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Abstract We often observe disproportionate reactions to tangible information in
large stock price movements. Moreover these movements feature an asymmetry: the
number of crashes is more than that of frenzies in the S&P 500 index. This paper offers
an explanation for these two characteristics of large movements in which hedging
(portfolio insurance) causes amplified price reactions to news and liquidity shocks as
well as an asymmetry biased towards crashes. Risk aversion of traders is shown to
be essential for the asymmetry of price movements. Also, we show that differential
information can enhance both amplification and asymmetry delivered by hedging.

Keywords Amplification · Asymmetry · Crash · Frenzy · Hedging · Portfolio
insurance

JEL Classification G11 · G12

1 Introduction

Sudden and large movements in stock prices have always drawn economists’ attention.
We see them in the form of frenzies, when the price movement is in the positive
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direction, and crashes, when the direction is negative. This paper focuses on two
characteristics of crashes and frenzies: amplification and asymmetry.

In many cases, there seems to be no significant events prior to large price move-
ments. Cutler et al. (1989) document that for the postwar movements in the S&P 500
index. This empirical fact suggests that large price movements are most often ampli-
fied price reactions to comparatively insignificant information or liquidity shocks. In
addition, it is a stylized fact that the number of crashes is more than that of frenzies in
the S&P 500 index: the histogram of de-trended security price levels does not form a
symmetric distribution. In this vein, for instance, Hong and Stein (2003) report that of
the ten largest 1-day movements in the S&P 500 since 1947, nine were declines. The
asymmetry observed in the histogram of de-trended security price levels is referred to
as level asymmetry in the literature.1

This paper offers an explanation for observed amplified price reactions to rela-
tively insignificant shocks and observed (level) asymmetry biased towards crashes.
Our explanation involves the use of hedging (portfolio insurance) strategies in the
stock market. Hedgers, who use these strategies, sell after the market has declined and
buy after the market rises. Therefore portfolio insurance is negatively price sensitive
since conventional supply schedules are increasing functions of price. Brady Com-
mission Report (1988) provides evidence for the use of portfolio insurance strategies
during the crash of 1987 and furthermore blames these negatively price sensitive
strategies for deepening the decline hence perhaps causing the crash. The studies of
Chicago Mercantile Exchange, Miller, Hawke, Malkiel, and Scholes (1987), Com-
modity Futures Trading Commission (1987), Securities and Exchange Commission
(1987) also highlight the important role of these strategies in the 1987 crash.2 As a
possible contributing factor to the crash of 1929, we see arguments focusing on the
use of stop-loss orders which are primitive portfolio insurance strategies. Gennotte
and Leland (1990) explain the 1987 crash in concordance with the findings of Brady
Report by incorporating hedging (portfolio insurance) into a conventional noisy ratio-
nal expectations model.

Following Gennotte and Leland (1990) we develop a static noisy rational expecta-
tions equilibrium (REE) model with hedgers using negatively price sensitive strategies
in a CARA-Gaussian environment. Our results show that hedging strategies amplify
the effect of news and liquidity shocks on price deviations. Convex hedging strategies
cause overreaction to negative news and liquidity shocks, hence they create an asym-
metry biased towards crashes. An important class of hedging functions (put-option
replication strategies3) satisfies the convexity condition in a highly volatile market.
We also examine the roles of risk aversion and asymmetric information in our analysis.
We find that (1) risk aversion is necessary for asymmetry of price deviations, and (2)
information asymmetry can enhance price amplification and asymmetry delivered by
hedging.

1 Van Nieuwerburgh and Veldkamp (2006) provide detailed descriptions for various types of asymmetry,
including level asymmetry.
2 Shiller (1989).
3 Put-option replication is formally defined in Sect. 4. See Rubinstein and Leland (1981) for a detailed
exposition of the subject.
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The focus of our paper is characteristics of certain dynamic phenomena, namely
crashes and frenzies. This might seem puzzling since we employ a static model for the
analysis. However, in our static framework we can interpret comparative statics results
on price as dynamic changes over time. In particular, the equilibrium price reactions
to changes in the information or liquidity parameters are viewed as fluctuations over
time. In the same fashion, crashes and frenzies are interpreted as high sensitivity to
changes in information or liquidity parameters. That is, if we see a substantial fall
in equilibrium price as a reaction to comparatively insignificant news, we call it a
crash (or a frenzy in the case of a price increase) in our setup. Note that, by this
interpretation, we also incorporate an observed characteristic, namely amplification,
into our definition of crashes and frenzies.

As mentioned above, in our setup, hedging (portfolio insurance) is the cause of
amplification and asymmetry in large price movements. Hedging strategies are natu-
rally dynamic strategies dependent on the price trend. Before explaining how hedging
strategies fit into our static environment, let us discuss why they would cause amplified
and asymmetric deviations. For intuition, we can first look at stop-loss orders. With
stop-loss orders we see sales after the market has fallen under some exercise value.
The aim is to protect one’s portfolio against future potential losses. Here it is easy to
see how a crash can be the result of an amplified price reaction, because stop-loss itself
puts a downward pressure on the price once the price begins to fall. Moreover since
there is no accompanying upward pressure, we are likely to observe an asymmetry
biased towards crashes in an environment where stop-loss orders prevail. In modern
hedging strategies, such as put-option replication, the idea is the same, but now we
have both upward and downward pressures on the price. That is, we see a buying spree
from hedgers in a bull market, and sales in a bearish one; hence comes the amplified
price reactions. If the downward pressure of the strategy were to be stronger than the
upward one, we would observe asymmetry biased towards crashes. This summarizes
most of what we are trying to formalize in Sect. 3.

Now we can return to the interpretation of hedging in our static environment. All
hedging activity is aggregated into a deterministic supply function of price p, say h(p).
As we have only one trading period in our model, let us take p∗ as our (hypothetical) ini-
tial price, and let h(p∗) = 0. A fall in the security price leads to positive hedging supply,
thus for p < p∗, h(p) > 0. Similarly, we have positive hedging demand (or negative
supply) with increasing price, thus h(p) < 0 for p > p∗. The more the price increases,
the higher the hedging demand (and vice versa); thus we want h to be a decreasing
function of p. In summary, we will view hedging as the change of a deterministic sup-
ply with respect to the change in price p compared to a hypothetical initial price p∗.

Given that our model is based on that of Gennotte and Leland (1990, henceforth
GL in this section),4 it is important to point out how our analysis differs from theirs
and what this paper adds to their results:

4 GL is the first paper to theoretically examine the role of hedging strategies during the 1987 crash. Jacklin
et al. (1992) also attribute the 1987 crash to hedging strategies. Following Glosten and Milgrom (1985),
they model a market with sequential trading. What delivers crash is the underestimation of the extent of
hedging activities. This might cause a rise in the security price due to imperfect information aggregation,
and ultimately learning leads to a price correction, in this case to a sudden decline in price.
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1. GL defines crash as a discontinuity in the price function (or correspondence). We
define crash simply as a large price decline triggered by a relatively insignificant
information or liquidity shock.

2. GL does not analyze level asymmetry observed in large price movements. The
main contribution of this paper is essentially the analysis of level asymmetry and
how the model ingredients such as risk aversion, asymmetric information and
hedging activity affect the extent of asymmetry that emerges.

