plays
a very small role in the spill-over phenomena that we will discuss in what follows,
but globally the instability of one asset can spill over to the other assets due to its
correlations with other assets.

To better understand the implications of Propositions 1 and 2 and the price dynamics
of the model, we consider an example of two risky assets and a riskless asset with

�0 =
(

σ 2
1 ρ12σ1σ2

ρ12σ1σ2 σ 2
2

)

12 Mathematically, this is due to the fact that the fitness measure and the variance-covariance matrices are
in higher order terms. Certainly correlations can affect the nonlinear dynamics, but not the dynamics of the
linearized system.

123



An evolutionary CAPM under heterogeneous beliefs 197

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

ρ
12

p*

p
1
*

p
2
*

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

η

n*
f

(a) (b)

Fig. 1 a The fundamental steady state price p∗ = (p∗
1 , p∗

2) as a function of the correlation ρ12 with η = 1;
b The equilibrium market fractions of fundamentalists n∗

f as a function of the switching intensity η

and set13 s = (0.1, 0.1)�, θ f = 1, θc = 1, λ = 1.5, C f = 4, Cc = 1, ρ12 = 0.5, δ =
0.98, γ = diag[0.3, 0.3] and α = diag[0.4, 0.5]. We choose the annual values14 of
the following parameters: r f = 0.025, σ1 = 0.6, σ2 = 0.4 and d̄ = (0.08, 0.05)�. In
this paper, we consider monthly time steps (i.e. K = 12).

Based on this set of parameters, the model has the following implications. First,
the equilibrium steady state fundamental price decreases when the correlation coeffi-
cient increases and, when the fundamental strategy costs more than the trend follower
strategy, the steady state market fraction of the fundamentalists reduces as the switch-
ing intensity increases. These results are illustrated in Fig. 1a, b respectively for the
two-asset system (19). In fact, Eq. (20) determines the dependence of the steady state
fundamental price on the parameters. Figure 1a illustrates a negative linear relation-
ship between the fundamental steady state price p∗ = (p∗

1, p∗
2) and the correlation

ρ12.
Secondly, as implied by Propositions 1 and 2, asset prices become unstable as the

switching intensity η increases. This is illustrated in Fig. 2. With the chosen parameters,
one can verify that R f < δ(1 + γ j ) for j = 1, 2, and the bifurcation values for asset
one and two are η̂1 ≈ 2.2384 and η̂2 ≈ 3.0485 respectively. According to Proposition
1, when η < η̂1 the two prices are stable; when η̂1 < η < η̂2, the price of asset two is
still stable, however the price of asset one becomes unstable; when η > η̂2, the prices
of both assets become unstable.15 Figure 2 plots the price bifurcation diagrams with
respect to the switching intensity parameter η for both system (19) with two risky
assets and system (21) with one risky asset. For the single risky asset model, Fig. 2c, d

13 The set of parameters is fixed in all numerical analysis unless specified otherwise.
14 The annualised parameters are converted to monthly, weekly and daily parameters in the standard way,
by rescaling r f , �0, α, d̄, γ , C f and Cc via the factor 1/K , where the frequency K is set to 12 (monthly), 50
(weekly), 250 (daily). As shown in Chiarella et al. (2012), the parameter δ is converted to K δ/[1+(K −1)δ]
to preserve the average memory length of the time average of past returns.
15 Note that here we use the words ‘stable’ and ‘unstable’ in a loose, yet intuitive, sense. Strictly speaking,
the local asymptotic stability of the steady state of the multi-asset model is lost when η = min j η̂ j , as stated
in Proposition 1.
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Fig. 2 The bifurcations of the two risky asset prices with respect to η; (a, b), the two-asset model (19);
and (c, d) the single risky asset model (21)

show that an increase in the switching intensity η makes the steady state price unstable,
leading to the complicated price dynamics documented in Brock and Hommes (1998).
With two risky assets, Fig. 2a, b show that the steady state is stable when the switching
intensity η is low, but becomes unstable as the switching intensity increases. The time
series of prices and the market fraction of the fundamentalist in Fig. 3a–c provide
further evidence on the analysis above. At first, both assets and the market fraction are
stable and constant when η = 1.5 is small (Fig. 3a). As η increases to 2.5, asset one
and then asset two become unstable as illustrated in Fig. 3b. As η increases to 3.5, both
asset prices become unstable (see Fig. 3c). Also the price of risky asset one of the two-
asset model is more irregular compared to the regular fluctuations in Fig. 3f of the one
asset model. In addition, as the switching intensity η increases, even small fluctuations
in the market fractions of agents can cause large fluctuations in asset prices.

