
Ann Finance (2013) 9:611–624
DOI 10.1007/s10436-012-0207-0

RESEARCH ARTICLE

Absence of arbitrage in a general framework

Hasanjan Sayit

Received: 6 January 2011 / Accepted: 9 August 2012 / Published online: 28 August 2012
© Springer-Verlag 2012

Abstract Cheridito (Finance Stoch 7:533–553, 2003) studies a financial market that
consists of a money market account and a risky asset driven by a fractional Brownian
motion. It is shown that arbitrage possibilities in such markets can be excluded by
suitably restricting the class of allowable trading strategies. In this note, we show an
analogous result in a multi-asset market where the discounted risky asset prices follow
more general non-semimartingale models. In our framework, investors are allowed to
trade between a risk-free asset and multiple risky assets by following simple trading
strategies that require a minimal deterministic waiting time between any two trading
dates. We present a condition on the discounted risky asset prices that guarantee
absence of arbitrage in this setting. We give examples that satisfy our condition and
study its invariance under certain transformations.

Keywords Simple trading strategies · Absence of arbitrage · Conditional full
support · Non-semimartingale models

JEL Classification G10

1 Introduction

Absence of arbitrage is a minimal requirement for an equilibrium financial market.
In Delbaen and Schachermayer (1994) it is shown that in frictionless markets any
process that does not have an equivalent local martingale measure admits free lunch
with vanishing risk, which is a weak form of arbitrage. However, models without such
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612 H. Sayit

local martingale measure appear regularly in the empirical literature estimating stock
prices. A typical example is a fractional Brownian motion (fBm), a process which
has been suggested to model long-range dependence observed in empirical data, see
Willinger et al. (1999) and Lo (1991), and the references therein. Since fBm is not a
semimartingale for most parameter values, the results in Delbaen and Schachermayer
(1994) show that frictionless markets driven by fBm admit free lunch. In fact, several
authors have shown that fractional Brownian motion models actually admit arbitrage,
see Rogers (1997) and Sottinen (2001).

Recently, arbitrage problems for non-semimartingale models have been extensively
studied in the literature by introducing various types of frictions into the market. The
recent papers Guasoni (2006), Guasoni et al. (2008, 2010), studied absence of arbitrage
conditions in markets with proportional transaction costs. The authors introduced an
interesting condition, conditional full support (CFS), for the asset prices and showed
that it is sufficient for absence of arbitrage in such markets. They proved the CFS
property for fBm and continuous Markov processes with the full support property. In
the subsequent papers Cherny (2008), Pakkanen (2010), and Gasbarra et al. (2008),
the CFS property was shown to hold for more general non-semimartingale models.
Also see Maris et al. (2011) and Maris and Sayit (2012) for recent results on the CFS
property.

Without imposing transaction costs, absence of arbitrage was also shown to hold
for certain non-semimartingale models by restricting the class of admissible trading
strategies. This was studied in the recent papers Bayraktar and Sayit (2010), Bender
(2010), Bender et al. (2008, 2011), Cheridito (2003), Jarrow et al. (2009). More specif-
ically, these papers considered a market that consists of a money market account and
one risky asset and provided absence of arbitrage conditions within the class of simple
trading strategies. Especially, the paper Cheridito (2003) introduced a class of simple
trading strategies that require a minimal deterministic waiting time between any two
consecutive trading dates and showed that fBm driven models are arbitrage free within
such class of trading strategies. This class of trading strategies is called Cheridito’s
class of trading strategies in Jarrow et al. (2009), where more general processes are
shown to satisfy absence of arbitrage in Cheridito’s class of simple trading strategies.

The purpose of this paper is to study absence of arbitrage conditions within the class
of simple trading strategies in a market that consists of a risk-free asset and multiple
risky assets. We will present a condition on the discounted risky asset prices and show
that it is sufficient for absence of arbitrage within Cheridito class of trading strategies.
We study the invariance of our condition under certain transformations and provide
examples that satisfy it.

The market has one risk-free asset used as a numéraire and hence assumed iden-
tically equal to one and d risky assets whose price processes are given by adapted,
càdlàg processes X1

t , X2
t , . . . , Xd

t . We assume all the trading takes place in a finite time
horizon [0, T ] and all the price processes are defined on a filtered probability space
(�,F , P, F = (Ft )t∈[0,T ]) satisfying the “usual hypotheses” (i.e., the filtration F is
right continuous, and F0 contains all of the P null sets of F ).