Although there is an extensive theoretical literature on the amplification observed
in crashes and frenzies, the asymmetric feature of these large movements has not been
addressed until recent years. Moreover, most studies that analyze asymmetry actually
focus on a type different from level asymmetry.5 Hong and Stein (2003) is among the
few papers that can account for the level asymmetry observed in stock prices. They
use differences of opinion among investors (a trait of bounded rationality) and short-
sales constraints to obtain the desired outcome. In our paper, the necessary ingredients
for level asymmetry is risk averse rational traders and the presence of hedgers who
employ portfolio insurance strategies.

Our paper is organized as follows. Section 2 develops a noisy REE model with
hedgers and derive the unique equilibrium. Section 3 provides the results on
amplification and asymmetry in price deviations. Sections 4 and 5 check whether the
conditions for asymmetry derived in Sect. 3 are satisfied in practice. Finally, Sect. 6
examines the roles of risk aversion and asymmetric information in our analysis.

2 CARA-Gaussian economy

We employ a static REE model, which is a simplified version of Gennotte and Leland
(1990) with one informed trader instead of many disparately informed traders. We
mimic the approach of Demange and Laroque (19995) to compute the equilibrium
price.

2.1 The model

We assume two periods of time in our model. Economic agents, whom we will specify
later, competitively trade in the first period and consume in the second. There is only
one good in the economy, and there are two securities (i.e. two claims on the good): a
risk-free security and a risky security with a future random payoff X , which realizes
in the second period. The price and the payoff of the risk-free security are normalized
to 1.

There are two types of agents who are characterized by the information they possess:

5 Most studies analyze growth rate asymmetry (see, e.g., Boldrin and Levine 2001; Chalkley and Lee 1998;
Veldkamp 2005; Veronesi 1999; Zeira 1999). This type of asymmetry refers to the fact that the histogram
of log changes in security prices do not form a symmetric distribution.
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1. Insider6 observes the risky security price p and a private random signal S on the
risky security payoff X .

2. Rational outsiders observe the risky security price p.

All agents, namely the insider and outsiders, maximize expected utility of final wealth
over the first period. Agents’ utilities exhibit constant absolute risk aversion (CARA).

The net supply of the risky security is determined by two factors:

1 Liquidity supply is an exogenously determined random net supply by “liquidity
traders”. This random supply, L , is distributed with N (0, σL), and neither insider
nor outsiders know its realization.

2 Hedging supply is a deterministic net supply by “hedgers”. Hedgers employ port-
folio insurance strategies that are designed to cap losses on portfolio value by
sacrificing upside gains. These strategies are not outcomes of an optimizing be-
havior,7 but they are rather fixed rules dictating to buy when the market is going up
and sell when it is going down. Therefore the deterministic supply from portfolio
insurance strategies, h, is a decreasing function of the risky security price p.8

The aggregate net supply of the risky security is simply the sum of liquidity supply and
hedging supply. The aggregate net supply is random due to liquidity supply, and this
prevents rational outsiders from fully inferring insider’s private signal after observing
price.

All random variables in our model are Gaussian. The future payoff of the risky
security, X , is a normal random variable with non-zero variance. Insider’s signal on
X is of the form S = X + �, where � is distributed with N (0, σ�). The random
variables X , �, and L are jointly normally distributed and independent from each
other. Note that, throughout the paper, the random variables are denoted by capital
letters, and realizations of them are denoted by the corresponding small letters. The
joint distribution of X , � and L is common knowledge. The hedging supply function
h is also known to both insider and outsiders.

The CARA-Gaussian setup allows us to aggregate outsiders into a single agent,
as all outsiders share the same information. From now on we denote the insider by
i , and the outsider by o. The constant Arrow-Pratt measure of absolute risk aversion
of insider is ai , and that of outsider is ao. To be more precise, 1

ao
is the sum of all

rational outsiders’ measures of risk tolerance (as we are aggregating all outsiders into a
single agent). We define the aggregate Arrow-Pratt measure of absolute risk aversion
A by setting 1

A = 1
ai

+ 1
ao

. Utility functions of insider and outsider are of the form,

u j (W j ) = −e−a j W j , j = i, o, where W j is agent j’s random final wealth (which
realizes in the second period). Both agents maximize expected utility of final wealth
over the first period and their expectations depend on their Gaussian information.

6 We can justify the price-taking behavior of the single insider by assuming that she represents a continuum
of mass one of insiders who act competitively.
7 At least in the context of this model.
8 Naturally, the particular functional form of the hedging supply h depends on the set of portfolio insurance
strategies employed by hedgers. We need not specify or restrict these strategies for the equilibrium analysis
conducted in Sects. 2.2 and 3.
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Insider and outsider are endowed with deterministic wealth (holdings of risk-free
claim on the good) ei and eo, respectively.

In the first period, the risky security is traded on the market against the risk-free
security. If agent j , j = i, o, purchases D j units of the risky security at price p, j’s
random final wealth would be W j = D j X + (e j − pD j ). As the rational agent j
maximizes her expected utility of consumption in the second period, she solves

maxD j E[−e−a j W j |I j ]
s. to D j X + (e j − pD j ) = W j , (1)

where D j is j’s net excess demand of the risky security and I j is j’s Gaussian infor-
mation. In the first period, total net supply of the risky security at price p is the sum
of liquidity supply and hedging supply, i.e. it is

l + h(p),

where l is the realization of random liquidity supply L .
In the second period, all uncertainty is resolved, and consumption takes place with-

out any further trade.

2.2 Equilibrium

Next we define the equilibrium price in the fashion of rational expectations equilibrium:
a rational expectations equilibrium price of the risky security is a function P(s, l) such
that, for any realization of signal and liquidity supply (s, l),

Di (p|s) + Do(p|P(s, l) = p) = l + h(p),

where Di (p|s) solves insider’s maximization problem given in (1), conditional on
the observation of the price p and the signal s,9 and Do(p|P(s, l) = p) solves
outsider’s maximization problem given in (1), conditional on the observation of p
and the knowledge about the price function P(s, l) to update the beliefs on s.

Note that as insider is the only informed trader in the economy, observation of risky
security’s price does not add any information on top of what he already has. We let �

denote outsider’s Gaussian information. From the definition above we already know
� coincides to the knowledge of P(s, l) = p; however we would like to express
outsider’s information explicitly as a function of s and l in the equilibrium, hence we
introduce this new notation. The excess demand functions of insider and outsider are
given by10

9 The random variables are denoted by capital letters and realizations of them are denoted by the corre-
sponding small letters.
10 Expressions of excess demand functions in CARA-Gaussian environments are well-known, however we
still provide the derivations in (B1) of Appendix B.
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Di (p|S = s) = E[X |s] − p

ai var(X |S)
, Do(p|� = σ) = E[X |σ ] − p

aovar(X |�)
. (2)

The following notation is introduced:11

a∗
i = ai var(X |S), a∗

o = aovar(X |�),
1

A∗ = 1

a∗
i

+ 1

a∗
o
.