Thirdly, the model displays a very interesting spill-over effect, which can be very
different from portfolio effect. As we discussed earlier, the stability is a local result
and the stability conditions of the risky assets are independent among the risky assets.
When one asset becomes unstable, one would expect the spill-over of instability of the
asset to spread to the other assets due to the portfolio effect. However, this may not
always be the case, as demonstrated in Fig. 4. For η = 2.5, Fig. 4a shows that the price
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Fig. 3 Time series plots of p1,t , p2,t and n f,t in the two-asset model (a)–(c) and of p1,t in the single-asset
one model (d)–(f) with η = 1.5 in (a) and (d); η = 2.5 in (b) and (e); and η = 3.5 in (c) and (f)

is unstable for asset one, but stable for asset two. Intuitively, the price fluctuations
in asset one would be caused by changing portfolio positions taken by the two types
of agents for asset one, which is confirmed by Fig. 4c. However, this intuition does
not carry over to asset two for which the price is constant but the portfolio positions
taken by agents for the asset are also varying, as illustrated in Fig. 4d. The portfolio
variations due to the portfolio effect lead to the fluctuations of the portfolio values
of the agents that are illustrated in Fig. 4b. How can this happen? As a matter of
fact, there are two reasons behind this interesting phenomena. First, the variations of
the risky assets in the portfolios are caused by the correlation between risky assets
(reflected in both �0 and Vt ) and the time-varying population fractions. Hence, even
when the price of asset two is constant, the portfolio positions of agents in asset two
may not be constant. Secondly, the spill-over effect is a nonlinear rather than a linear
effect, meaning that the stability of asset two in the nonlinear system is observed
when the initial values are near the steady state values; otherwise, stability may not
be maintained. Figure 5 shows how the instability of asset one spill over to asset two
for η ∈ (η̂1, η̂2) increases from 2.24 in (a) to 2.5 in (b) and then to 3.04 in (c) when
the initial prices are far away from the steady state price levels. Note that asset two
is locally stable for η ∈ (η̂1, η̂2). Hence the spill-over effect reflects the dynamics of
the nonlinear system. In fact, we do observe such spill-over effects in the bifurcation
plots in Fig. 2. Note that the first small price jump of asset one in Fig. 2a after the
initial bifurcation (at η = η̂1) occurs at η = η̂2, which is the bifurcation of the second
asset in the single asset model (in Fig. 2d). This implies that, when asset two becomes
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Fig. 4 The time series of a the prices and market fraction; b portfolio values of the fundamentalists and
trend followers; and portfolio positions of two types of agents in asset one (c) and asset two (d). Here
η = 2.5.

unstable, there is a spill-over effect from asset two to asset one characterized by the
price jump of asset one near η̂2. Interestingly, as the intensity increases further, say
η ≈ 3.4, the fluctuations of asset one increases significantly, which is demonstrated
by the large price jump of asset one for η > 3.4.

In addition, numerical simulations (not reported here) show that an increase in ρ12
leads to increases in the fluctuations of the prices when the system (19) becomes
unstable. Intuitively, as the correlation of the two risky assets increases, diversifica-
tion becomes less effective, hence assets become more risky, and consequently the
fundamental equilibrium prices decrease (in order to have a high expected return).
Also, simulations show (not reported here) that market prices become more volatile
when the trend followers are less concerned about the sample variance; that is when λ

becomes small, even though λ does not affect the local stability of the system (19). In
fact, when λ becomes small, the demand of the trend followers increases so that they
become more active in the market, leading to a more volatile market.