In the framework of Delbaen and Schachermayer (1994), price processes Xt =
(X1

t , X2
t , . . . , Xd

t ) are semimartingales and the class of trading strategies is described
by predictable and X− integrable processes that are admissible. A trading strategy
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Absence of arbitrage in a general framework 613

H = (H1
t , H2

t , . . . , Hd
t ) is admissible if (H · X) ≥ −a for some a ∈ R+. Denote

by L0 the space of equivalent classes of finite valued random variables. Define the
following convex cone in L0,

K0 = {(H · X)T |H is admissible}.
Let C0 = K0 − L0+ be the cone of random variables dominated by elements of K0. Let
K = K0∩L∞ and C = C0∩L∞, where L∞ is the space of bounded random variables.
Let C̄ denote the closure of C with respect to the norm topology of L∞. We say that the
market (1, X1

t , . . . , Xd
t ) is arbitrage-free with the general class of admissible trading

strategies if C ∩ L∞+ and it satisfies the no free lunch with vanishing risk (NFLVR)
property if C̄ ∩ L∞+ = {0}.

The following fundamental theorem is proved in Delbaen and Schachermayer
(1994).

Theorem 1 A locally bounded semimartingale Xt satisfies the NFLVR property if and
only if X admits an equivalent local martingale measure.

This theorem shows that if we permit all the admissible trading strategies in the
market, all the price processes that are consistent with NFLVR admit local martingale
measures. Next we introduce the class of trading strategies that we study in this note.

For each h > 0, let J h(F) denote the class of finite sequences of stopping times
τ = (τ1, . . . , τn), where n ≥ 1 is any positive integer, τ1 = 0, and τ j+1 ≥ τ j + h a.s.
for all 1 ≤ j ≤ n − 1. For any h > 0, let

S h = {(H1
s , H2

s , . . . , Hd
s ) : Hi

s = hi
01{0}(s) +

n−1∑

j=1

hi
j 1(τ j ,τ j+1](s), 1 ≤ i ≤ d}

where n ≥ 1 is any integer, τ = (τ1, . . . , τn) ∈ J h , for each 1 ≤ i ≤ d, hi
0 is a real

number, for each 1 ≤ j ≤ n and 1 ≤ i ≤ d, hi
j is a Fτ j -measurable random variable.

Definition 1 The Cheridito class of simple trading strategies is given by

L (F) =: ∪h>0S
h(F). (1)

The class of general simple trading strategies is given by S (F) =: S 0(F).

For any given trading strategy Hs = (H1
s , H2

s , . . . , Hd
s ) in L (F) or in S (F) with

the representation

Hi
s = hi

010 +
n−1∑

j=1

hi
j 1(τ j ,τ j+1](s), 1 ≤ i ≤ n

the corresponding gains process with zero initial cost is given by

Gt (H) =
d∑

i=1

n−1∑

j=1

hi
j (Xi

τ j+1∧t − Xi
τ j ∧t ). (2)
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614 H. Sayit

Let K = {GT (H) : H ∈ L (F)} and K s = {GT (H) : H ∈ S (F)} denote the
corresponding sets of total gains with zero initial cost.

Definition 2 We say that the market (1, X1
t , X2

t , . . . , Xd
t ) is arbitrage-free with the

Cheridito class of trading strategies or with L (F), if K ∩L+
0 = ∅. Also we say that the

market (1, X1
t , X2

t , . . . , Xd
t ) is arbitrage-free with the class of general simple trading

strategies if K s ∩ L+
0 = ∅.

We remark that here we do not require the gains process to be bounded from below.
Since the class of doubling strategies is not a subset of the class of simple trading
strategies. Here we state our main result of this paper.

Theorem 2 Let S1
t , S2

t , . . . , Sd
t be a sequence of independent continuous semimartin-

gales defined in the time horizon [0,+∞). Assume [Si , Si ]t = [S j , S j ]t a.s. for all
t ≥ 0 and all i, j ∈ {1, 2, . . . , d} and [Si , Si ]t is bounded a.s. for each t ≥ 0. Fur-
ther assume that the vector-valued semimartingale (S1

t , S2
t , . . . , Sd

t ) admits a local
martingale measure. If

[Si , Si ]t+h − [Si , Si ]t ≥ p(h) a.s. (3)

for some deterministic function p(·) : [0,+∞) → [0,+∞), with p(0) = 0 and
p(h) > 0 for each h > 0, then for any sequence V 1

t , V 2
t , . . . , V 2

t of adapted and
càdlàg processes that are bounded in [0, T ], the market (1, S1

t +V 1
t , S2

t +V 2
t , . . . , Sd

t +
V d

t ), t ∈ [0, T ], is arbitrage-free within Cheridito class of simple trading strategies.

We remark that there is no any assumption on the bounded processes V 1
t , V 2

t , . . . , V 2
t

except that they be càdlàd and adapted. The following example directly follows from
the above theorem.