Given joint distributions of X , S, and L , A∗ is only a function of insider’s risk aversion
ai , and outsider’s risk aversion ao. That is, the value of A∗ does not depend on the
realization of insider’s signal and liquidity supply (since normal conditional variances
are independent of realizations). We further assume the following:

S1. I + A∗h is strictly monotone (i.e. either strictly increasing or strictly decreasing).12

This assumption guarantees a continuous equilibrium price function that can be
used for comparative statics. Without assuming S1, the proof of the existence of an
equilibrium still holds, but it leads to a price correspondence which may not be single-
valued. One now has the following:

Proposition 1 (Equilibrium) Assume S1. Then the unique rational expectations equi-
librium price is given by

P(s, l) = f −1
(

A∗

a∗
i

E[X |s] + A∗

a∗
o

E[X |σ ] − A∗l

)

= f −1
(

E[X |σ ] + A∗

a∗
i

(σ − E[X |σ ])
)

,

where f −1 is the inverse of f ≡ I + A∗h, and σ = E[X |s] − ai var(X |S) l is the
(realization of) outsider’s information.

Proof S1 guarantees that f −1 is a well-defined continuous function. Excess demand
functions of insider and outsider are also well-defined since var � and var X are non-
zero. Hence market clearing yields

(
1

ai var(X |S)
+ 1

aovar(X |�)

)
p + h(p) = E[X |s]

ai var(X |S)
+ E[X |σ ]

aovar(X |�)
− l.

Outsider’s information σ is revealed by the observation of price and the knowledge
of price function. The price function is essentially derived from the market clearing
condition above, thus outsider’s information coincides with the knowledge of market
clearing condition. Since the hedging function h and distributions of S and L are

11 Note that we abuse the notation here by writing var(X |S) instead of var(X |s), i.e. we condition the
variance of X on the distribution of signal rather than its realization. However normal conditional variances
do not depend on realizations, thus our notation for the variance fits to this characteristic of the Gaussian
environment.
12 I denotes the identity function, i.e. I (x) = x ∀x ∈ R.
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common knowledge, and values of conditional normal variances are independent from
realizations,13 outsider can induce the following information from market clearing:

E[X |s]
ai var(X |S)

− l. Multiplying this argument by a known constant (namely ai var(X |S))
would not matter for the informational content, therefore outsider’s information is
equivalent to the knowledge of the realization σ = E[X |s]−ai var(X |S) l. Recall that
S and L are jointly normally distributed. So � (the random distribution σ belongs to)
is also normally distributed, and outsider’s demand as given in (2) holds. Rewriting
market clearing condition we have

p + A∗h(p) = A∗

a∗
i

E[X |s] + A∗

a∗
o

E[X |σ ] − A∗l,

where A∗, a∗
i , and a∗

o are as defined above. Writing A∗
a∗

o
= 1− A∗

a∗
i

, and using definition

of f ; the result follows. ��
Note that the equilibrium price of risky security given by Proposition 1 is a function

of insider’s private signal s and liquidity supply l. In the Gaussian framework, E[X |s]
is a linear increasing function of s, and given s the assessment of conditional expec-
tation does not put a burden on the agents from the informational perspective since
all the parameters necessary to extract its functional form are common knowledge.
Therefore the comparative statics results in this paper do not change qualitatively if
the equilibrium price is taken as a function of the vector (E[X |s], l) rather than (s, l).
Using (E[X |s], l) as the underlying parameters, the equilibrium price function takes
the form14

P(E[X |s], l) = f −1 (Q(E[X |s], l)) , where (3a)

Q(E[X |s], l) = − A∗

a∗
o

{
1 − cov(X, �)

var�

}
EX

+
{

cov(X, �)

var�
+ A∗

a∗
i

(
1 − cov(X, �)

var�

)}
E[X |s]

−
{

a∗
i

cov(X, �)

var�
+ A∗

(
1 − cov(X, �)

var�

)}
l. (3b)

2.3 Trading behavior in the presence of hedgers

In this section, we will analyze the effect of hedging on rational agents’ trading
behaviors. However, before embarking on this analysis, it is important to identify
how hedging affects the direction of price deviations. As it follows from (3a) to (3b),
the equilibrium price15 is a strictly increasing function of E[X |s] and a strictly de-
creasing function of l when there is no hedging supply. This is quite plausible since

13 See (A1) in Appendix A.
14 See (B2) in Appendix B for the derivation.
15 From now on, the term “price” stands for the risky security price unless otherwise stated.
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security prices tend to increase in the presence of good news and they tend to fall
when liquidity of the security increases. Theoretically, presence of hedgers may per-
vert this observed characteristic of security prices, that is, prices may fall with good
news and increase with liquidity supply. This may happen because after good news
or a fall in liquidity supply hedging demand may be so intense that rational insider
and outsiders may find it profitable to sell the security, which may in turn decrease the
price. However, in reality, such intense hedging supply (or demand) is not observed.
The following lemma provides the necessary and sufficient condition for hedging to
lead to price reactions in accord with reality.

Lemma 1 Let f −1 be differentiable. Then P(E[X |s], l) is strictly increasing in E[X |s]
and strictly decreasing in l if and only if

(S1′) I + A∗h is strictly increasing.

Note that assumption S1 necessarily holds when condition S1′ holds.
Having identified the condition under which hedging activity has no perverse effect

on price deviations, we now investigate how rational traders (i.e. insider and outsider)
and hedgers interact in our economy. Recall that equilibrium demand function of a
rational trader is of the form

D j (P(E[X |s], l)|I j ) = E[X |I j ] − P(E[X |s], l)

a j var(X |I j )
, (4)

where I j stands for the Gaussian information of agent j = i, o. We can partition

the rational demand into the information effect
E[X |I j ]

a j var(X |I j )
, and the substitution effect

− P(E[X |s],l)
a j var(X |I j )

. The overcoming effect among these two determines the direction of the
rational demand reaction whenever price deviates. To further our analysis, we also
incorporate the size of hedging activity as a parameter into the hedging supply by
letting

h(p) = α �(p), ∀p. (5)

In the expression above, � is a decreasing function of p, and α denotes the fraction
of assets protected by hedging (portfolio insurance). We have the following result:

Proposition 2 (Trading behavior) Assume that condition S1′ stated in Lemma 1 holds
and f −1 is differentiable. Then

(a) Do(P(E[X |s], l)|σ) is decreasing in E[X |s] and increasing in l.
(b) Di (P(E[X |s], l)|E[X |s]) is increasing in l.
(c) If the fraction α of assets protected by hedging (portfolio insurance) is sufficiently

small, then Di (P(E[X |s], l)|E[X |s]) is increasing in E[X |s]. If α is sufficiently
large, then Di (P(E[X |s], l)|E[X |s]) is decreasing in E[X |s].

