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Abstract We model the risky asset as driven by a pure jump process, with
non-trivial and tractable higher moments. We compute the optimal portfolio
strategy of an investor with CRRA utility and study the sensitivity of the invest-
ment in the risky asset to the higher moments, as well as the resulting wealth
loss from ignoring higher moments. We find that ignoring higher moments can
lead to significant overinvestment in risky securities, especially when volatility
is high.
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1 Introduction

Beginning with Merton (1971), a diffusion has been the standard model of
uncertainty, despite empirical evidence that asset returns are not normally
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distributed. The literature has mostly implicitly assumed that investors are
primarily affected in their decisions by the expected return and its variance,
and therefore it was acceptable to focus on a distribution characterized by its
first two moments.

The development of portfolio allocation theories for non-Gaussian econo-
mies has always been challenging, and has generally been met with limited suc-
cess. Even though some authors have informally argued the contrary, the utility
effect of ignoring higher moments may be substantial.1 The typical approach is
to extend early ideas by Rubinstein (1973), and Kraus and Litzenberger (1976,
1983) in developing models that account for higher moments. These models are
non-parametric in nature in the sense that no specific distributional assumptions
are made. On the other hand, the pricing relations are always approximate. This
is because they result from a truncated Taylor expansion either of the under-
lying distribution, or of the discount factor. Furthermore, these models do not
provide an idea of the size of the errors in the approximations, and different
choices about what and where to truncate lead to different asset pricing formu-
lae. Among others, Bansal et al. (1993), Bansal and Viswanathan (1993), and
Chapman (1997), approximate a non-linear discount factor. Even though these
models have improved empirical performance, it is not clear what equilibrium
phenomena they capture.

An economically improved approach is to approximate a utility function
by a Taylor series expansion, as in Harvey and Siddique (2000) or Dittmar
(2002). Guidolin and Timmermann (2006) combine the above approach with
the assumption that the distribution of asset returns is driven by a regime
switching process. This approach retains many of the attractive features of the
pricing kernels investigated in nonparametric analysis while avoiding many of
their limitations. Yet, there are still several criticisms to the use of Taylor series
expansions in the asset allocation context, with the most important being that
the Taylor series expansion will converge to the true utility only under restrictive
conditions.

Jondeau and Rockinger (2005) use a four-term Taylor expansion, but allow
for time dependent distributions. An alternative method to study higher
moments is “full-scale optimization” (see Adler and Kritzman 2005, for an
explanation of this method). Using this method, Cremers et al. (2004) find that
the welfare cost of ignoring higher moments (as in mean-variance optimization)
is not substantial.

Our study follows recent continuous time papers by Liu et al. (2003) and
Das and Uppal (2004). These dynamic models improve our ability to study the
effect of skewness (and higher moments), since higher moment effects arise
naturally due to the jumps in returns rather than being introduced explicitly
through a utility function over the moments of the distribution of returns.2 This
approach avoids the truncation problems by providing tractable, closed-form,

1 For example, see the recent Harvey et al. (2004) study.
2 Independently of this objective, there is solid evidence of the presence of jumps in the time series
of asset returns. See, for example, Eraker et al. (2003).
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intertemporal portfolio allocation policies, for an investor with CRRA utility.
Liu et al. (2003) study portfolio choice with the possibility of a large negative
idiosyncratic event which would introduce negative skewness in the returns. Das
and Uppal (2004) consider also a mixed diffusion–Poisson process but focus on
systemic jumps. Choulli and Hurd (2001) consider the case of Lévy processes
with deterministic jump arrival rates. They find the optimal portfolio for power
and exponential utilities for such a case, and they also discuss the corresponding
dual problems and shadow prices. Aït-Sahalia et al. (2006) solve the problem
for a mixed process with multiple assets and jumps with deterministic arrival
rate, for CARA and CRRA investors, focusing on the exposure to jump risk
and the impact of jumps on the diversification.

Jumps may be of infinite (finite) activity if their rate of occurrence in any
interval of time is certain (uncertain). From an economic standpoint, it is clear
that, due to the continuous release of information, stock prices are unlikely to
remain constant during any interval; thus we need processes that encapsulate
high activity. In the models above, such high activity is generated by the diffu-
sion part of a jump-diffusion, where the (finite activity) jump component is used
to generate rare/extreme events.

Our view is that besides helping us understand the effects of skewness and
kurtosis on portfolio allocation, the study of jump risks is crucial in understand-
ing the existing plethora of diverse financial instruments when such instruments
are redundant, as in complete markets. Lévy processes naturally lead to incom-
plete markets, where options are not replicable. In such markets, derivative
securities are important for asset allocation, as it is demonstrated in Carr et al.
(2001). Essentially, jumps in the price process force agents to face “large” risks
and can also play a role in explaining the need for risk management; our research
should thus be relevant to the literature on prescribing capital requirements and
on designing insurance contracts covering hedge fund losses. It can be argued
that disentangling the pure jump from the diffusive component may be at the
core of risk management, since risk managers shouldn’t really care about the
hedgeable diffusive noise.

We thus complement the literature on portfolio allocation with higher
moments by providing the general portfolio effect of jumps that do not nec-
essarily arrive at a slow rate, and are not necessarily large in size. The main
analytical contribution of the paper is that we are able to solve the optimal
portfolio allocation problem with jumps regulated by a stochastic state vari-
able (which in the literature on Lévy processes has been frequently interpreted
as trading activity or “volume”). Furthermore, we also make an observation
important for implementation, that for a Lévy process the “moments” of the
percentage returns are different from the “moments” of the log-price returns.
For example, the volatility of both (percentage and log-price returns) is the
same for a diffusion process, but not necessarily for jump processes. This point
has led to some confusion in the fast growing financial literature on Lévy pro-
cesses. For example, a symmetric Lévy process for the log-price does not lead
to symmetric percentage returns.
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When infinite activity is already generated by the employment of jumps, as
in our model, a natural question arises as to whether it is necessary to also
employ a diffusion component when modeling asset returns. A related ques-
tion is whether the jump-diffusion paradigm is more appropriate. It is now
becoming increasingly more agreeable that pure jump activity (of the infinite
type) exhibits better empirical performance and is more capable of explaining
asset pricing phenomena, especially related to option pricing. For example in
the recent study by Carr et al. (2002)—henceforth CGMY—a continuous time
model that allows for both diffusion risk and jumps, of both finite and infinite
activity, is employed to infer econometrically the fine structure of the price pro-
cesses. Furthermore, CGMY allow the jump component to have either finite or
infinite variation, and employ this model to study both the statistical process
needed to assess risk and allocate investments and the risk-neutral process used
for pricing and hedging derivatives. CGMY find that index returns tend to be
pure jump processes of infinite activity and finite variation. Such studies have
led a number of authors to argue that the jump components account for the
entire activity in index return processes.