Example 1 Let (B1
t , B2

t , . . . , Bd
t ) be a d−dimensional Brownian motion. It is clear

that the market (1, |B1
t |, |B2

t |, . . . , |Bd
t |) is not arbitrage-free within Cheridito class of

trading strategies. The process Ht = (H1
t , H2

t , . . . , Hd
t ), where Hi

t = 1[0,T ](t), 1 ≤
i ≤ d, is clearly an arbitrage strategy for this market. next, we modify the risky asset
price processes slightly to get an arbitrage-free market. By Tanaka’s formula we have

|Bi
t | =

t∫

0

sign(Bi
s)d Bi

s + Li
t , 1 ≤ i ≤ d.

For any finite real number m > 0, let τ = in f {t ≥ 0 : Li
t ≥ m, 1 ≤ i ≤ d}. Define

the following processes

Di
t =

t∫

0

sign(Bi
s)d Bi

s + Li
t∧τ , 1 ≤ i ≤ d.
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Absence of arbitrage in a general framework 615

Then the market (1, D1
t , D2

t , . . . , Dd
t ) is arbitrage-free within the class L (F) of simple

trading strategies, thanks to Theorem 2. Note that the vector-valued semimartingale

⎛

⎝
t∫

0

sign(B1
s )d B1

s ,

t∫

0

sign(B2
s )d B2

s , . . . ,

t∫

0

sign(Bd
s )d Bd

s

⎞

⎠

satisfies the conditions of Theorem 2.

We remark that the market (1, D1
t , D2

t , . . . , Dd
t ) defined in the above exam-

ple admits arbitrage within the class of general admissible trading strategies dis-
cussed in Delbaen and Schachermayer (1994). Clearly, the trading strategy Ht =
(H1

t , H2
t , . . . , Hd

t ), where Hi
t = 1[0,τ∧T ](t), 1 ≤ i ≤ d, and τ is the stopping time

defined in the same example, is an admissible arbitrage strategy for the market. To
see this, observe that each process Di

t equals to |Bi
t | in the stochastic interval [0, τ ].

Therefore, the corresponding gains process for Ht is given by Gt (H) = ∑d
1 |Bi

t∧τ∧T |,
which is a non-negative process that starts from zero at t = 0.

We should mention that, while absence of arbitrage holds for a large class of models
beyond semimartingales in our framework, the Cheridito class of trading strategies
is very restrictive. For example, as pointed out in the paper Bender et al. (2011), the
stopping time τ = inf{t ≥ 0 : |St − S0| ≥ 1}, where St is a geometric Brownian
motion, does not belong to the Cheridito class.

The remainder of the paper is organized as follows: in the next section we introduce
a condition, which we call joint conditional up and down (F − CU D) condition, and
show that it is sufficient for absence of arbitrage in our framework, see Definition 3
and Proposition 1. A similar condition for the one dimensional case is first introduced
in Jarrow et al. (2009) and it is called conditional up and down condition in Bender
et al. (2011). In the same section we also show that the joint F − CU D condition is
invariant under composition with strictly monotone functions, see Proposition 2. In
Sect. 3, we introduce a condition which we call joint conditional high up and deep
down (F − C HU DD) condition, on the discounted risky asset price processes and
show that it implies the joint F − CU D condition, see Definition 4 and Proposition 3.
In Propositions 4 and 5, we study the invariance of the joint F − C HU DD condition
under composition with certain class of continuous functions and also under addition
with bounded processes, respectively. In Sect. 4, we present the Proof of Theorem 2 and
give examples of arbitrage-free models with the Cheridito class of trading strategies.

2 A sufficient condition for absence of arbitrage

Let X1
t , X2

t , . . . , Xd
t be a finite sequence of càdlàg processes adapted to the filtration

F. For any two stopping times τ1 ≤ τ2 a.s. of F and any 1 ≤ i ≤ d, let

A+
i = {Xi

τ1
< Xi

τ2
}, A−

i = {Xi
τ1

> Xi
τ2

} (4)

Definition 3 We say that an adapted càdlàg process Xt = (X1
t , X2

t , . . . , Xd
t ) satisfies

joint F − CU D condition with respect to L (F), if for any h ∈ (0, T ) and any two
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616 H. Sayit

stopping times τ1 ≤ τ2 with τ2 ≥ τ1 + h a.s., and any B ∈ Fτ1 with P(B) > 0, the
following holds

P([∩i∈I B Aαi
i ] ∩ B) > 0, (5)

whenever I B is not empty, where αi ∈ {+,−}, Aαi
i are defined as in (4), and I B is the

set of all k ∈ {1, 2, . . . , d} such that P({Xk
τ1

�= Xk
τ2

} ∩ B) > 0. Similarly, we say that
Xt satisfies joint F − CU D condition with respect to S(F), if the condition (5) holds
for any pair of stopping times τ1 and τ2 as long as τ1 ≤ τ2 a.s.