Part (a) of Proposition 2 shows that, regardless of the size of hedging activity,
outsider’s demand of risky security tends to decrease as insider’s expectation of risky
payoff increases and as liquidity supply decreases. The negative relationship between
outsider’s demand and insider’s risky payoff expectation might seem puzzling at first,
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because outsider is able to partially infer insider’s private information through price.
However, all that is inferred by outsider is already compounded into price which
prevents her from enjoying any informational rent. This is for instance the case in
Grossman (1976): there is no random supply in Grossman’s (1976) model and the
information and substitution effects cancel each other exactly so that demands stay
unresponsive to information shocks. In models with random supply, as is the case in
our model, the substitution effect is relatively stronger for an outsider which renders a
decrease in outsider’s demand with good news. The presence of hedging only makes
the substitution effect more pronounced as hedgers’ demand follows the price trend.
Therefore with or without hedging, the direction of outsider’s demand reaction stays
the same and moves in the opposite direction from insider’s expectation.16

Part (c) of Proposition 2 shows that presence of hedging can alter the direction
of insider’s demand reaction to information shocks. Without any hedging activity,
insider demands more of the risky security when good news arrives. Although this
is most plausible, it may not be straightforward to observe this from the interaction
between information and substitution effects. Good news not only implies a more
pronounced information effect but also a more pronounced substitution effect as price
increases after good news. Since the two effects move insider’s demand in opposite
directions, we need to identify which of the two overcomes the other. Given that
insider has private information which is never fully incorporated into price due to
random liquidity shocks, she can enjoy positive informational rent. This in turn makes
information effect relatively stronger. However, in the presence of hedging, insider’s
demand reaction may change direction. If the size of hedging is large enough, the price
sensitivity to information shocks is amplified excessively by hedgers who follow the
price trend. As a consequence, substitution effect can overcome information effect,
and insider’s demand begins to decrease with good news.

Unsurprisingly the presence of hedging affects trading behaviors of both insider
and outsider, however, as the discussion above shows, hedging has a more profound
effect on insider’s trading behavior compared to that of outsider since it can alter the
direction of insider’s demand reaction to information shocks.

2.4 Asymmetric price deviations and non-linear prices

As it follows from (3a), the equilibrium price is a function of insider’s expectation
of the risky payoff (E[X |s]) and the liquidity supply (l). Next we discuss how the
asymmetry between crashes and frenzies emerges in our setup. If the equilibrium price
function P were linear in (E[X |s], l), then negative and positive shocks (on insider’s
information or liquidity supply) of the same magnitude would create price deviations
of the same size. Thus we could only attribute the asymmetry in favor of crashes to
more frequent and significant negative shocks. As there is no evidence of more frequent
negative information or liquidity shocks in the history of S&P 500, we are interested
in asymmetric price deviations triggered by symmetric shocks. Formally, we have the

16 Note that the result and the underlying intuition do not carry over to a model with many risky securities.
See Admati (1985) for a detailed discussion of this issue.
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following: given (E[X |s0], l0), we say that there is an asymmetry in deviations at the
equilibrium price P(E[X |s0], l0) if for some (�1,�2) > 017

P(E[X |s0], l0) − P(E[X |s0] − �1, l0) �= P(E[X |s0] + �1, l0) − P(E[X |s0], l0), or

P(E[X |s0], l0) − P(E[X |s0], l0 − �2) �= P(E[X |s0], l0 + �2) − P(E[X |s0], l0).

Clearly, non-linearity of the equilibrium price function in E[X |s] or l is necessary
and sufficient for asymmetry in price deviations. Recall that f ≡ I + A∗h. When
there is no hedging supply, f = I and P(E[X |s], l) is linear in (E[X |s], l) by (3a)
and (3b). So asymmetric information by itself can not create asymmetric deviations in
price. With non-zero A∗, non-linearity of hedging supply h becomes a necessary and
sufficient condition for a non-linear equilibrium price function, and consequently for
asymmetric deviations in price. Given (E[X |s0], l0) we say information and liquidity
shocks cause a bias towards negative price deviations within the set Us0 × Ul0 if for
all (�1,�2) > 0 such that E[X |s0] − �1 ∈ Us0 , E[X |s0] + �1 ∈ Us0 , l0 − �2 ∈ Ul0 ,
l0 + �2 ∈ Ul0 , the following holds:

P(E[X |s0], l0) − P(E[X |s0] − �1, l0) > P(E[X |s0] + �1, l0) − P(E[X |s0], l0),

P(E[X |s0], l0) − P(E[X |s0], l0 − �2) > P(E[X |s0], l0 + �2) − P(E[X |s0], l0).

Suppose equilibrium price function P is continuously differentiable. Then there
exists a bias towards negative price deviations within Us0 × Ul0 if and only if
P(E[X |s], l) is strictly concave in E[X |s] and l within Us0 × Ul0 . This is due to
the fact that for a strictly concave and continuously differentiable function g

g(x1) < g(x0) + g′(x0)(x1 − x0),

and letting x1 equal to first x0 − �x and then x0 + �x one gets

g(x0) − g(x0 − �x ) > g(x0 + �x ) − g(x0).

Note the following obvious that whenever P(E[X |s], l) is globally concave in E[X |s]
and l, all shocks will cause a bias towards negative price deviations in the economy.
One can also interpret the strict concavity of equilibrium price P as overreaction to
negative shocks.

3 Amplification and asymmetry

In this section we present comparative statics of the equilibrium price P . The first-order
partial derivatives of P(E[X |s], l)with respect to E[X |s] and l determine the sensitivity
of price to changes in insider’s information and liquidity supply, respectively. The
second-order partial derivatives determine the concavity of price function, hence it
reveals the nature of bias within the asymmetric price deviations. Our purpose is

17 (�1,�2) > 0 if and only if both �1 and �2 are strictly positive.
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to see how hedging supply affects the first and second-order partial derivatives of
the equilibrium price. If, in the presence of hedging supply, there is higher price
sensitivity to changes in information and liquidity, we will be able to conclude that
hedging amplifies price reactions. Also, if, with hedging supply, the equilibrium price
becomes a concave function of the underlying parameters, this will imply that hedging
creates a level asymmetry biased towards negative deviations.

Our first result is on amplification:

Proposition 3 (Amplification) Assume that condition S1′ stated in Lemma 1 holds
and f −1 is differentiable. As the fraction α of assets protected by hedging increases,18

the equilibrium price function becomes more sensitive to information and liquidity
shocks. That is,

∣∣ ∂ P(E[X |s],l)
∂E[X |s]

∣∣ and
∣∣ ∂ P(E[X |s],l)

∂l

∣∣ are increasing functions of α.

Proposition 3 reveals the amplifying effect of hedging activity on price movements.
The intuition is easy to see: once the price begins to fall (due to bad news or increasing
liquidity supply), there will be more hedging supply of the security which will further
push the prices to much lower levels. So, in the presence of hedging, one will see
amplified price reactions to the triggering events (such as bad news or higher liquidity).
Naturally, the bigger the size of hedging activity is, the larger the price reactions will
be. Of course, the same argument works for the price hikes.

Next we analyze the second characteristic of large price movements: the asymmetry
in favor of crashes. To that end, we need to check the concavity of equilibrium price
with respect to the parameters E[X |s] and l (see earlier discussion in Sect. 2.4). We
have the following result:

Proposition 4 (Asymmetry) Assume that condition S1′ stated in Lemma 1 holds and
f −1 is twice-differentiable. If hedging supply h is a strictly convex function within the
set

P
(
Us0 , Ul0

) = {p : p = P(E[X |s], l) s.t. (E[X |s], l) ∈ Us0 × Ul0},

then:

(a) information and liquidity shocks cause a bias towards negative price deviations
within Us0 × Ul0 , i.e. P(E[X |s], l) is strictly concave in E[X |s] and strictly
concave in l for (E[X |s], l) ∈ Us0 × Ul0 ,

(b) the extent of bias towards negative price deviations increases within Us0 × Ul0

as the fraction α of assets protected by hedging increases, i.e. ∂2 P(E[X |s],l)
∂E[X |s]2 and

∂2 P(E[X |s],l)
∂l2 are decreasing functions of α within Us0 × Ul0 .