Thus, from an empirical point of view, we may dispense with diffusions in
describing the fine structure of asset returns, as long as the jump process used is
one of infinite activity, since such processes naturally capture both the high activ-
ity witnessed in real markets, as well as jumps of varying frequencies and sizes
(and rare events). We introduce a time changed diffusion, with time changes
that (when conditioned on a state variable3) are of a Gamma type—henceforth
called the variance-Gamma or VG process. Similar processes have also been
used in modeling stochastic volatility (e.g. Carr et al. 2003). Our process exhibits
infinite activity jumps (in both directions), and is motivated by its counterpart
without a state variable that has become popular for modelling security prices
since it was introduced by Madan and Seneta (1990) and Madan and Milne
(1991). Additionally, the VG process seems to fit particularly well some return
features, especially with an eye towards option pricing: see Madan et al. (1998),
Carr et al. (2002) and Carr and Wu (2003, 2004). The VG process is constructed
by taking a standard Brownian motion process and sampling it at random times,
as given by a Gamma process. In other words, the driving process is Wτ(t) where
Wt is a Brownian Motion, and τ(t) is a random time change of the calendar
time. Clark (1973) was the first to propose that we focus on economic activity,
rather than calendar time when measuring returns, so that the time change
would correspond to the amount of transactions, or trading volume. Geman
et al. (2001) argue that if the time change is not locally deterministic, then
market prices must be purely discontinuous. Geman et al. (2002) address the
recovery issue, i.e. how much we may learn about trading activity by observ-
ing prices. Ané and Geman (2000) show that the rate of the economic activity
can be proxied by transaction volume. We assume a stochastic intensity of

3 This state variable can take various economic meanings depending on the context: stochastic
volatility, trading volume, economic or business activity etc. To keep the discussion general, we do
not “name" the state variable.
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price jumps (which would be an indicator of volume, in the original Clark 1973
motivation). When the standard Black–Scholes–Merton type models are mon-
itored at random times (caused, for example, by random trade arrivals) the
resulting dynamics are of a general Lévy type.

We find that observed skewness and kurtosis would lead to lower holdings in
risky securities than the standard Merton (1971) model would recommend. For
the same level of skewness and kurtosis, and correcting for the risk premium
that would leave the optimal allocation in a Gaussian setting at the same level,
we find that the overinvestment increases with market volatility. We also com-
pute the wealth loss equivalent resulting from overinvestment in the presence
of higher moments. Although modest for low volatility settings, it becomes
more important as volatility increases. Furthermore, we show that the wealth
loss equivalent resulting from overinvesting is always higher than in the Merton
(1971) benchmark. The difference is not substantial, but as argued by Brennan
and Torous (1999), in a CRRA setting, the wealth loss resulting from overin-
vesting in the risky asset is small.

The paper is organized as follows. The first result of Sect. 2 is general, since
it applies to the universe of Lévy process-driven stocks with the jump arrival
intensity conditional on a stochastic state. In Sect. 3 we focus on pure jumps, and
we also extend the solution to the many-stocks case, where the jump induced
correlation may be either due to the systemic risk (macro effects), as in the
context of Das and Uppal (2004), when the jumps exhibit finite activity (low
frequency), or due to the micro-structure risk when the jumps exhibit high
activity. In Sect. 4, we specialize to the case of stocks where the state captures a
“trading volume” type quantity, and the stock compensates the risky states by
a proper Sharpe ratio. In this case the results are tractable; the portfolio choice
becomes constant. In Sect. 5 we further specialize the model to a particular
jump type so that we may derive an exact solution that can be calibrated to
asset returns data, and that will allow us to compute optimal portfolios numer-
ically. In Sect. 6 we present and analyze some numerical examples.

2 The general case: an investment model with diffusive and jump risks

In this section, we consider a model for the stock price, which is general in
the sense that we only assume that the jump arrivals’ rates depend on a state
variable. This state variable can be interpreted as capturing the “market micro-
structure” environment for the stock, for example. We assume that we are
given a probability space and a filtration, and all the processes in the paper
are adapted to that filtration. There are two securities in our model. There is
a risk-free security (bond or bank account) that pays a locally deterministic
interest rate rt, so that the value B of this security evolves according to the
dynamics

dBt/Bt = rtdt (1)
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There is also a risky security, a stock, with stock price process S, and dynamics
subject to jump risk. Specifically, the stock’s log return follows

log St– log S0 =
t∫

0

csds +
t∫

0

σd,sdZs + Xt (2)

where ct is an adapted process representing a continuous rate of return, and σd,t
the diffusive part of the stochastic volatility for the stock. While Zt is a standard
Brownian motion, Xt is a pure jump process given by

Xt − Xt− =
+∞∫

−∞
xN(dt, dx) (3)

N is a Poisson random counting measure on R+ × R. We denote by �(t, dx) its
compensator measure,

E
∫

R

φ(t, x)N(dt, dx) =
∫

R

φ(t, x)�(t, dx)dt (4)

for any measurable, random function φ(t, x) = φ(ω, t, x). For the technical facts
regarding stochastic calculus of such jump process, we refer the reader to Jacod
and Shiryaev (1987).