In summary, we have shown that the rational behaviour of agents in switching to
better performing strategies can lead to market instability and a non-linear spill-over
of price fluctuations from one asset to other assets. The nonlinear dynamics due to
the spill-over effect can lead to high trading volume and high volatility. This becomes
clearer in the discussion of the stochastic model in the next section.
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Fig. 5 The market prices for η = 2.24 (a), 2.5 (b) and 3.04 (c) when initial values are far away from the
steady state

4 Price behaviour of the stochastic model

In this section, through numerical simulations, we first focus on the spill-over effect
by examining the interaction between the dynamics of the deterministic model and the
noise processes and explore the potential power of the model to explain price deviations
from the fundamental prices and also high volatility. We then provide an evolutionary
capital asset pricing model (ECAPM) and compare the ex-ante betas with the rolling
window estimates of the betas used in the literature. Finally we study the relationship
between the price volatility and trading volumes. We choose σ κ = diag[0.001, 0.001]
and σ ζ = diag[0.002, 0.002], representing 0.1 and 0.2 % standard deviations of the
noisy supply and dividend processes respectively in this section.

4.1 The spill-over effect

First, we examine the spill-over effect by exploring the joint impact of the switching
intensity η and the two noise processes on the market price dynamics. To examine
the impact of stability of the deterministic model on the price dynamics, in partic-
ular, the time-varying betas, for the stochastic model, with the same random draws
of the dividend and supply noise processes, Fig. 6 plots the fundamental price (the
dotted lines) and the market prices (the solid lines) in (a) and (b) and the corre-
sponding market fractions of the fundamentalists of the two-asset model for two
different switching intensities η. For η = 1.5, Fig. 6a and c demonstrate that the
market price follows the fundamental price closely with about 40 % of the funda-
mentalists. This is underlined by the stable fundamental steady state of the deter-
ministic model (19) illustrated in Fig. 3a. For η = 3.5, Fig. 6b and d indicate that
the market price fluctuates around the fundamental price in a cyclical fashion with
about 29 % of the fundamentalists, which is underlined by the bifurcation of periodic
oscillations of the corresponding deterministic model (see Fig. 3c). Corresponding
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Fig. 6 The time series of the fundamental price (the dotted line) and the market prices (the solid line)
of the two-asset model with a η = 1.5 and b η = 3.5, and the corresponding market fractions of the
fundamentalists in (c) and (d).

to Fig. 4 for the deterministic model, Fig. 7 plots the time series of the prices in
(a), the market fraction of the fundamentalists in (b), the portfolio values of the two
agents in (c), the portfolio positions in asset one (d) and asset two (e) of the sto-
chastic model. The large fluctuations of the stochastic model, in particular in the
portfolio values and the portfolio positions, compared to the deterministic model
reflect the impact of the nonlinear interaction of the spill-over effects and the noise
processes.

4.2 Time-varying betas

Next, we examine the stochastic nature of the time-varying beta coefficients of the
evolutionary CAPM. The value of the market portfolio s at time t in the market
equilibrium is given by Wm,t = p�

t s and the payoff is Wm,t+1 = x�
t+1s. Hence, under

the consensus belief there holds

Ea,t (Wm,t+1) = Ea,t (xt+1)
�s, V ara,t (Wm,t+1) = s��a,t s. (22)
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Fig. 7 The time series of prices (a), market fractions of the fundamentalists (b), the portfolio values of two
types of agents (c), the portfolio positions in asset one (d) and asset two (e) of the stochastic model with
η = 2.5

Define the returns of risky asset j and the market portfolio m, respectively, by

r j,t+1 = x j,t+1

p j,t
− 1, rm,t+1 = Wm,t+1

Wm,t
− 1, (23)

from which

Ea,t (r j,t+1) = Ea,t (x j,t+1)

p j,t
− 1, Ea,t (rm,t+1) = Ea,t (Wm,t+1)

Wm,t
− 1.

Following Chiarella et al. (2011), we obtain the standard CAPM-like return relation

Ea,t (rt+1) − r f 1 = βa,t [Ea,t (rm,t+1) − r f ], (24)

where

βa,t = (β1,t , . . . , βN ,t )
�, β j,t = Cova,t (rm,t+1, r j,t+1)

V ara,t (rm,t+1)
(25)
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Fig. 8 Time series of a the market prices; b the returns; c the proportions of the total market wealth invested
in risky assets; d the ex-ante betas of the risky assets; and the estimates of the betas using rolling windows
of e 100 and f 300 with η = 1.5

are the beta coefficients in market equilibrium. Notice that the betas in Eq. (25) are
ex-ante in the sense that they reflect the market equilibrium condition under the con-
sensus belief Ea,t and �a,t . In addition, Eq. (23) also implies rm,t+1 = ω�

t rt+1,
leading to ω�

t βa,t = 1, where ωt = Pt s/(p�
t s) with Pt = diag[p1,t , . . . , pN ,t ] are

the proportions of the total wealth (ex dividend) in the economy invested in the risky
assets at time t .