It is easy to check that even if condition S1′ does not hold, the results above (on
amplification and asymmetry) will hold within the domain

{
(E[X |s], l) ∈ R

2 : (I + A∗h)′ (P(E[X |s], l)) > 0
}
.

18 See Eq. (5) to recall how α has been incorporated into the hedging supply function.
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To sum up, under plausible conditions, whenever a shock (either of informational
nature or liquidity based) occurs in the economy, the deviation in price is amplified due
to hedging supply. Hence in the presence of hedging, the deviations are more likely
to be significant, that is they are more likely to be a crash or a frenzy. Moreover if
the hedging supply function is (globally) strictly convex, then a bias towards negative
deviations is observed. We can summarize these results as follows:

Corollary 1 (Main result) Assume that condition S1′ stated in Lemma 1 holds and
f −1 is twice-differentiable. If hedging supply h is a strictly convex function, then:

(a) the equilibrium price function becomes more sensitive to information and liquid-
ity shocks as the fraction α of assets protected by hedging increases,

(b) information and liquidity shocks cause a bias towards negative price deviations,
(c) the extent of bias towards negative price deviations increases as the fraction α

of assets protected by hedging increases.

One criticism towards the results of this section might be the extent of their de-
pendence on hedging activity. After all, having lots of irrational agents, programmed
to behave in ways to create amplification and asymmetry, would not be much of
an explanation for the characteristics we are examining. Therefore we would like to
show that our results do not stem from an imposed environment with a lot of irrational
hedgers accompanied by just enough rational traders to equate supply and demand.
The main difference between rational traders (insider, outsider) and hedgers is that
their demands react differently to price deviations. That is, the demand of rational
traders is a decreasing function of price whereas the demand of hedgers is increasing
in price. So we can determine the dominance of a group (namely rational traders or
hedgers) in the market by checking the sensitivity of their aggregate demand with
respect to price.

Proposition 5 (Market demand) Let f −1 be differentiable. Condition S1′ stated in
Lemma 1 holds if and only if the aggregate demand Z of the risky security is strictly
decreasing in p, where

Z(p) = Di (p|E[X |s]) + Do(p|σ) − h(p).

This proposition shows that demand of rational traders (insider and outsiders) pre-
vail over that of hedgers if and only if condition S1′ holds. Since we get the results
of this section with practically one condition, namely S1′, we can say that our results
hold within an environment where rationality prevails.

4 Put-option replication

In this section, we examine a specific hedging (portfolio insurance) strategy: the
put-option replication. Put-option replication was the most popular hedging strat-
egy during 1980’s, in particular, during the October 1987 crash. The formula for the
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put-option replication is taken from Gennotte and Leland (1990).19 The hedging
strategy is assumed to be applied to a fraction α of risky securities. The incremental
hedging supply when new price is p, relative to the supply at the hypothetical initial
price (p∗ = 1), is given by

ĥ(p) = α (�(d(1)) − �(d(p))) ,

where �(.) is the standard cumulative normal distribution function, and d(.) is derived
from the Black–Scholes formula

d(p) = ln
( p

K

) + 1
2 var(X |�)√

var(X |�)
.

with K as the striking price for the option (or the protection level in the replication
case).20

Possibility of negative security prices is a caveat of the CARA-Gaussian framework.
Naturally we focus on strictly positive prices for the analysis of put-option replication.
Note that

ĥ′(p) = − αφ(d(p))

p
√

var(X |�)
,

where φ(.) is the standard normal density function. Clearly, ĥ is decreasing in the
domain of strictly positive prices. Extracting ĥ′(p), we get

ĥ′(p) = −α

p

exp

(
− 1

2

(
ln p

K + 1
2 var(X |�)√

var(X |�)

)2
)

√
2πvar(X |�)

.

Now it is easy to see the following:

Lemma 2 Given p0 > 0, if α ≤ p0
√

2πvar(X |�)
A∗ , then ĥ′(p) > − 1

A∗ for all p ∈
[p0,∞). Moreover, as α tends to 0, the set

{
p : ĥ′(p) > − 1

A∗
}

will converge to the
domain of strictly positive prices (0,∞).

So if the fraction α of assets protected by hedging is sufficiently small, condition
S1′ stated in Lemma 1 holds for ĥ over a strict subset of positive prices. It is easy
to check that all our proofs will work over this strict subset. To be more precise, our

19 Gennotte and Leland (1990) point out the differences in their formula compared to Black and Scholes
(1973). They assume that interest rate has been normalized to zero, and assume a 1-year time horizon.
Moreover in theirs payoff is normally distributed (as in our model), whereas in Black and Scholes (1973)
payoff follows a log-normal process.
20 In the actual Black–Scholes formula, we would have d(p) =

(
ln

( p
K

) + 1
2 var(X |P)

) (√
var(X |P)

)−1.

However as we elaborated before, observing P is equivalent to observing � (see Proposition 1).
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results on amplification and asymmetry (stated in Propositions 3 and 4) still hold over
the domain

{
(E[X |s], l) ∈ R

2 : ĥ′ (P(E[X |s], l)) > − 1

A∗

}
,

and this domain converges to {(E[X |s], l) ∈ R
2 : P(E[X |s], l) > 0} as α tends to 0.

For the convexity of ĥ, we need to check the second-order partial derivative:

ĥ′′(p) = − α√
var(X |�)

φ′(d(p))d ′(p)p − φ(d(p))

p2

= αφ(d(p))

p2
√

var(X |�)

(
d(p)√

var(X |�)
+ 1

)

= α exp(−d(p)2)

p2
√

2πvar(X |�)

(
ln

( p
K

)
var(X |�)

+ 2

)
.

The following result can be easily proved using this equation:

Lemma 3 ĥ is strictly convex over the domain
{

p : p > K
e2var(X |�)

}
. As var(X |�)

tends to ∞, the domain where ĥ is strictly convex will converge to the set of strictly
positive prices.

Now using Lemmas 2, 3, and our results from Sect. 3 (namely Propositions 3 and
4), we obtain the following:

Proposition 6 (Put-option replication) If

(i) insider’s risky payoff expectation and liquidity supply are in the domain

{
(E[X |s], l) ∈ R

2 : P(E[X |s], l) >
K

e2var(X |�)

}
,

(ii) α is less than K
√

2πvar(X |�)

A∗e2var(X |�) , and

(iii) hedgers employ put-option replication so that ĥ is the hedging supply function,

then:

(a) the equilibrium price function becomes more sensitive to information and liq-
uidity shocks as the fraction α of assets protected by hedging increases, i.e.∣∣ ∂ P(E[X |s],l)

∂E[X |s]
∣∣ and

∣∣ ∂ P(E[X |s],l)
∂l

∣∣ are increasing functions of α,
(b) information and liquidity shocks cause a bias towards negative price deviations,

i.e. P(E[X |s], l) is strictly concave in E[X |s] and strictly concave in l,
(c) the extent of bias towards negative price deviations increases as the fraction α

of assets protected by hedging increases, i.e. ∂2 P(E[X |s],l)
∂E[X |s]2 and ∂2 P(E[X |s],l)

∂l2 are

decreasing functions of α.
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Moreover as var(X |�) tends to ∞, the domain where the bias towards negative
price deviations is observed will converge to

{
(E[X |s], l) ∈ R

2 : P(E[X |s], l) > 0
}
.