In this case, there are three return components, one continuous and locally
deterministic, one continuous but stochastic, and another discontinuous, that is,

d(log(St))=ctdt + σd,tdZt +
∞∫

−∞
xN(dt, dx) (5)

Percentage returns share the continuous risky component, but their jump com-
ponent differs, and we have (using Itô’s rule for jump processes)

dSt/St =
(

ct + 1
2
σ 2

d,t

)
dt + σd,tdZt +

∞∫

−∞
(ex − 1)N(dt, dx) (6)

In purely diffusive dynamics, due to path continuity, the translation from log-
returns to percentage returns (the ones the investor really cares about) results
in an increase in drift, while keeping volatility the same. Essentially, since diffu-
sive dynamics are locally Gaussian there are no higher cumulants to consider.
As we will discuss herein, when the stock dynamics include jumps, one has to
carefully account for the different effect such jumps have on the percentage
stock return’s moments. The first difference is in the drift: while the expected
log growth equals
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ct +
+∞∫

−∞
x�(t, dx)

since a log jump of size x implies a percentage return ex − 1, the stock’s drift µt
equals,

µt = ct + 1
2
σ 2

d,t +
∞∫

−∞

(
ex − 1

)
�(t, dx) (7)

The structure of (6) resembles that of stock dynamics with jumps, first con-
sidered by Merton (1971) and more recently in Liu et al. (2003). In those papers,
stocks follow a jump-diffusion process with Poisson arrivals. Here, instead, the
jumps are not constrained to arriving at a slow Poisson rate, but may arrive at
extremely fast (potentially infinite) rates.

2.1 The state variable

The intensity of the jump arrivals’ rate for all jump sizes is provided by the
measure �(t, dx). In order to allow for more realistic stock dynamics, we allow
the jump arrival rates �(t, dx) to be stochastic, through a dependence on a state
variable vt, which for some mv = mv(vt, t) and σv = σv(vt, t), follows a positive
process vt given by

dvt = mvdt + σvdZv
t (8)

for a Brownian motion Zv
t . Assume that the return rate ct = c(vt, t) is a deter-

ministic function of v and t. Since vt captures the entire information about the
jump arrival rates, the stock follows a conditional Lévy process; that is, given
vt, the stock return process has independent increments. More specifically

�(ω, t, dx) = �(vt(ω), dx) (9)

that is, the process Xt has independent increments given the σ -algebra F gen-
erated by vt. Heuristically, this amounts to assuming that, when the state is such
that vt = v, the infinitesimal behavior of the log return process is that of a Lévy
process with drift rate c(v, t) and Lévy measure �(v, ·).

We further assume that the jumps in stock returns are somewhat “smooth”
in the sense that the jump paths exhibit finite variation, that is

∞∫

−∞
(|x| ∧ 1)�(vt, dx) < ∞, a.s., for all vt (10)
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Even though one may think of this state variable as capturing the current
level of trading activity or some other relevant micro-structure quantity, here,
in order to keep the discussion general, we will not assign a specific economic
meaning to v, and will only refer to it as the state variable.

2.2 The investor

We consider an investor with CRRA power utility, given by

U(x) = 1
1 − γ

x1−γ (11)

We assume that the investor maximizes utility of optimal terminal wealth at
some future time T, that we denote by U (WT). The case γ = 1, corresponds
to logarithmic utility. The power utility is considered in Merton (1971), and we
will use it as a benchmark in the following sections.

Starting with a positive initial wealth W0, and given the opportunity to invest
in the riskless and risky assets, at each time t, 0 ≤ t ≤ T, the investor has to
decide what proportion of her wealth, π , to invest in the risky security whose
dynamics are given by (6). The rest of the wealth, the proportion (1 − π), is
invested in the bond (1 ).4 The objective of the investor is, then,

max{π} E
1

1 − γ
W1−γ

T (12)

subject to the budget constraint,

dWt = Wt

(
rt + πt

(
ct + 1

2
σ 2

d,t − rt

))
dt + πtWtσd,tdZt + πt−Wt−

∞∫

−∞
(ex − 1)N(dt, dx)

(13)

2.3 Optimal investment strategy

Given that financial markets are incomplete in the presence of jumps of random
size, we determine the optimal investment using standard stochastic dynamic
programming rather than the martingale pricing approach. As usual, we will

4 All the relevant integrability assumptions needed in this model, in particular for the dynamic-
programming HJB equation (used below) to hold, can be found in Øksendal and Sulem (2004);
specifically, see their Theorem 3.1. These assumptions are purely technical, and do not contribute
to the finance intuition. We therefore adopt the usual approach in the finance literature: we write
down the dynamic programming HJB equation, we guess the solution, and we verify that it solves
the equation.
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derive the optimality equation, we will “guess” a solution, and will prove it is
indeed a solution. We assume that the drift, diffusive volatility and the interest
rate, are deterministic functions of time and state variables:

ct = c(vt, t), σ 2
d,t = σ 2

d,t(vt, t), rt = r(vt, t). (14)

Following Merton (1971), we define the indirect utility function (which will then
be a function of (W, v, t)), as

J(W, v, t) = max{πs,t≤s≤T} EtU(WT) (15)

We use the dynamic principle approach to stochastic optimal control, which
leads to the following Hamilton–Jacobi–Bellman (HJB) equation for the indi-
rect utility function J,

max
π

1
2
σ 2

v Jvv + mvJv +
(

r + π

(
c + 1

2
σ 2

d,t − r
))

WJW + 1
2
π2W2σ 2

d,tJWW

+
∞∫

−∞

[
J(W(1 + π(ex − 1)), v, t) − J(W, v, t)

]
�(vt, dx) + Jt = 0 (16)

where JW , Jv and Jt denote first partial derivatives of J(W, v, t), and similarly
for higher derivatives. We solve this equation by assuming (and then verifying)
that the indirect utility function is of a separable functional form

J(W, v, t) = 1
1 − γ

W1−γ F(v, t) = U(W)F(v, t) (17)

where F(v, t) is a deterministic function capturing the “investment opportunity”
that depends on calendar time, and the current state.

Here is the main theoretical result of the paper:

Theorem 1 Assume that (14) holds and that there is a solution J to (16). Also
assume that there is a deterministic function π∗(v, t) of (v, t) that solves the fol-
lowing equation:

γ σ 2
d,tπ

∗ = µ − r +
∞∫

−∞

(
R(π∗, x)−γ − 1

)
(ex − 1)�(vt, dx) (18)

where

R(π , x) = 1 + π(ex − 1) (19)
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is the portfolio return due to a log-jump of size x. Finally, assume that there is a
solution F(v, t) to the partial differential equation

1
2
σ 2

v Fvv + mvFv + (1 − γ )

(
r + π∗

(
c + 1

2
σ 2

d,t − r
))

F − 1
2
γ (1 − γ )π2σ 2

d F

+F

∞∫

−∞

[
R(π∗, x)1−γ − 1

]
�(vt, dx) + Ft = 0. (20)

with F(v, T) = 1. Then, J is the indirect utility function of the form (17), and the
optimal investment strategy is given by π∗.