To examine the time-varying betas of the stochastic model, we choose two switching
intensities η = 1.5 and 3.5 as before. The time series of the market prices, fractions
of the fundamentalists, the proportions of the market portfolio invested in the two
risky assets, the ex-ante betas of the risky assets, and the estimates of the betas using
rolling windows of 100 and 300 are illustrated in Fig. 8 for η = 1.5 and in Fig. 9
for η = 3.5. For η = 1.5, the fundamental price of the deterministic model is stable,
the variation of the beta coefficients in Fig. 8d is large but less significant compared
to the beta coefficients in Fig. 9d for η = 3.5 (where the fundamental price of the
deterministic model is unstable). Both the pattern and the level of the beta coefficients
for η = 1.5 are very different from those for η = 3.5. More importantly, both Figs. 8
and 9 show that the rolling estimates of the betas do not necessarily reflect the nature
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Fig. 9 Time series of a the market prices; b the returns; c the proportions of the total market wealth invested
in risky assets; d the ex-ante betas of the risky assets; and the estimates of the betas using rolling windows
of e 100 and f 300 with η = 3.5

of the ex-ante betas implied by the CAPM, which is consistent with the results in
Chiarella et al. (2012). Interestingly, the estimated betas for window of 100 are more
volatile compared to the ex-ante betas. However, an increase in the rolling window
from 100 to 300 in (e) and (f) of Figs. 8 and 9 smooths the variations of the beta
estimates significantly, leading to a similar patterns to the ex-ante betas.

4.3 Trading volume and volatility

Finally, we examine the dynamic relation between price volatility and trading vol-
ume. As in Banerjee and Kremer (2010), the price volatility is measured by the price
difference |p j,t − p j,t−1| and the trading volume at time t is defined by

Xt = min{n f,t−1, n f,t }|z f,t − z f,t−1| + min{nc,t−1, nc,t }|zc,t − zc,t−1|
+ |n f,t − n f,t−1|X̂t , (26)
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where

X̂t =
{ |z f,t − zc,t−1|, n f,t ≥ n f,t−1,

|zc,t − z f,t−1|, n f,t < n f,t−1.

Due to the switching mechanism, the total trading volume Xt in (26) can be decom-
posed into three components. The first and second components correspond to the
trading volume of the agents who use, respectively, the fundamental and trend follow-
ing trading strategies at both time t − 1 and t . The third component corresponds to the
trading volume of those agents who change their strategies from t −1 to t . In particular,
when n f,t > n f,t−1, a fraction of n f,t − n f,t−1 agents change their strategies from the
trend following strategy at time t − 1 (with a demand of zc,t−1) to the fundamental
strategy at time t (with a demand of z f,t ).

To explore the dynamics of the volatility and trading volume, we set η = 1.5 and
choose two values of ρ12 = 0.5 and −0.9 to examine the impact of the correlation.
The time series of prices, demands, price volatility and trading volumes are illustrated
in Fig. 10 with ρ12 = 0.5 and Fig. 11 with ρ12 = −0.9 for a typical simulation. With
the same random seeds, Figs. 10 and 11 illustrate the significant impact of the portfolio
effect due to the different choices of the correlation coefficient ρ12 = 0.5 and −0.9.
Figures 10 and 11a, b show that the market prices can deviate from the fundamental
prices from time to time, though they follow each other in the long-run. Figures 10
and 11c, d show that the fundamentalists and trend followers take opposite positions
in risky assets in general, as expected in market equilibrium with two types of agents
trading against each other. Figures 10 and 11 e, f indicate that both volatility and
trading volume are persistent, which is further verified by the autocorrelations (ACs)
of the price volatility and trading volume of risky asset one in Fig. 12a, b respectively.
The results are based on 100 numerical simulations with the same parameters but
different random processes. They demonstrate that the ACs for both the volatility and
trading volume are highly significant and decaying over long lags.