Proposition 6 reveals that price deviations are more likely to be significant, that is,
they are more likely to be a crash or a frenzy, provided risky payoff is highly volatile and
hedgers employ put-option replication as their portfolio insurance strategy. Moreover,
for a large domain of positive security prices a bias towards negative deviations is
observed under the same conditions. Thus we can conclude that for a large domain
of positive security prices there would be a bias towards crashes when risky payoff is
highly volatile and put-option replication is the prevalent hedging strategy.

Though put-option replication and other portfolio insurance strategies played an
important role in modern times, it is hard to use the same argument for the first half
of the century. The sophisticated portfolio insurance strategies did not even exist then.
However there is a hedging strategy which has been in use arguably as long as stock
markets existed: stop-loss. In its most primitive form, hedgers sell their risky securities
when the price falls below a predetermined level, say K . Use of this primitive hedging
form clearly creates the asymmetry we want: there is an additional downward pressure
on sales once price falls below K whereas there is no pressure when market goes up.
Hence we get price asymmetry biased towards crashes with stop-loss as well.

5 A numerical example: back to 1980s

The levels of risk aversion, hedging and risky payoff volatility necessary for substantial
sizes of amplification and asymmetry are, of course, matters of concern. In other words,
we do not want to generate amplification and asymmetry using implausible values for
the parameters of our model. So we examine the following numerical example:

Let us take put-option replication, the most popular portfolio insurance strategy
of 1980s, as the hedging function. We assume α to be 0.05, which is not far from
the hedging size in the 1987 crash. The protection level K is assumed to be 85% of
initial price. Let us fix the initial equilibrium price to be 1 so that K becomes 0.85.
Assuming an expected 6% return on the risky security compared to a risk-free asset is
reasonable for U.S. markets, thus we let E[X ] = 1.06. Outsider is assumed to be more
risk averse than insider by letting ai = 0.70 and ao = 1.40. Take var(X |S), var(X |�)

and cov(X,�)
var� to be 200, 400 and 0.5, respectively.21 Note that these values illustrate

the informational advantage of insider through var(X |�)
var(X |S)

= 2. We assume l to be 0 as
liquidity supply is not biased.

Then to create a 20% price deviation in the negative direction it takes a 2.9% fall in
the insider’s expectation on risky payoff (E[X |s]) whereas a positive price deviation of
the same magnitude requires a 8.5% increase in E[X |s]. This example clearly depicts
the asymmetry.

Moreover if there were no hedging in the market, a 20% price movement in any
direction would require a 18.1% change in the information parameter E[X |s]. Clearly

21 cov(X,�)
var� always takes values between 0 and 1. See Lemma B (C1) in Appendix C.
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in the case with put-option replication, price is more sensitive to the parameter changes,
which illustrates the amplification brought by hedging.

6 Roles of risk aversion and asymmetric information

Lee (1998) makes the following conjecture in the conclusion of his paper: “under risk
aversion it is more difficult to trigger a frenzy than a crash because a surprise of the
same degree in the direction of the good state induces a smaller response than the
one in the direction of the bad state.” Granted Lee’s model exploits a totally different
mechanism, his conjecture actually pinpoints the role of risk aversion in our analysis.
The following proposition demonstrates this:

Proposition 7 Assume that condition S1′ stated in Lemma 1 holds. As insider or out-
sider tends to be risk neutral, asymmetry vanishes in the equilibrium price deviations.

Proposition 7 simply follows from Proposition 1 and Eqs. (3a)–(3b): f −1 converges
to the identity function as either of the risk aversion parameters ai or ao converges to
0, which then implies P(E[X |s], l) converging to a linear function. If the equilibrium
price converges to a linear function, it simply means that asymmetry in price deviations
vanishes.

In our model, risk aversion allows hedging to be incorporated to the price function.
If traders are risk neutral, then hedging does not affect price function at all, which
consequently means there are no asymmetric deviations.

Next we discuss the role of asymmetric information in our analysis. For conve-
nience, we first define a measure for the level of asymmetry regarding information.
Notice that the ratio var(X |�)

var(X |S)
gives the imprecision of the information of outsider rel-

ative to that of the insider, i.e. given the gaussian nature of our framework this ratio
delivers insider’s informational advantage over outsider. So we let

µ := var(X |�)

var(X |S)
,

and call the ratio µ, µ > 1, the measure of asymmetric information.22 The bigger the
measure µ gets, the larger the asymmetry between insider and outsider is. Now we
can easily see how asymmetric information affects our analysis:

Proposition 8 (Asymmetric information) Assume that condition S1′ stated in
Lemma 1 holds and h′(.) < − 1

a∗
i

. Also suppose that f −1 is continuously twice-

differentiable and hedging supply h is strictly convex. There exists µ̄ > 1 such that
within the domain (µ̄,∞) of the asymmetric information measure µ

(a) the equilibrium price function becomes more sensitive to information and liq-
uidity shocks as µ increases, i.e.

∣∣ ∂ P(E[X |s],l)
∂E[X |s]

∣∣ and
∣∣ ∂ P(E[X |s],l)

∂l

∣∣ are increasing
functions of µ,

22 Since outsider’s information is more imprecise compared to that of insider’s, the measure of asymmetric

information µ ≡ var(X |�)
var(X |S)

is always strictly greater than 1.
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(b) the extent of bias towards negative price deviations increases as µ increases, i.e.
∂2 P(E[X |s],l)

∂E[X |s]2 and ∂2 P(E[X |s],l)
∂l2 are decreasing functions of µ.

The only new assumption in this proposition, which has not been employed before,
is

h′(.) < − 1

a∗
i

≡ − 1

ai var(X |S)
,

and this may be justified if the information of insider is sufficiently imprecise (i.e.
if var(X |S) is sufficiently large). The proposition states that, with sufficiently large
asymmetry between insider and outsider in terms of information owned, both ampli-
fication and asymmetry of price deviations will be more significant as the measure of
asymmetric information µ increases.

So how can information asymmetry create the effects described above? Consider,
to begin with, an economy in which outsider is sufficiently less informed compared
to insider.23 In this economy, outsider essentially plays the role of a buffer against
information and liquidity shocks: due to information asymmetry, reactions of out-
sider’s demand to such shocks are less pronounced than the reactions of insider’s
demand. The relative intensity between the demands of outsider and insider deter-
mines the relative weights of these demands in the price formation process, which in
turn determines the level of price sensitivity to shocks. As the information asymmetry
increases, insider’s demand becomes more intense relative to that of outsider, and,
as a consequence, price sensitivity to information and liquidity shocks become more
pronounced. When hedging supply is added into this picture, price sensitivity is en-
hanced even further due to hedging’s amplifying nature. Also, since price movements
following shocks become more pronounced with increased information asymmetry,
these movements trigger more aggressive reactions from hedgers who employ convex
supply functions. This, in turn, leads to an enhanced asymmetry in price deviations.