Proof In Appendix. �

When the investor faces purely diffusive stock dynamics with volatility σd,
the optimal investment becomes the usual

π = µ − r

σ 2
d γ

(21)

Furthermore, observe that here the market incompleteness is manifested
by the fact that even though the agent would optimally like to independently
choose her wealth exposure (Carr et al. 2001) for every jump x, by being able
to only invest in the stock and the risk free asset she can only choose from a
single-parametric family of R(π , x) functions (19).

Even though prices here determine the optimal allocation, and not the other
way around, Eq. (18) is an interesting incomplete market equation, analogous to
the traditional asset pricing equations. More specifically, interpret R(π , x)−γ −1
as the percentage jump in the marginal rate of substitution before and after
a jump, while ex − 1 is the asset’s percentage return due to the jump. The∫ ∞
−∞

(
R−γ − 1

)
(ex − 1)�(dx) factor in (18) measures the covariance between

jumps in the stock and the investor’s marginal utility. Clearly, when the investor
is heavily exposed to the stock, positive stock returns will coincide with rich
states (low marginal rate of substitution), and the integral above will become
very negative, thus limiting the investor’s optimal exposure π . For assets with
a high return premium µ − r, the investor will thus seek a large exposure until
(18) is satisfied.

3 The pure jump case

Since in the calibration exercise we will perform later we will use a pure jump
process, it is useful to focus on the pure jump case, and for that purpose we
provide a version of Theorem 1 when there is no diffusive risk, and the stock
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satisfies

dSt/St = ctdt +
∞∫

−∞
(ex − 1)N(dt, dx) (22)

Corollary 1 When there is no diffusive risk, i.e., σd,t = 0, the optimal allocation
π∗ is the deterministic function of (v, t) that satisfies

µt − rt +
∞∫

−∞

(
R(π∗, x)−γ − 1

)
(ex − 1)�(vt, dx) = 0 (23)

and F(v, t) is the solution to the partial differential equation

1
2
σ 2

v Fvv + mvFv + (1 − γ )
(
r + π∗ (c − r)

)
F

+F

∞∫

−∞

[
R(π∗, x)1−γ − 1

]
�(vt, dx) + Ft = 0. (24)

with F(v, T) = 1.

3.1 Optimal portfolios

Even though the focus of this paper is on the skewness and kurtosis effect on
investing in a single stock, it is useful to note that the solution in the previous
section, and the intuition of Theorem 1, can be extended to the multistock
selection problem where there are N stocks and the ith stock, i = 1 . . . N,
satisfies

d(log(Si
t)) = ci

tdt +
∫

· · ·
∞∫

−∞
xiN(dt, dx) (25)

where N(dt, dx) is the jump counting Poisson measure, and the N-dimensional
integral is taken over the entire jump support space. So xi is the log-jump to
the ith stock, when x is the entire jump vector.5 Observe that jumps may be
correlated, and induce an instantaneous covariation between the ith and jth
stocks

ci,j
t =

∫
· · ·

+∞∫

−∞
xixj�(vt, dx)

5 For simplicity of notation, we restrict the discussion here to the pure jump case.
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Such jump induced correlation may be either due to the systemic risk (macro
effects), as in the context of Das and Uppal (2004), when the jumps exhibit
finite activity (low frequency), or due to the micro-structure risk when the
jumps exhibit high activity.

In the multi-stock pure-jump case the budget constraint becomes,

dWt = Wt

(
rt +

∑
i

πi,t(ci
t − rt)

)
dt + Wt−

∫
· · ·

∞∫

−∞

∑
i

πi,t(exi − 1)N(dt, dx)

(26)

The dynamic principle approach to stochastic optimal control leads to the fol-
lowing Hamilton–Jacobi–Bellman (HJB) equation for the indirect utility func-
tion J,

max
π

1
2
σ 2

v Jvv + mvJv +
(

r +
∑

i

πi
(
ci − r

))
WJW

+
∫

· · ·
∞∫

−∞

[
J(W(1 +

∑
i

πi(exi − 1)), v, t) − J(W, v, t)
]
�(vt, dx) + Jt = 0

(27)

and, similarly to the single stock case, we have the following characterization
of the optimal portfolio allocation:

Theorem 2 Assume that (14) holds for all stocks i = 1 . . . N, and that there is a
solution J to (27). The optimal portfolio allocation π∗(v, t) solves

µi
t − rt +

∫
· · ·

∞∫

−∞

(
R(π∗, x)−γ − 1

)
(exi − 1)�(vt, dx) = 0 (28)

where

R(π , x) = 1 +
∑

i

πi(exi − 1) (29)

is the portfolio return due to a log-jump vector x, and J is the indirect utility func-
tion of the form (17) with F(v, t) the solution to the partial differential equation

1
2
σ 2

v Fvv + mvFv + (1 − γ )

(
r +

∑
i

π∗
i

(
ci − r

))
F

+F
∫

· · ·
∞∫

−∞

[
R(π∗, x)1−γ − 1

]
�(vt, dx) + Ft = 0. (30)

with F(v, T) = 1.
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4 A particular case: jump rate proportional to the state variable

Some of the generality in (9) has to be sacrificed if we are to have (17) satisfied,
and find specific solutions. We have to make an assumption as to the depen-
dence of jump arrival rates on the state. Here, we are guided by the potential
use of such models to represent various micro-structure variables like trading
activity, volume, etc. We thus assume that high states will be characterized by a
higher rate of jumps. A way to attain such a dependence of jumps on the state,
for which we are able to analytically solve for the optimal policy, is to assume
that the arrival rate for jumps of any size x is proportional to the state,

�(vt, dx) = vt�(dx) (31)

For example, in an asymmetric information context where each price jump
is due to a new order execution,6 so that the price reflects new information
released to the market by the order, the state vt captures the intensity of trad-
ing (or trading volume rate), since the above condition implies that an increase
in the trading activity translates into a proportional increase in the instanta-
neous probability for jumps (i.e. order arrivals) of any size. Alternatively, vt in
(31) can be interpreted as the “rate of business activity” that implies a change
in time from calendar time t to total activity time τt = ∫ t

0 vsds (Carr and Wu
2004).