Intuitively, the correlation should play an important role in the relation between
volatility and trading volume. With the two different values of ρ12 = 0.5 and -0.9,
Figs. 10 and 11e, f depict the relationship between the price volatility and the trading
volume of the two-asset model. The observation is summarized statistically by the
plot in Fig. 13 of the relation between the correlation coefficient ρ12 and the average
correlation between price volatility and trading volume of the two assets (asset one in
(a) and asset two in (b)) and correlation in volatility (c) and trading volumes (d) among
the two assets based on 100 simulations. We observe that the correlation between
the volatility and trading volume is positive (negative) when assets are less (more)
correlated, but the correlations in both volatilities and trading volumes of the two
assets are high when both assets are highly correlated. The result is very intuitive;
when the payoffs are less correlated in agents’ beliefs, both price volatility and trading
volume of the two assets are also less correlated. In summary, the persistence in price
volatility and trading volume and the autocorrelation patterns in volatility and trading
volume illustrated by the model are closely related to the characteristics of financial
markets.
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Fig. 10 The time series of market prices and fundamental price of asset one (a) and asset two (b); the
portfolio positions in asset one (c) and asset two (d); the price volatility and trading volume of asset one (e)
and asset two (f). Here ρ12 = 0.5 and η = 1.5

5 Conclusion

This paper extends the single-period equilibrium CAPM of Chiarella et al. (2011) to
a dynamic equilibrium evolutionary CAPM to incorporate the adaptively switching
behaviour of heterogeneous agents. By analyzing the stability of the underlying deter-
ministic model, we show that the evolutionary CAPM is capable of characterizing the
spill-over effects, the persistence in price volatility and trading volume, and realistic
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Fig. 11 The time series of market prices and fundamental price of asset one (a) and asset two (b); the
portfolio positions in asset one (c) and asset two (d); the price volatility and trading volume of asset one (e)
and asset two (f). Here ρ12 = −0.9 and η = 1.5

correlations between price volatility and trading volume. Also, the stochastic nature of
time-varying betas implied by the equilibrium model may not be consistent with the
rolling window estimate of betas used in the empirical literature. The model provides
further explanatory power of the recently developed HAMs.

In this paper, the numerical analysis is focused on the case of two risky assets,
though the stability analysis is conducted for any number of risky assets. It would be
interesting to see how an increase in the number of risky assets could have different
effects. We expect the main results obtained in this paper to hold. The statistical
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Fig. 13 The correlation between trading volumes and volatilities for asset one (a) and asset two (b) and the
correlations of price volatilities (c) and trading volumes (d) of the two risky assets. The results are based
on 100 simulations with η = 1.5

analysis is mainly based on some Monte Carlo simulations and a systematical study
of the empirical relevance using econometric methods would be interesting. We leave
these issues to the future research.
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6 Proofs

To provide some insights into the proof of the model with many risky assets, we first
start with the case of one risky asset.

6.1 Proof of proposition 2

In order to prove the local stability properties of the deterministic model (19), we start
from the simplified one-risky-asset case (21). We omit the index j of the unique risky
asset for simplicity.

Note that pt depends only on pt−1, ut−1, Vt−1, and on n f,t . The same holds for the
state variables ut and Vt . The differential of the fitness function at time t, v,t , depends
on pt−2, ut−2, Vt−2 and pt−1 through the demand functions z f,t−1 and zc,t−1, on
n f,t−1 through θa,t−1, as well as on pt , pt−1, pt−2 directly. Formally, suitable changes
of variables allow us to express the dynamical system (21) as an 8-dimensional map,
by which the state of the system at time t is expressed as a function of the state of the
system at time t − 1. We set

q f,t := n f,t+1 = (1 + exp(−ηv,t ))
−1, pL

t := pt−1, uL
t := ut−1, V L

t := Vt−1,

so that we can write the map driving dynamical system (21) as

pt = F(pt−1, ut−1, Vt−1, q f,t−1),

ut = δut−1 + (1 − δ)F(pt−1, ut−1, Vt−1, q f,t−1),

Vt = δVt−1 + δ(1 − δ)
[
F(pt−1, ut−1, Vt−1, q f,t−1) − ut−1

]2
,

q f,t =
{

1 + exp
[
−ηQ(pt−1, ut−1, Vt−1, q f,t−1, pL

t−1, uL
t−1, V L

t−1, q L
f,t−1)

]}−1
.