The next proposition shows that joint F − CU D condition implies absence of
arbitrage.

Proposition 1 If the adapted càdlàg process Xt = (X1
t , X2

t , . . . , Xd
t ) satisfies the

joint F−CU D condition with respect to L (F), then the market (1, X1
t , X2

t , . . . , Xd
t )

is arbitrage-free with L (F). If Xt satisfies the joint F − CU D condition with respect
to S(F), then the market (1, X1

t , X2
t , . . . , Xd

t ) is arbitrage-free with S(F).

Proof We prove the first part of the proposition, the second part follows similarly. By
the way of contradiction, assume Hs = (H1

s , H2
s , . . . , Hd

s ) ∈ L (F) is an arbitrage
strategy. Then there is a h > 0, such that H ∈ S h(F). By the definition of S h(F),
we can assume that there is a τ = (τ1, τ2, . . . , τn) ∈ J h such that Hi

s = hi
010 +∑n−1

j=1 hi
j 1(τ j ,τ j+1](s), 1 ≤ i ≤ d. The corresponding gains process is given by

Gt (H) =
n−1∑

j=1

d∑

i=1

hi
j (Xi

τ j+1∧t − Xi
τ j ∧t ).

For each 1 ≤ j ≤ n denote S j = (X1
τ j

, X2
τ j

, . . . , Xd
τ j

) and for each 1 ≤ j ≤
n − 1 denote h j = (h1

j , h2
j , . . . , hd

j ). We can write GT (H) = ∑n
j=1 h j · (S j+1 −

S j ) = (h · S)n . Since H is an arbitrage strategy, we conclude that the R
d−valued

discrete time process (S j ,Fτi )
n
j=1 admits arbitrage. Therefore from proposition 2.1 of

Rogers (1994), we conclude that for some j ∈ {1, 2, . . . n} there is a Fτ j −measurable
R

d−valued random variable θ j = (θ1
j , θ

2
j , . . . , θ

d
j ) such that

θ j · (S j+1 − S j ) ≥ 0 a.s and P[θ j · (S j+1 − S j ) > 0] > 0. (6)

In the following, we shall show that (6) contradicts with the joint F − CU D con-
dition. To see this, note that the latter inequality in (6) implies the existence of a
k ∈ {1, 2, . . . , d} such that P({θk

j �= 0} ∩ {Xk
τ j+1

�= Xk
τ j

}) > 0. Without loss of

generality, we assume P({θ1
j �= 0} ∩ {X1

τ j+1
�= X1

τ j
}) > 0, and further we can assume

P({θ1
j > 0} ∩ {X1

τ j+1
�= X1

τ j
}) > 0. Denote C = {θ1

j > 0} ∩ {X1
τ j+1

�= X1
τ j

}. Let

L+
i = {θ i

j ≤ 0} and L−
i = {θ i

j ≥ 0}. Observe that

∪β2,β3,...,βd [∩d
i=2 Lβi

i ] = �
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Absence of arbitrage in a general framework 617

where the union is taken for all β2, β3, . . . , βd ∈ {+,−}. Therefore, we can assume
that there are

α2, α3, . . . , αd ∈ {+,−} (7)

such that P(C ∩ [∩d
i=2 Lαi

i ]) > 0. Let D = {θ1
j > 0} ∩ [∩d

i=2 Lαi
i ]. It is clear that

D ∈ Fτ j and P(D) > 0. Also note that P(D ∩ {X1
τ j+1

�= X1
τ j

}) > 0.

Now, let I D be the set of all k ∈ {2, 3, . . . , d} such that P(D ∩{Xk
τ j+1

�= Xk
τ j

) > 0.

For each k ∈ I D (If I D is not empty set), define

A+
k = {Xk

τ j+1
> Xk

τ j
}, A−

k = {Xk
τ j+1

< Xk
τ j

}.

Then from the (�) condition, we have

P(D ∩ {X1
τ j+1

< X1
τ j

} ∩ [∩k∈I D Aαk
k ]) > 0,

here {αk}k∈I D is given by (7). Denote F = D ∩ {X1
τ j+1

< X1
τ j

} ∩ [∩k∈I D Aαk
k ]. From

the definition of I D , it follows that on the set F we have

θ j · (S j+1 − S j ) = θ1
j (X1

τ j+1
− X1

τ j
) +

∑

k∈I D

θk
j (Xk

τ j+1
− Xk

τ j
).