Our notation will be simplified by using the conditional cumulant kernel Kt
defined as

Kt(s) =
∫

(esx − 1)�(vt, dx) (32)

and, analogously, the unconditional

K(s) =
∫

(esx − 1)�(dx) (33)

For example, the return drift (7) can also be written as

µt = ct + Kt(1) (34)

Under our assumption (31), we have

Kt(s) = vtK(s) (35)

From (22), the instantaneous variance of percentage returns is given by,

σ 2
t =

∫ (
ex − 1

)2
�(vt, dx) = (K(2) − 2K(1))vt (36)

6 As in the benchmark microstructure models by Kyle (1985), and Glosten and Milgrom (1985).
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4.1 Optimal allocation with constant Sharpe ratio

In the model of Merton (1971) with an investor with CRRA utility with risk
aversion γ , the investor faces diffusive stock dynamics with constant return rate
µ = c + σ 2/2 and constant volatility σ , and will invest in the stock an optimal
proportion πM,

πM = µ − r
σ 2γ

(37)

Thus in the Merton’s case the investor invests a fraction equal to the ratio η of
the stock’s Sharpe ratio divided by σ and her risk aversion

πM = η

γ
(38)

The jump process considered in this paper displays a stochastic instantaneous
variance rate σ 2

t . In order to make our model comparable to Merton (1971), we
assume that the risk premium µt − rt adjusts to reflect the changing riskiness of
the stock. In particular, we assume that the stock parameters are such that

µt − rt = ησ 2
t (39)

where η is a constant.
We want to study the effect of higher moments on the optimal strategy

determined by the Eq. (23) and compare our results against the benchmark
(37).

The higher moments have to be properly accounted for; a frequent oversight
in the jump-prices literature is to use the instantaneous variance of the log-price
as the measure of the risk of the stock. This confusion mainly stems from our
extensive experience with diffusion processes, where this is appropriate. For a
general jump process though, the instantaneous variance of percentage returns
is not the same as the one of log returns. To see this in our model, observe that,
from (4), (5) and (33), when there is no diffusion (σd,t = 0), the instantaneous
variance of log returns equals

∫
x2�(vt, dx) = K′′(0)vt (40)

On the other hand, the variance (36) of percentage returns differs from the
variance of log-returns (40), unlike the diffusion case.7

Under our assumptions, Eqs. (36) and (39) imply

µt − rt = η(K(2) − 2K(1))vt (41)

7 In that case, the kernel K() is quadratic.
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Furthermore, when the state variable represents trading activity, as in (31),
Eq. (23) leads to the following optimality condition for π∗ that is independent
of v:

Proposition 1 Under the assumptions of Corollary 1, (31) and (39), the optimal
portfolio π∗ is state invariant, and satisfies

η(K(2) − 2K(1)) + M(π∗) = 0 (42)

where

M(π) =
∞∫

−∞

(
R(π , x)−γ − 1

)
(ex − 1)�(dx) (43)

Proof Straightforward, from (23). �

We see that the investor, when properly compensated by a stochastic risk
premium proportional to the rate of variance, does not “time” her strategy with
information about the rate of trading activity.

4.2 A model for the state variable

We derived the optimal portfolio strategy (23) by conjecturing a separable func-
tional form for the indirect utility

J(W, v, t) = 1
1 − γ

W1−γ F(v, t) = U(W)F(v, t) (44)

where F(v, t) is a deterministic discount factor that captures time and state
effects. Examples in similar spirit, but without the state variable, can be found
in Øksendal and Sulem (2004) and references therein. The explicit functional
form of the discount factor F depends on the state dynamics, and we will solve
a specific case here. We assume that the state variable vt follows a square root
diffusion

dvt = k(vo − vt)dt + σvv1/2
t dZv

t (45)

As we show next, when the state follows (45), the utility discount factor attains
a log-linear form

F(v, t) = eA(t)+B(t)v (46)
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Theorem 3 If, in addition to previous assumptions, the state variable follows
(45), the indirect utility function is given by

J(W, v, t) := max{πs,t≤s≤T} EtU(WT) = 1
1 − γ

W1−γ eA(t)+B(t)v (47)

where A(t) and B(t) are solutions to these ordinary differential equations:

r(1 − γ ) + kvoB + A′ = 0 (48)

σ 2
v

2
B2 + π∗

(
η
(
K(2) − 2K(1)

) − K(1)

)
(1 − γ ) − kB + M2(π

∗) + B′ = 0,

(49)

where

M2(π) =
∞∫

−∞

(
R(π , x)1−γ − 1

)
�(dx) (50)

is the average jump in utility for the π policy.

Proof In Appendix. �

4.3 The case of constant v

In the case of a constant v, the above ODE’s can be solved exactly, and we can
get an explicit solution for function J:

Proposition 2 If, in addition to previous assumptions, v is constant, the optimal
expected utility is given by

EtU(WT) = U(Wt)ea(T−t)+vM2(π)(T−t) (51)

with a = (1 − γ )[r + π(c − r)].
Proof In Appendix. �

As mentioned below, in Table 1 we present a summary of results.

5 Conditional variance gamma model

In order to compare this model to real market dynamics, we need further trac-
tability. The goal here is to study a specific solution calibrated to real returns.
Empirically, small jumps are difficult (if not impossible) to discern, but we can
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Table 1 Optimal allocation in a risky stock with Campbell et al. (1996) moments

v θ l ρ Var Skew Kurt-3 π̂

η = 4.5, γ = 5

0.1 −0.0095 0.5 0.0360 6.6194 E−05 −1.3672 30.4042 0.8652
(0.00565%)

0.1 −0.0230 0.5 0.0725 2.6807 E−04 −1.3430 29.6104 0.8204
(1.3821%)

1.3 −0.0131 0.5 0.0534 1.8772 E−03 −0.2999 2.2941 0.8515
(0.1518%)

1.3 −0.0269 0.5 0.0895 5.2666 E−03 −0.2990 2.2511 0.8072
(1.7976%)

We compute optimal allocation in a risky security that follows the VG process described in the
paper and restricted so that parameter η = (µ − r)/σ 2 is constant. The parameters θ , l and ρ are
as in the paper. The column “Var” denotes the variance of the return of the risky security, “Skew”
its skewness, and “Kurt-3” its excess kurtosis. Parameters are calibrated so as to get the index
moments (that would correspond to the risky security of our model) for daily and monthly returns
in Campbell et al. (1996). π̂ represents the proportion of wealth optimally allocated to the risky
stock (the balance is allocated to the riskfree security). For all cases, the time horizon is T = 10.
Optimal allocation to the risky asset security in the benchmark Merton (1971) model when η = 4.5
and γ = 5 (as in this table) is 0.9. In parenthesis, underneath the optimal allocation, we record
the wealth loss resulting from ignoring higher moments and, therefore, investing 90% in the risky
security

work with higher moments as the jumps are responsible for skewness and kur-
tosis. While with slow Poisson arrivals a diffusion is needed to generate the
extreme local activity observed in real securities, when jump arrival rates are
infinite, for any time period, no matter how small, there will always be jumps
and thus there is no need for a diffusion component anymore. Thus, to keep the
following calibration relatively simple,8 we introduce the conditional variance
gamma (VG) process that does not include a diffusive component.