Unlike risk aversion, asymmetric information is not a necessary ingredient in our
model to create asymmetry in price deviations. However, its presence allows us to gen-
erate significant amplification and asymmetry with plausible risk aversion coefficients
in numerical computations, as has been illustrated in Sect. 5.

Appendix A: Mathematical preliminaries

A1 Projection theorem

For jointly normally distributed random variables X and �, the following hold:

E[X |� = θ ] = E[X ] + cov(X,�)

var�
(θ − E�),

var(X |�) = var(X) − (cov(X,�))2

var�
.

23 Note that this is as well the case in Proposition 8 since the asymmetric information measure µ is within
the domain (µ̄, ∞) where µ̄ > 1.
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A2 Rao’s formula

For a normal random variable X, the following holds:

E[eX ] = e

(
EX+ varX

2

)
.

Appendix B: Derivations

B1 Derivation of excess demand functions

Since X is normal, W j is also normal for j = i, o. By Rao’s formula (A2) we have

E[u j (W j )|I j ] = − exp

(
−a j D j E[X |I j ] − a j (e j − pD j ) + a2

j D2
j
var(X |I j )

2

)
.

Agent j ∈ {i, o} solves the maximization problem, given in (1). The solution to this
problem is

D j (p) = E[X |I j ] − p

a j var(X |I j )
.

B2 Derivation of (3b)

Recall that σ = E[X |s] − a∗
i l. Projection theorem (A1) implies

E[X |σ ] = EX + cov(X, �)

var�
(E[X |s] − a∗

i l − EX).

Therefore

E[X |σ ] + A∗

a∗
i

(σ − E[X |σ ]) =
{

cov(X, �)

var�
+ A∗

a∗
i

(1 − cov(X, �)

var�
)

}
E[X |s]

−
{

cov(X, �)

var�
+ A∗(1 − cov(X, �)

var�
)

}
l

− A∗

a∗
o

{
1 − cov(X, �)

var�

}
EX.

B3 Derivatives of the function f −1

Let y = f (x). Then as f ≡ I + A∗h, we have

( f −1)′(y) = 1

1 + A∗h′(x)
, ( f −1)′′(y) = − A∗h′′(x)

(1 + A∗h′(x))3 .
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B4 Price sensitivity and asymmetry

The sensitivity of price is determined by the partial derivatives of P(E[X |s], l) with
respect to E[X |s] and l:

∂ P(E[X |s], l)

∂E[X |s] = ( f −1)′ (Q(E[X |s], l))

[
cov(X, �)

var�
+ A∗

a∗
i

(
1 − cov(X, �)

var�

)]
,

(6a)

∂ P(E[X |s], l)

∂l
= −( f −1)′ (Q(E[X |s], l))

[
a∗

i
cov(X, �)

var�
+ A∗

(
1− cov(X, �)

var�

)]
.

(6b)

In the case of twice-differentiable price functions, concavity is determined by the
second-order partial derivatives:

∂2 P(E[X |s], l)

∂E[X |s]2 = ( f −1)′′ (Q(E[X |s], l))

{
cov(X, �)

var�
+ A∗

a∗
i

(
1 − cov(X, �)

var�

)}2

,

(7a)

∂2 P(E[X |s], l)

∂l2 = ( f −1)′′ (Q(E[X |s], l))

{
a∗

i
cov(X, �)

var�
+ A∗

(
1− cov(X, �)

var�

)}2

.

(7b)

Appendix C: Proofs

C1 Lemma B. cov(X,�)
var� ≤ 1

Proof Note that

cov(X, �) = cov (X, E[X |S] − ai var(X |S)L) = cov(X, E[X, S])

= cov

(
X, EX + cov(X, S)

varS
(S − EX)

)
= (cov(X, S))2

varS
,

var� = var(E[X |S]) + ai
2(var(X |S))2varL

= var

(
EX + cov(X, S)

varS
(S − EX)

)
+ ai

2(var(X |S))2varL

= (cov(X, S))2

varS
+ ai

2(var(X |S))2varL .

Hence the result follows. ��
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C2 Proof of Lemma 1

From Lemma B and Eqs. (6a) and (6b), it follows that

sign

(
∂ P(E[X |s], l)

∂E[X |s]
)

= sign
(
( f −1)′ (Q(E[X |s], l))

)
,

sign

(
∂ P(E[X |s], l)

∂l

)
= −sign

(
( f −1)′ (Q(E[X |s], l))

)
.

The proof then simply follows from the fact that ( f −1)′(y) = 1
1+A∗h′(x)

, given
y = f (x). ��

C3 Proof of Proposition 2

(a) From the extraction of E[X |σ ] it follows that ∂E[X |σ ]
∂E[X |s] = cov(X,�)

var� and ∂E[X |σ ]
∂l =

−ai
∗ cov(X,�)

var� . Recall from (6a) and (6b) that

∂ P(E[X |s], l)

∂E[X |s] = ( f −1)′ (Q(E[X |s], l))

{
cov(X, �)

var�
+ A∗

a∗
i

(
1− cov(X, �)

var�

)}
,

∂ P(E[X |s], l)

∂l
= −( f −1)′ (Q(E[X |s], l))

×
{

a∗
i

cov(X, �)

var�
+ A∗

(
1 − cov(X, �)

var�

)}
.

Following Lemma B (C1), cov(X,�)
var� + A∗

a∗
i

(
1 − cov(X,�)

var�

)
≥ cov(X,�)

var� . Moreover

h is a strictly decreasing function, hence h′(.) < 0. Then it follows from (B3)
that

( f −1)′ (Q(E[X |s], l)) = 1

1 + A∗h′ (P(E[X |s], l))
≥ 1

under condition S1′. So ∂ P(E[X |s],l)
∂E[X |s] ≥ ∂E[X |σ ]

∂E[X |s] and ∂ P(E[X |s],l)
∂l ≤ ∂E[X |σ ]

∂l . There-
fore it follows from (4) that Do(P(E[X |s], l)|σ) is decreasing in E[X |s] and
increasing in l.

(b) We have ∂E[X |s]
∂l = 0. On the other hand, following Lemma 1, ∂ P(E[X |s],l)

∂l < 0.
Thus from (6) one observes that Di (P(E[X |s], l)|E[X |s]) is increasing in l.

(c) We have ∂E[X |s]
∂E[X |s] = 1. Recall from (6a) that

∂ P

∂E[X |s] = ( f −1)′ (Q(E[X |s], l))

{
cov(X, �)

var�
+ A∗

a∗
i

(
1 − cov(X, �)

var�

)}
.
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Note that A∗
a∗

i
= a∗

o
a∗

i +a∗
o

≤ 1. We also have cov(X,�)
var� ≤ 1 from Lemma B (C1). So

cov(X, �)

var�
+ A∗

a∗
i

(
1 − cov(X, �)

var�

)
≤ 1.