Note that F ⊂ Lαk
k ∩ Aαk

k for each k ∈ I D , therefore on F we have
∑

k∈I D θk
j (Xk

τ j+1
−

Xk
τ j

) ≤ 0. Also since θ1
j < 0 and X1

τ j+1
< X1

τ j
on F , we conclude that θ j ·(S j+1−S j ) <

0 on F . This contradicts with (6). �
We should mention that the joint F − CU D condition is not a necessary condition

for absence of arbitrage. To see this, let Mt be any real-valued martingale and let
Xi

t = Mt , 1 ≤ i ≤ d. Then the market (1, X1
t , X2

t , . . . , Xd
t ) satisfies the absence of

arbitrage condition with S(F) (and with L (F)). However, it is clear that the process
(X1

t , X2
t , . . . , Xd

t ) does not satisfy the joint F − CU D condition with respect to S(F)

or with respect to L (F).
The next proposition shows that the joint F − CU D condition is invariant under

componentwise composition with strictly monotone functions. The following nota-
tions will be used in the proof of this proposition and also in the rest of the paper: for
any α ∈ {+,−} − α is understood “+” if α = − and “−” if α = +.

Proposition 2 The joint F−CU D condition on Xt = (X1
t , X2

t , . . . , Xd
t ) with respect

to L (F) (or to S(F)) is equivalent to the joint F − CU D condition on the process

( f1(X1
t ), f2(X2

t ), . . . , fd(Xd
t )),

with respect to L (F) (to S(F)), where f1, f2, . . . , fd are strictly monotone functions.
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618 H. Sayit

Proof For any h ∈ (0, T ), and any two stopping times τ2 ≥ τ1 with τ2 ≥ τ1 + h a.s.,
define

F+
i = { fi (Xi

τ1
) < fi (Xi

τ2
)}, F−

i = { fi (Xi
τ1

) > fi (Xi
τ2

)}

for each 1 ≤ i ≤ d. For any B ∈ Fτ1 with P(B) > 0, let J B the set of all k ∈
{1, 2, . . . , d} for which P({ fk(Xk

τ1
) �= fk(Xk

τ2
)} ∩ B) > 0. Also define A±

i in terms
of Xi

t as in (4) for each 1 ≤ i ≤ d and let I B be the set of all k ∈ {1, 2, . . . , d} for
which P({Xk

τ1
�= Xk

τ2
}∩ B) > 0. Since f1, f2, . . . , fd are strictly monotone, we have

J B = I B . For any sequence β1, β2, . . . , βd ∈ {+,−}, let αi =: βi if fi is strictly
increasing and let αi =: −βi if fi is strictly decreasing. Now the claim follows from

[∩i∈J B Fβi
i ] ∩ B = [∩i∈I B Aαi

i ] ∩ B

which in turn follows from

Fβi
i = Aαi

i , i ∈ J B .

�
3 Models that satisfy the conditional up and down condition

In this section, we present a condition on the process Xt = (X1
t , X2

t , . . . , Xd
t ) that

is sufficient for F − CU D. We call this new condition joint conditional high up and
deep down (F − C HU DD) condition. We study the invariance of this new condition
under certain transformations. We first introduce a few notations. For any 0 < δ < T
and any stopping time τ with values in [0, T − δ) and any c > 0, let

(i) B+
i (Xi , τ, δ, c) = {inf t∈[δ,T −τ ](Xi

τ+t − Xi
τ ) > c}

(i i) B−
i (Xi , τ, δ, c) = {supt∈[δ,T −τ ](Xi

τ+t − Xi
τ ) < −c}

(8)

Definition 4 We say that an adapted càdlàg process Xt = (X1
t , X2

t , . . . , Xd
t ) satisfies

joint F − C HU DD condition for c > 0, if for any δ ∈ (0, T ) and any stopping time
τ with values in [0, T − δ), the following holds

P(∩d
i Bαi

i (Xi , τ, δ, c)|Fτ ) > 0 a.s. (9)

where αi ∈ {+,−}, and Bαi
i (Xi , τ, δ, c), 1 ≤ i ≤ d are defined as in (8).

Proposition 3 The joint F − C HU DD condition on Xt = (X1
t , X2

t , . . . , Xd
t ) for

some c > 0 implies the joint F − CU D condition on X.

Proof Assume CHUDD holds for some c > 0 and for any δ ∈ (0, T ) and any [0, T −δ)

valued stopping time τ . Let τ2 ≥ τ1 be any two stopping times with τ2 ≥ τ1 + h for
some h > 0. For each 1 ≤ i ≤ d and any αi ∈ {+,−}, define Aαi

i as in (4) and
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Absence of arbitrage in a general framework 619

Bαi
i (Xi , τ1,

h
2 , c) as in (8) (note that τ1 ≤ τ2 − h < T − h

2 ). By the assumption we
have P(∩d

i Bαi
i (Xi , τ1,

h
2 , c)|Fτ ) > 0. Therefore P(∩d

i Aαi
i |Fτ ) > 0 follows from

Bαi
i (Xi , τ1,

h

2
, c) ⊂ Aαi

i , 1 ≤ i ≤ d.