The unconditional VG process was introduced in Madan and Seneta (1990)
and Madan and Milne (1991), and generalized by Madan et al. (1998). The VG
process is a broadly used, canonical example of a pure jump Lévy process. The
infinite, two-sided, pure jump activity of the VG process, can be decomposed
into an increasing gamma process that only contains positive jumps, and one
only containing negative jumps. In this decomposition, one may think, for exam-
ple, of the positive component representing the buy orders, while the negative
component captures sell orders.

The VG process is a pure jump process, with an infinite arrival rate of small
jumps. The small size and infinite arrival rate of jumps generates extreme local
activity reminiscent of a diffusion but with right continuous paths of finite

8 A diffusive component could be added easily, as in the earlier section. In reality, it may be difficult
to econometrically disentangle and identify the pure jump from the diffusive part. On this issue,
see Ait-Sahalia (2004).
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variation. Unlike a diffusion that can be approximated by a binomial tree, the
infinitesimal change in a VG process can take infinitely many values and is thus
fundamentally un-hedgeable, in the sense that trading a finite set of assets does
not complete the markets.

Formally, for parameters ρ > 0, and θ , the homogeneous variance gamma
(VG) process is defined as a time-changed Brownian motion. Thus, the resulting
stock dynamics are not diffusive, but the result of monitoring the continuous-
path Gaussian process W1

t at random times9 given by a gamma process. That is,
instead of the usual return Xt = θ t + ρW1(t), here

Xt = θτt + ρW1(τt) (52)

where, for fixed l > 0, and v > 0, a gamma process, τt = γt(l, v), with mean rate
lv and variance rate l2v, is used to measure the transformation from real time
t to the stopping time τt. The gamma process is defined by the density of the
increment x over a time interval h, x = γt+h − γt, given by the gamma density
function

fh(x) = e−x/lxvh−1

lvh� (vh)
(53)

Interestingly, the time changed diffusion Xt is a pure jump process with no diffu-
sive risk. Specifically, it is well known that its Lévy–Khintchine representation
is determined by

K(s) = v−1t−1 log EesXt = − log(1 − θ ls − .5ρ2ls2) (54)

and it does not contain a quadratic term, and thus the process has no diffusion
component.

It can be shown that the VG process is uniquely decomposed into two
gamma processes, one with positive jumps, and the other containing the negative
jumps10

Xt = γ u
t (λu, v) − γ d

t (λd, v) (55)

9 Intuitively, these random times can be thought as the arrival times of new market orders.
10 λu and λd are the positive solutions to the system λu − λd = θ l and λuλd = .5ρ2l. That is

λu = 1
2

(√
θ2l2 + 2ρ2l + θ l

)
and λd = 1

2

(√
θ2l2 + 2ρ2l − θ l

)
.
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5.1 The conditional Lévy process

The process in (52) does not have a stochastic jump structure. It is known that
for a constant v the jump measure for a VG process is,

�(v, dx) = v
x

e−x/λu , for x > 0

= v
|x|e−|x|/λd , for x < 0

To arrive at a stochastically varying jump structure we define our underlying
process as one which has the above jump measure, but we allow the v parameter
to become stochastic. In this case, the jump measure is of the type (31) with

�(dx) = 1
x

e−x/λu , for x > 0

= 1
|x|e−|x|/λd , for x < 0

5.2 Return moments

In order to compare the investment strategy with conditionally Lévy jumps to
the strategy of an investor faced with a diffusion we have to keep in mind that
jumps will generally introduce both skewness and excess kurtosis. To enhance
intuition we want to initially only compare symmetric but fat-tailed condition-
ally Lévy returns to Brownian motion. This means that skewness has to be
removed. In the literature, it has been wrongly suggested that introducing a
symmetric VG process as the log-price process results in zero return skewness.
The reason for why this is wrong is similar to the reason we presented in the
previous discussion on the instantaneous variance. Diffusive log-prices lead
to diffusive returns, only with a different drift, but when symmetric log-price
jumps are introduced, the potential for large jumps introduces skewness in
infinitesimal returns. This skewness is identified as follows.

From (4) and (22), the conditional third centralized moment of the infinites-
imal return is given by

∞∫

−∞
(ex − 1)3vt�(dx) = (K(3) − 3K(2) + 3K(1)) vt

Thus, from (54), in order to get symmetric returns, the process has to satisfy

(1 − 2θ l − 2ρ2l)3 =
(

1 − 3θ l − 9
2
ρ2l

)(
1 − θ l − 1

2
ρ2l

)3

(56)
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Observe that when the log-price returns are symmetric, θ = 0, the percentage
returns are not. Based on (56), it can actually be shown that, since net returns are
always larger than log-returns, a symmetric log returns VG process always leads
to positive percentage returns skewness, and thus makes the stock attractive.

In practice, we could calibrate the stock process by using higher moments, and
the observable rate of trading activity, v. As observed earlier, the instantaneous
return variance is given by

VAR = (K(2) − 2K(1))v (57)

Similarly, instantaneous skewness is given by

SKEW = K(3) − 3K(2) + 3K(1)

(K(2) − 2K(1))3/2 v−1/2 (58)

and instantaneous excess kurtosis by

KURT − 3 = K(4) − 4K(3) + 6K(2) − 4K(1)

(K(2) − 2K(1))2 v−1 (59)

6 Numerical results

In Tables 1, 2, 3 and 4 we compute some numerical examples. Our main objec-
tive is to study the effect of higher moments in the optimal portfolio allocation
of the CRRA investor considered above.