In particular, the function Q in the fourth equation above corresponds to v,t , and has
the structure

Q = v,t = ζ̂ f,t−1π̂ f,t − ζ̂c,t−1π̂c,t − C,

where, for h ∈ { f, c},
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ζ̂h,t−1 := zh,t−1 − θa,t−1

θh
s, π̂h,t := pt + d − R f pt−1

− θh

2
σ 2

h,t−1

(
zh,t−1 + θa,t−1

θh
s

)

and σ 2
h,t−1 = σ 2 for h = f, σ 2

h,t−1 = σ 2 + λVt−2 for h = c. One can check that both

ζ̂h,t−1 and π̂h,t vanish at the fundamental steady state. It follows that all the partial
derivatives of Q with respect to any of the state variables also vanish at the steady
state, and the same holds for the derivatives of q f,t . Also, all the partial derivatives
of Vt (except ∂Vt/∂Vt−1) are zero at the steady state due to the higher-order term
(pt − ut−1)

2 and the fact that p = u at the steady state. By ordering the variables as
p, u, V, q f , pL , uL , V L , q L

f , the Jacobian matrix evaluated at the fundamental steady
state has the left block triangular structure

J =
(

A 0
I 0

)
, (27)

where 0 and I are the 4-dimensional null and identity matrices, respectively, and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ F

∂p

∂ F

∂u

∂ F

∂V

∂ F

∂q f

(1 − δ)
∂ F

∂p
δ + (1 − δ)

∂ F

∂u
(1 − δ)

∂ F

∂V
(1 − δ)

∂ F

∂q f

0 0 δ 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It follows that the characteristic equation for J is given by

χ5(χ − δ)(χ2 + m1χ + m2) = 0,

where16

m1 = α + δγ

R f (1 + θ0eηC)
− δγ + 1

R f
− δ, m2 = δ

[
1 + γ

R f
− α + γ

R f (1 + θ0eηC)

]
.

As 0 < δ < 1, it follows that stability depends only on the roots of the 2nd-degree
polynomial χ2 +m1χ +m2. The latter represents the characteristic polynomial of the
two-dimensional upper-left block of matrix A (that we denote as B). A well-known
necessary and sufficient condition for both characteristic roots of B, say χ1 and χ2, to
have modulus smaller than one (implying that the steady state is locally asymptotically
stable in our case) is the set of inequalities,

16 See later for the N -asset case with the computational details regarding
∂ F

∂p
and

∂ F

∂u
.
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1 + m1 + m2 > 0, 1 − m1 + m2 > 0, m2 < 1. (28)

The first and second inequalities of (28) always hold for any η ≥ 0. The third condition
is equivalent to

δ(1 + γ ) − R f <
δ(α + γ )

1 + θ0eηC
. (29)

If R f ≥ δ(1 + γ ), then condition (29) always holds for any η ≥ 0. If R f < δ(1 + γ ),

then (29) holds when η < η̂ := 1
C

ln
R f − δ(1 −α)

θ0[δ(1 + γ ) − R f ] . If C = 0, then Eq. (29) holds

when
R f − δ(1 −α)

θ0[δ(1 + γ ) − R f ] > 1, which is equivalent to θ0γ < α + (1 + θ0)(
R f
δ

− 1). This
proves Proposition 2.

6.2 Proof of proposition 1

Consider the general case (19) of N risky assets. The structure of the map is the
same as in the simplified one-risky-asset case, except that the variables pt , ut , pL

t , uL
t

have dimension N , whereas Vt and VL
t have dimension M := N (N + 1)/2 (e.g.

M = 3 for the two-asset case). Again, p = u at the steady state, and the derivatives
of each component of Vt in system (19) with respect to any of the state variables
(with the exception of Vt−1) vanish at the steady state. Turning to the derivatives of
q f,t := n f,t+1, note that function Q has the structure

Q = v,t = ζ̂
�
f,t−1π̂ f,t − ζ̂

�
c,t−1π̂c,t − C

where, for h = f, c,

ζ̂ h,t−1 :=zh,t−1− θa,t−1

θh
s, π̂h,t :=pt + d − R f pt−1 − θh

2
�h,t−1

(
zh,t−1+ θa,t−1

θh
s
)