�
Next, we study the invariance of the joint F− C HU DD condition under composi-

tion with continuous functions. Let C be the class of real-valued continuous functions
f (x) that satisfy either (a) or (b) in the following

(a) limx→+∞ f (x) = +∞, limx→−∞ f (x) = −∞

(b) limx→−∞ f (x) = +∞, limx→+∞ f (x) = −∞.

(10)

Proposition 4 Let Xt = (X1
t , X2

t , . . . , Xd
t ) be an adapted càdlàg process that sat-

isfies the joint F − C HU DD condition for any c > 0. Then, for any sequence
f1, f2, . . . , fd ∈ C , the process

Yt = (Y 1
t , Y 2

t , . . . , Y d
t ),

where Y i
t = fi (Xi

t ), 1 ≤ i ≤ d, also satisfies the joint F − C HU DD condition for
any c > 0.

Proof Fix any c > 0. For any δ ∈ (0, T ) and any [0, T − δ) valued stopping time
τ , define B±

i (Y i , τ, δ, c) for each 1 ≤ i ≤ d as in (8). For any fixed sequence
α1, α2, . . . , αd ∈ {+,−}, we need to show

P(∩d
i Bαi

i (Y i , τ, δ, c)|Fτ ) > 0 a.s. (11)

and this is equivalent to showing

P(A ∩ [∩d
i Bαi

i (Y i , τ, δ, c)]) > 0 (12)

for any A ∈ Fτ with P(A) > 0.
Fix A ∈ Fτ with P(A) > 0. Also fix a finite real-number m > 0 with P(A ∩

[∩d
i {|Xi

τ | ≤ m}]) > 0. Note that such a number m exists since Xi
τ , 1 ≤ i ≤ d, are

finite valued random variables. Denote E = A ∩ [∩d
i {|Xi

τ | ≤ m}] and observe that
E ∈ Fτ . Let M = max{| f1(x)|, | f2(x)|, . . . , | fd(x)| : x ∈ [−m, m]} and observe
that |Y i

τ | ≤ M for each 1 ≤ i ≤ d on E . Since each fi (x) satisfies either (a) or (b) in
(10), we can find a real number H > 0 large enough, such that for each 1 ≤ i ≤ d:

(O1) If fi (x) satisfies (a) of (10), then fi (x) > M+c for x ≥ H , and fi (x) < −M−c
for x ≤ −H .

(O2) If fi (x) satisfies (b) of (10), then fi (x) < −M−c for x ≥ H , and fi (x) > M+c
for x ≤ −H .
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For each 1 ≤ i ≤ d, let

βi =
{

αi if fi (x) satisfies (a) in(10),

−αi if fi (x) satisfies (b) in(10).

In the following we will show that

E ∩ [∩d
i=1 Bβi

i (Xi , τ, δ, H + m)] ⊂ E ∩ [∩d
i=1 Bαi

i (Y i , τ, δ, c)]. (13)

Since the set in the left-hand side of (13) has positive probability by the assumption
on X , (13) implies (12) and this completes the proof.

To show (13), it is sufficient to show

E ∩ Bβi
i (Xi , τ, δ, H + m) ⊂ E ∩ Bαi

i (Y i , τ, δ, c), (14)

for each 1 ≤ i ≤ d.

Case1: Assume fi satisfies (a) of (10) and αi = + or it satisfies (b) of (10)
and αi = −. In both of these cases we have βi = +. Therefore on the set E ∩
Bβi

i (Xi , τ, δ, H + m), we have

in ft∈[δ,T −τ ] Xi
τ+t > Xi

τ + H + m ≥ H.

If fi satisfies (a) of (10) and αi = +, then from (O1) we conclude that on
E ∩ Bβi

i (Xi , τ, δ, H + m) we have

in ft∈[δ,T −τ ](Y i
τ+t − Y i

τ ) = in ft∈[δ,T −τ ] fi (Xi
τ+t ) − fi (Xi

τ )

> M + c − M = c.

This shows that (14) holds. If fi satisfies (b) of (10) and αi = −, then from (O2)

we conclude that

supt∈[δ,T −τ ](Y i
τ+t − Y i

τ ) = supt∈[δ,T −τ ] f (Xi
τ+t ) − f (Xi

τ )

< −M − c + M = c

on E ∩ Bβi
i (Xi , τ, δ, H + m) and this again shows that (14) holds.

Case2: Assume fi satisfies (a) of (10) and αi = − or it satisfies (b) of (10) and
αi = +. In these cases βi = −1. Therefore, on the set E ∩ Bβi

i (Xi , τ, δ, H + m),
we have

supt∈[δ,T −τ ](Xi
τ+t ) < Xi

τ − H − m < −H.
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If fi satisfies (a) of (10) and αi = −, then from (O1) we conclude that on
E ∩ Bβi

i (Xi , τ, δ, H + m) we have

supt∈[δ,T −τ ](Y i
τ+t − Y i

τ ) = supt∈[δ,T −τ ] f (Xi
τ+t ) − f (Xi

τ )

< −M − c + M = −c.