As we explained before, the expected return of the portfolio is adjusted so
that η = (µt − rt)/σ

2
t is constant. That coefficient, divided by the coefficient of

risk aversion γ , explains the proportion of wealth invested in the risky security
in the Merton (1971) setting for a stock price that follows a diffusion process.
We want then to study the effects of skewness and kurtosis on optimal allo-
cation, with respect to the benchmark Merton (1971) model, and that justifies
the previous constraint. We allow for the variance to vary, but with constant η

(so that the drift is adjusted accordingly). The variance σ 2
t is computed as in

Eq. (57). Skewness and excess kurtosis are computed as in Eqs. (58) and (59),
respectively. For all computations we take the time horizon T = 10.

In Table 1 we consider the effect on the optimal portfolio of the stock price
returns moments reported in Campbell et al. (1996, p. 21), We focus on the case
of the value-weighted index. The first row of Table 1 is in line with the moments
reported by Campbell et al. (1996) for daily returns. As we see, the effect of
average higher moments for the period considered is moderate, but significant.
Average volatility over the time period considered is roughly equivalent to a
12% annual. There are subperiods (like a good part of the 1970s) in which
volatility was significantly higher. These are also the periods on which accurate
portfolio allocation is, arguably, more relevant. In the second line we compute
optimal portfolio holdings for a similar level of moments, but with about dou-
ble the standard deviation which, although not representative of the whole
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Table 2 Optimal allocation in a risky stock with zero skewness and non-zero kurtosis

v θ l ρ Var Kurt-3 π̂

γ = 3 γ = 5

η = 2.55

0.1 −0.00194 0.5 0.036 6.4779 E−05 30.0324 0.8461 0.5082
1/15 −0.0072907 0.2 0.06972 6.4774 E−05 45.0730 0.8441 0.5071
0.1 −0.0194598 0.2 0.1139 2.5913 E−04 30.1302 0.8348 0.5031
1/15 −0.0291862 0.2 0.1395 2.5893 E−04 45.2934 0.8277 0.4998

v θ l ρ Var Kurt-3 π̂

γ = 5 γ = 7

η = 4.2

0.1 −0.00194 0.5 0.036 6.4779 E−05 30.0324 0.8321 0.5951
1/15 −0.0072907 0.2 0.06972 6.4774 E−05 45.0730 0.8283 0.5927
0.1 −0.0194598 0.2 0.1139 2.5913 E−04 30.1302 0.8103 0.5814
1/15 −0.0291862 0.2 0.1395 2.5893 E−04 45.2934 0.7973 0.5731

We compute optimal allocation in a risky security that follows the VG process described in the
paper and restricted so that parameter η = (µ − r)/σ 2 is constant. Additionally, parameter values
are calibrated so that the skewness of stock price returns is zero. The parameters v, θ , l and ρ are
as in the paper. The column “Var” denotes the variance of the return of the risky security, and
“Kurt-3” its excess kurtosis. π̂ represents the proportion of wealth optimally allocated to the risky
security (the balance is allocated to the riskfree security). We compute optimal portfolio allocation
for two different values of η and two degrees of risk aversion, that we denote γ . For all cases, the
time horizon is T = 10. Optimal allocation to the risky security in the benchmark Merton (1971)
model when η = 2.55 (as in the top panel in this table) is 0.85 for γ = 3 and 0.51 for γ = 5. Optimal
allocation to the risky security in the benchmark Merton (1971) model when η = 4.2 (as in the
bottom panel in this table) is 0.84 for γ = 5 and 0.6 for γ = 7

period, is a level of volatility not unusual in financial markets. The impact on
optimal portfolio allocation (our benchmark stays constant) is substantial. The
third row of that table considers moments computed for monthly returns. Our
model considers “instantaneous” returns, therefore statistics of monthly returns
do not seem the best choice. However, results are in line with those for daily
returns.

In Table 2 we focus on the case in which the skewness is zero, so that we
can study the specific effect of excess kurtosis on optimal portfolio allocation.
In the Merton (1971) model, for a value of η = 2.55, a CRRA investor whose
opportunity set consisted of a stock satisfying a diffusion process and a risk-free
security would hold 85 and 51% of wealth in the risky security for degrees of
risk aversion of γ = 3 and γ = 5, respectively. As observed before, in a setting
of lower variance, the effect of kurtosis on optimal allocation is almost negligi-
ble. It is modest, but non-trivial, in a setting of higher volatility. We perform the
same exercise for a higher value of η. The conclusion is similar, but the impact
of kurtosis on optimal allocation is relatively higher than for a lower value of η.
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Table 3 Optimal allocation in a risky stock with negative skewness and non-zero kurtosis

v θ l ρ Var Skew Kurt-3 π̂

γ = 3 γ = 5

η = 2.55

0.1 −0.0095 0.5 0.036 6.6194 E−05 −1.3672 30.4042 0.8306 0.4998
0.1 −0.023 0.5 0.0725 2.6807 E−04 −1.3430 29.6104 0.8062 0.4874
1/15 −0.0105 0.5 0.0445 6.6152 E−05 −1.3722 45.0065 0.8288 0.4999
1/15 −0.02652 0.5 0.0892 2.6816 E−04 −1.2992 43.9062 0.8007 0.485
0.1 −0.00344 0.5 0.03518 6.1925 E−05 −0.3009 29.9021 0.8429 0.5065
0.1 −0.01136 0.5 0.07325 2.6819 E−04 −0.3013 29.7997 0.8277 0.4992
1/15 −0.00436 0.5 0.04308 6.1875 E−05 −0.2996 44.8467 0.8411 0.5057
1/15 −0.01541 0.5 0.0898 2.6844 E−04 −0.3012 44.7692 0.8206 0.4960

v θ l ρ Var Skew Kurt-3 π̂

γ = 5 γ = 7

η = 4.2

0.1 −0.0095 0.5 0.036 6.6194 E−05 −1.3672 30.4042 0.8101 0.5801
0.1 −0.023 0.5 0.0725 2.6807 E−04 −1.3430 29.6104 0.7717 0.5548
1/15 −0.0105 0.5 0.0445 6.6152 E−05 −1.3722 45.0065 0.8065 0.5778
1/15 −0.02652 0.5 0.0892 2.6816 E−04 −1.2992 43.9062 0.7616 0.5485
0.1 −0.00344 0.5 0.03518 6.1925 E−05 −0.3009 29.9021 0.8277 0.5920
0.1 −0.01136 0.5 0.07325 2.6819 E−04 −0.3013 29.7997 0.8005 0.5747
1/15 −0.00436 0.5 0.04308 6.1875 E−05 −0.2996 44.8467 0.8241 0.5898
1/15 −0.01541 0.5 0.0898 2.6844 E−04 −0.3012 44.7692 0.7875 0.5665