On the other hand, we have shown in part (a) that ( f −1)′ (Q(E[X |s], l)) ≥ 1.
Therefore ∂ P(E[X |s],l)

∂E[X |s] can be greater or less than 1 depending on the exact value

of ( f −1)′ (Q(E[X |s], l)). Following from (B3),

( f −1)′ (Q(E[X |s], l)) →
{

1 as α → 0
∞ as α → − 1

A∗�′( f −1(Q(E[X |s],l))) .

Note that under condition S1′, α cannot take values larger than − 1
A∗�′( f −1(.))

,

and also note that − 1
A∗�′( f −1(.))

≥ 0 as � is a decreasing function. Therefore
∂ P(E[X |s],l)

∂E[X |s] is less than or equal to 1 if α is sufficiently small and it is greater than
1 if α is sufficiently large. Then it follows from (4) that Di (P(E[X |s], l)|E[X |s])
is increasing in E[X |s] for sufficiently small α, and it is decreasing in E[X |s] for
sufficiently large α. ��

C4 Proof of Proposition 3

Note that h′ = α�′ > − 1
A∗ due to condition S1′. We also know from Lemma B (C1)

that cov(X,�)
var� ≤ 1. Thus from (6a) and (6b) and (B3), given p = P(E[X |s], l), one

has

∣∣∣∣∂ P(E[X |s], l)

∂E[X |s]
∣∣∣∣ = 1

1+αA∗�′(p)

{
cov(X,�)

var� + A∗
a∗

i

(
1 − cov(X,�)

var�

) }
,

∣∣∣∣∂ P(E[X |s], l)

∂l

∣∣∣∣ = 1
1+αA∗�′(p)

{
a∗

i
cov(X,�)

var� + A∗
(

1 − cov(X,�)
var�

) }
.

Since � is a decreasing function, it is straightforward to see that
∣∣ ∂ P(E[X |s],l)

∂E[X |s]
∣∣ and∣∣ ∂ P(E[X |s],l)

∂l

∣∣ are increasing functions of α. ��

C5 Proof of Proposition 4

Due to condition S1′, h′ > − 1
A∗ . Hence from (B3) it follows that if h is strictly convex

within the set P(Us0 , Ul0), f −1 is strictly concave within P(Us0 , Ul0), consequently
P(E[X |s], l) is strictly concave in E[X |s] and strictly concave in l within Us0 × Ul0 .
This proves (a).
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From (7a), (7b) and (B3), given p = P(E[X |s], l) we have

∂2 P(E[X |s], l)

∂E[X |s]2 = − αA∗�′′(p)

(1 + αA∗�′(p))3

{
cov(X, �)

var�
+ A∗

a∗
i

(
1 − cov(X, �)

var�

)}2

,

∂2 P(E[X |s], l)

∂l2 = − αA∗�′′(p)

(1 + αA∗�′(p))3

{
a∗

i
cov(X, �)

var�
+ A∗

(
1 − cov(X, �)

var�

)}2

.

Recall that � is a strictly decreasing function. If h (and hence �) is strictly convex

in P
(
Us0 , Ul0

)
, one has �′′(p) > 0 for p ∈ P

(
Us0 , Ul0

)
, thus ∂2 P(E[X |s],l)

∂E[X |s]2 and

∂2 P(E[X |s],l)
∂l2 are decreasing functions of α for (E[X |s], l) ∈ Us0 × Ul0 . Hence (b) is

proved. ��

C6 Proof of Proposition 5

We have Z(p) = − p
A∗ − h(p) + E[X |s]

ai var(X |S)
+ E[X |σ ]

aovar(X |�)
and Z ′(p) = − 1

A∗ − h′(p).
Therefore condition S1′ holds if and only if Z is strictly decreasing in p. ��

C7 Proof of Proposition 8

First, note that the assumptions employed in the statement of the proposition im-
pose − 1

A∗ < h′(.) < − 1
a∗

i
. From (B3) and (B4), we have the following for p =

P(E[X |s], l):

∣∣∣∣∂ P(E[X |s], l)

∂E[X |s]
∣∣∣∣ = 1

1 + A∗h′(p)

{
cov(X, �)

var�
+ A∗

a∗
i

(
1 − cov(X, �)

var�

)}
,

∣∣∣∣∂ P(E[X |s], l)

∂l

∣∣∣∣ = 1

1 + A∗h′(p)

{
a∗

i
cov(X, �)

var�
+ A∗

(
1 − cov(X, �)

var�

)}
;

∂2 P(E[X |s], l)

∂E[X |s]2 = − A∗h′′(p)

(1 + A∗h′(p))3

{
cov(X, �)

var�
+ A∗

a∗
i

(
1 − cov(X, �)

var�

)}2

,

∂2 P(E[X |s], l)

∂l2 = − A∗h′′(p)

(1 + A∗h′(p))3

{
a∗

i
cov(X, �)

var�
+ A∗

(
1 − cov(X, �)

var�

)}2

.

Observe that as µ ≡ var(X |�)
var(X |S)

→ − 1

aovar(X |S)

(
1

a∗
i

+h′(p)

) we have 1 + A∗h′(p) tending

to 0. Consequently, as µ → − 1

aovar(X |S)

(
1

a∗
i

+h′(p)

)

123



180 H. N. Ozsoylev

∣∣∣∣∂ P(E[X |s], l)

∂E[X |s]
∣∣∣∣ ,

∣∣∣∣∂ P(E[X |s], l)

∂l

∣∣∣∣ → ∞,

(8)
∂2 P(E[X |s], l)

∂E[X |s]2 ,
∂2 P(E[X |s], l)

∂l2 → −∞.

At this point, we need to check that − 1

aovar(X |S)

(
1

a∗
i

+h′(p)

) > 1 as var(X |�) >

var(X |S). Suppose not. Given h′(.) < − 1
a∗

i
, it must hold that −aovar(X |S)(

1
a∗

i
+ h′(p)

)
> 1. Then

h′(p) < − 1

aovar(X |S)
− 1

a∗
i

< − 1

aovar(X |�)
− 1

a∗
i

= − 1

A∗ ,

which violates condition S1′ since it implies h′(.) > − 1
A . This proves

− 1

aovar(X |S)

(
1

a∗
i

+h′(p)

) > 1.

Following the limit results derived in (8), there exists µ̄ > 1 such that within the

domain

⎛
⎝µ̄,− 1

aovar(X |S)

(
1

a∗
i

+h′(p)

)
⎞
⎠ we have

∣∣ ∂ P(E[X |s],l)
∂E[X |s]

∣∣, ∣∣ ∂ P(E[X |s],l)
∂l

∣∣ increasing

in µ and ∂2 P(E[X |s],l)
∂E[X |s]2 , ∂2 P(E[X |s],l)

∂l2 decreasing in µ. Also, observe that condition S1′

is violated when

µ ≡ var(X |�)

var(X |S)
≥ − 1

aovar(X |S)
(

1
a∗

i
+ h′(p)

)

because then 1+ A∗h′(p) ≤ 0. Therefore if condition S1′ holds then within the domain

(µ̄,∞) it holds that
∣∣ ∂ P(E[X |s],l)

∂E[X |s]
∣∣, ∣∣ ∂ P(E[X |s],l)

∂l

∣∣ are increasing in µ and ∂2 P(E[X |s],l)
∂E[X |s]2 ,

∂2 P(E[X |s],l)
∂l2 are decreasing in µ. ��
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