,

with �h,t−1 = �0 for h = f and �h,t−1 = �0 + λVt−2 for h = c. Similar to the
one-asset case, both ζ̂ h,t−1 and π̂h,t vanish at the fundamental steady state, and the
same holds for any of the partial derivatives of q f,t . The Jacobian matrix of the system
of dimension N 2 + 5N + 2 at the fundamental steady state is thus again characterized
by the structure (27), where the variables are ordered as p, u, V, q f , pL , uL , VL , q L

f .
In particular, in this case, 0 and I represent the null matrix and the identity matrix of
order 2N + N (N + 1)/2 + 1 (e.g. dimension 8 in the case of two assets) respectively,
and17

17 The null matrices in the third row of A now have dimension M × N (first and second entry) and M × 1
(fourth entry). The identity matrix in the third entry has dimension M . The identity matrix in the second
row has dimension N .
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A =

⎛

⎜⎜⎜⎜⎜⎝

DpF DuF DVF Dq f F

(1 − δ)DpF δI + (1 − δ)DuF (1 − δ)DVF (1 − δ)Dq f F

0 0 δI 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
,

where DxF denotes the partial Jacobian matrix with respect to the variable x. Again,
what matters for stability are the eigenvalues of the upper left block (of dimension
2N × 2N ), given by

B =
(

DpF DuF

(1 − δ)DpF δI + (1 − δ)DuF

)
.

Consider now the difference equation for the price vector

pt = F(pt−1, ut−1, Vt−1, q f,t−1).

The partial Jacobian with respect to p is given by

DpF = θa,t

R f
�a,t

[
q f,t−1

θ f
�−1

0 (I − α) + 1 − q f,t−1

θc
(�0 + λVt−1)

−1(I + γ )

]

where I is the N -dimensional identity matrix, α := diag(α1, α2, ..., αN ) and
γ :=diag(γ1, γ2, ..., γN ). At the steady state (where �a,t = �0) we obtain

DpF(p∗, p∗, 0,q∗
f ) = θ∗

a

R f

[
n∗

f

θ f
(I − α) + 1 − n∗

f

θc
(I + γ )

]
,

where

θ∗
a

θ f
n∗

f = 1

1 + θ0eηC
,

θ∗
a

θc
(1 − n∗

f ) = θ0eηC

1 + θ0eηC
.

Note that DpF(p∗, p∗, 0,q∗
f ) is a diagonal matrix. This implies that the fixed compo-

nent �0 of variance/covariance beliefs, in particular the correlations, has no effect on
the dynamics of the linearized system around the steady state. Similarly, one obtains
for DuF the expression

DuF(p∗, p∗, 0,q∗
f ) = − θ∗

a

R f

1 − n∗
f

θc
γ ,

which is also a diagonal matrix. Every submatrix of block B is therefore an
N -dimensional diagonal matrix. It follows that the characteristic equation of J is
given by
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χ
(N+1)(N+4)

2 (χ − δ)
N (N+1)

2

N∏

j=1

(χ2 + m1, jχ + m2, j ) = 0,

where in particular the characteristic equation of B is represented by the product of the
N 2nd-degree polynomials, and the coefficients m1, j and m2, j have the same structure
as those of the one-asset case, namely

m1, j = α j + δγ j

R f (1 + θ0eηC)
− δγ j + 1

R f
− δ, m2, j = δ

[
1 + γ j

R f
− α j + γ j

R f (1 + θ0eηC)

]
.

Each of the above second-order polynomials is naturally associated with one of the
risky assets. The steady state (p∗, p∗, 0,q∗

f ) is thus locally asymptotically stable if and
only if, for all j ∈ {1, 2, . . ., n},

1 + m1, j + m2, j > 0, 1 − m1, j + m2, j > 0, m2, j < 1. (30)

Similar to the one-asset case, the first two inequalities hold for any η ≥ 0. The above
set of inequalities is thus satisfied for any η ≥ 0 if R f ≥ δ(1+γ j ). If R f < δ(1+γ j ),

it is satisfied only if η < η̂ j := 1
C

ln
R f − δ(1−α j )

θ0[δ(1+γ j ) − R f ] or, in the particular case C = 0,

if θ0γ j < α j + (1 + θ0)(
R f
δ

− 1). Since stability requires that condition (30) holds
for all j ∈ {1, 2, . . ., n}, the statement of Proposition 1 follows.
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