Therefore in this case (14) holds. If it satisfies (b) of (10) and αi = +, then from
(O2) we conclude that on E ∩ Bβi

i (Xi , τ, δ, H + m) we have

in ft∈[δ,T −τ ](Y i
τ+t − Y i

τ ) = in ft∈[δ,T −τ ] f (Xi
τ+t ) − f (Xi

τ )

> M + c − M = c

and this again implies (14). �
The next proposition shows that the joint F−CHUDD condition remains unchanged

under componentwise addition with bounded processes. Note that there is no any
assumption on the bounded processes except that they be adapted and càdlàg.

Proposition 5 Let Xt = (X1
t , X2

t , . . . , Xd
t ) be an adapted càdlàg process that satisfy

the joint F − C HU DD condition for any c > 0. Then for any sequence of adapted,
càdlàg, and bounded processes V 1

t , V 2
t , . . . , V d

t , the process Yt = (Y 1
t , Y 2

t , . . . , Y d
t ),

where Y i
t = Xi

t + V i
t , 1 ≤ i ≤ d, also satisfies the joint F − CHUDD condition for

any c > 0.

Proof Since V 1
t , V 2

t , . . . , V d
t are bounded, there is a M > 0 such that supt∈[0,T ]|V i

t | ≤
M a.s. for all 1 ≤ i ≤ d. Fix c > 0. For any δ ∈ (0, T ) and any [0, T − δ) valued
stopping time τ , define B±

i (Y i , τ, δ, c) for each 1 ≤ i ≤ d as in (8). For any sequence
α1, α2, . . . , αd ∈ {+,−}, we need to show

P(∩d
i Bαi

i (Y i , τ, δ, c)|Fτ ) > 0 a.s. (15)

and this is equivalent to showing

P(A ∩ [∩d
i Bαi

i (Y i , τ, δ, c)]) > 0 (16)

for any A ∈ Fτ with P(A) > 0. By the assumption on X we have

P(A ∩ [∩d
i Bαi

i (Xi , τ, δ, c + 2M)]) > 0,

therefore it is sufficient to show

A ∩ Bαi
i (Xi , τ, δ, c + 2M) ⊂ A ∩ Bαi

i (Y i , τ, δ, c) (17)
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for each 1 ≤ i ≤ d, and this follows easily from the following relation

Xi
τ+t − Xi

τ − 2M ≤ Y i
τ+t − Y i

τ ≤ Xi
τ+t − Xi

τ + 2M, 1 ≤ i ≤ d.

4 Proof of Theorem 2 and examples

In this section we present the proof of the main Theorem 2 and provide examples of
arbitrage-free models within the class L (F) of simple trading strategies.

Proof of Theorem 2 Because of Propositions 5 and 3, we only need to check the joint
F − CHUDD condition on the process (S1

t , S2
t , . . . , Sd

t ). Since the joint F − CHUDD
condition is invariant under equivalent changes of measure, we can assume that
(S1

t , S2
t , . . . , Sd

t ) is a local martingale under the original measure. In the following
we use N to denote sets of measure zero (Although these sets might differ we use the
same letter to avoid notational crowding). Fix any c > 0, T > 0, δ ∈ [0, T ), and any
sequence α1, α2, . . . , αd ∈ {+,−}. Also fix any [0, T − δ) valued stopping time τ

and A ∈ Fτ with P(A) > 0. We need to show

P(A ∩ [∩d
i Bαi

i (Si , τ, δ, c)]) > 0, (18)

where B±
i (Si , τ, δ, c) is defined as in (8) for each 1 ≤ i ≤ d.

Let ηi
s = inf{t > 0 : [S, S]i

t ≥ s}, 1 ≤ i ≤ d. Since [Si , Si ]t = [S j , S j ]t ,

1 ≤ i, j ≤ d on �/N , we have ηi
t = η

j
t , 1 ≤ i, j ≤ d on �/N . For notational

simplicity, in the following we denote ηs =: ηi
s, 1 ≤ i ≤ d and [S, S]t =:

[Si , Si ]t , 1 ≤ i ≤ d. Note that ηs is a stopping time for F for each s ≥ 0. Let
W i

s = Si
ηs

and Gs = Fηs . The condition (3) on the quadratic variation implies that
limt→∞[S, S]i

t = ∞, 1 ≤ i ≤ d. Thus from theorem 42 of chapter II of Prot-
ter (2005) and also from the independence assumption on S1

t , S2
t , . . . , Sd

t , we con-
clude that (W 1

s , W 2
s , . . . , W d

s ) is a d−dimensional Brownian motion with respect
to the filtration G = (Gs)s≥0, where W i

s = Si
ηs

, 1 ≤ i ≤ d. Observe that

(S1
t , S2

t , . . . , Sd
t ) = (W 1[S,S]t

, W 2[S,S]t
, . . . , W d

[S,S]t
). Since [S, S]t has continuous and

strictly increasing paths we have {[S, S]τ ≤ s} = {ηs ≥ τ } ∈ Fηs . Therefore [S, S]τ
is a stopping time for the filtration G. Also observe that Fτ ⊂ G[S,S]τ . This shows
that A ∈ G[S,S]τ . Let L be a real number such that L > [S, S]T a.s. Since T − τ ≥ h,
from (8) we have [S, S]T − [S, S]τ ≥ p(h). Therefore [S, S]τ is a [0, L − [S, S]τ )
valued stopping time. Define B±

i (W i , [S, S]τ , p(δ), c) for each 1 ≤ i ≤ d as in (8)
with T replaced by L . In the following we will show that

Bαi
i (W i , [S, S]τ , p(δ), c) ⊂ Bαi

i (Si , τ, δ, c), 1 ≤ i ≤ d. (19)

Since (W 1
s , W 2

s , . . . , W d
s ) satisfies the joint G − CHUHD condition for any c > 0,

we have

P(A ∩ [∩d
i Bαi

i (W i ,[S, S]τ , p(δ), c)]) > 0,

and therefore (19) implies (18).
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To show (19) for αi = −, note that Si
t = W i

[S,S]t
. Therefore we have

Bαi
i (Si , τ, δ, c) = {supt∈[δ,T ](Si

τ+t − Si
τ ) < −c}

={supt∈[δ,T ](W i
[S,S]τ+t

− W i
[S,S]τ ) <−c} ⊃ {supt∈[p(δ),L](W i

t+[S,S]τ − W i
[S,S]τ ) <−c}

= Bαi
i (W i , [S, S]τ , p(δ), c).

In the case αi = +, (19) can be shown similarly.
The following example follows from Theorem 2 and Proposition 2. �

Example 2 Let (W 1
t , W 2

t , . . . , W d
t ) be a d–dimensional Brownian motion and

V 1
t , V 2

t , . . . , V d
t

be a sequence of adapted, càdlàg, and bounded processes. For any real-valued function
g(x) with

0 < in fx∈(−∞,+∞)|g(x)| ≤ sup
x∈(−∞,+∞)

|g(x)| < +∞,

the market (1, Y 1
t , Y 2

t , . . . , Y d
t ), where Y i

t = e
∫ t

0 g(W i
s )dW i

s +V i
t for each 1 ≤ i ≤ d, is

arbitrage-free within the class L (F) of trading strategies. Note that the semimartingale

(S1
t , S2

t , . . . , Sd
t ),

where Si
t = ∫ t

0 g(W i
s )dW i

s , 1 ≤ i ≤ d, satisfies the conditions of Theorem 2 and ex

is a strictly monotone function.

Before presenting our next example, we first recall the CFS property introduced in
Guasoni et al. (2008). A R

d -valued continuous process Xt = (X1
t , Xd

t , . . . , Xd
t ) has

the CFS property if

SuppP(X |[t,T ]|Ft ) = CXt [t, T ] a.s.

where Cx [t, T ] denotes the space of R
d−valued continuous functions that start from

x at t, P(X |[t,T ]|Ft ) denotes the Ft -conditional distribution of the Cx [t, T ]-valued
random variable X |[t,T ], and “Supp” denotes the support (i.e., the smallest closed set
of probability one).

It is clear that any process with the CFS property satisfies the joint F − CHUDD
condition for any c > 0. So far, in multi-dimension, the CFS property was shown
for continuous Markov processes with the full support property, see Guasoni et al.
(2008), and also for vector valued processes with independent fBm components with
possibility different Hurst parameters, see Sayit and Viens (2011).

123



624 H. Sayit

Example 3 Let Xt = (X1
t , Xd

t , . . . , Xd
t ) be a continuous process with the CFS prop-

erty. Let V 1
t , V 2

t , . . . , V d
t be any sequence of adapted, cádlág, bounded processes. Let

Y i
t = eXi

t −
√

|Xi
t |+V i

t , 1 ≤ i ≤ d. Then the market (1, Y 1
t , Y 2

t , . . . , Y d
t ) is arbitrage-

free within the class L (F) of trading strategies. Note that the function x − √|x |
belongs to C and ex is a strictly monotone function. Therefore the claim follows from
Propositions 1, 2, 3, 4, 5.
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