We compute optimal allocation in a risky security that follows the VG process described in the
paper and restricted so that parameter η = (µ − r)/σ 2 is constant. Additionally, parameter values
are calibrated so that the skewness of return of the risky security is negative. The parameters v, θ , l
and ρ are as in the paper. The column “Var” denotes the variance of the return of the risky security,
“Skew” its skewness, and “Kurt-3” its excess kurtosis. π̂ represents the proportion of wealth opti-
mally allocated to the risky security (the balance is allocated to the riskfree security). We compute
optimal portfolio allocation for two different values of η and two degrees of risk aversion, that we
denote γ . For all cases, the time horizon is T = 10. Optimal allocation to the risky security in the
benchmark Merton (1971) model when η = 2.55 (as in the top panel in this table) is 0.85 for γ = 3
and 0.51 for γ = 5. Optimal allocation to the risky security in the benchmark Merton (1971) model
when η = 4.2 (as in the bottom panel in this table) is 0.84 for γ = 5 and 0.6 for γ = 7

In Table 3 we present several examples of cases in which skewness is strictly
negative. As expected, the impact of negative skewness is higher than that of
kurtosis (for likely values of both moments). Also as before, higher volatility
results in a higher impact of the negative kurtosis.

Table 4 is similar to 5, but skewness is positive and also in line with the values
reported in Campbell et al. (1996).11 It seems it would take a relatively high
level of positive skewness to offset the effect of kurtosis. This level will have to
be higher for higher levels of variance.

11 Positive skewness has been rarely documented in financial time series data. The objective of this
table is to provide an additional insight on the effect of higher moments.
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Table 4 Optimal allocation in a risky stock with positive skewness and non-zero kurtosis

v θ l ρ Var Skew Kurt-3 π̂

γ = 3 γ = 5

η = 2.55

0.1 −0.00029 0.5 0.0352 6.6194 E−05 0.2993 30.28 0.8496 0.5101
0.1 −0.004282 0.5 0.0704 2.4775 E−04 0.3014 30.5684 0.8419 0.5069
1/15 −0.001215 0.5 0.0431 6.1933 E−05 0.3000 45.4144 0.8477 0.5093
1/15 −0.00799 0.5 0.0861 2.4681 E−04 0.2996 45.9119 0.8348 0.5036
0.1 0.00338 0.5 0.0348 6.1211 E−05 1.0001 31.3288 0.8576 0.5144
0.1 0.00305 0.5 0.07 2.4742 E−04 1.0025 32.0803 0.8575 0.5154
1/15 0.00245 0.5 0.0427 6.1998 E−05 0.9991 46.6805 0.8557 0.5136
1/15 −0.0007 0.5 0.0858 2.4673 E−04 0.9989 47.87 0.8498 0.5118

v θ l ρ Var Skew Kurt-3 π̂

γ = 5 γ = 7

η = 4.2

0.1 −0.00029 0.5 0.0352 6.6194 E−05 0.2993 30.28 0.8373 0.5986
0.1 −0.004282 0.5 0.0704 2.4775 E−04 0.3014 30.5684 0.8205 0.5881
1/15 −0.001215 0.5 0.0431 6.1933 E−05 0.3000 45.4144 0.8336 0.5963
1/15 −0.00799 0.5 0.0861 2.4681 E−04 0.2996 45.9119 0.8074 0.58
0.1 0.00338 0.5 0.0348 6.1211 E−05 1.0001 31.3288 0.849 0.6065
0.1 0.00305 0.5 0.07 2.4742 E−04 1.0025 32.0803 0.8425 0.6034
1/15 0.00245 0.5 0.0427 6.1998 E−05 0.9991 46.6805 0.8451 0.6041
1/15 −0.0007 0.5 0.0858 2.4673 E−04 0.9989 47.87 0.8279 0.5942

We compute optimal allocation in a risky security that follows the VG process described in the
paper and restricted so that parameter η = (µ − r)/σ 2 is constant. Additionally, parameter values
are calibrated so that the skewness of the return of the risky security is positive. The parameters
v, θ , l and ρ are as in the paper. The column “Var” denotes the variance of the return of the risky
security, “Skew” its skewness, and “Kurt-3” its excess kurtosis. π̂ represents the proportion of
wealth optimally allocated to the risky security (the balance is allocated to the riskfree security).
We compute optimal portfolio allocation for two different values of η and two degrees of risk
aversion, that we denote γ . For all cases, the time horizon is T = 10. Optimal allocation to the risky
security in the benchmark Merton (1971) model when η = 2.55 (as in the top panel in this table) is
0.85 for γ = 3 and 0.51 for γ = 5. Optimal allocation to the risky security in the benchmark Merton
(1971) model when η = 4.2 (as in the bottom panel in this table) is 0.84 for γ = 5 and 0.6 for γ = 7

Overall, we find that higher moments have significant, but not huge, effect
on the optimal portfolio allocation. This effect becomes important for high vol-
atility. Our findings are in line with those of Das and Uppal (2004) and Guidolin
and Nicodano (2005). However, these papers also compute optimal portfolio
allocation for multiple risky assets, with cross-higher moments. They find that
the effect of higher moments on portfolio allocation is, in general, substantial.

We also study the effect of ignoring higher moments in terms of utility loss.
The standard approach is to compute the certainty equivalent or the similar
“wealth loss” (as in Liu et al. 2003). The idea is to compute the percentage of ini-
tial wealth the suboptimal allocation (resulting from ignoring higher moments)
would amount to losing. That is, the value ε that would make the utility of an
investor that allocates $1 suboptimally (ignoring higher moments) equal to an
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Fig. 1 The plot shows the wealth loss resulting of ignoring higher moments to compute optimal
allocation for different levels of volatility. Parameter values have been calibrated so as to approx-
imate the level of skewness and excess kurtosis reported by Campbell et al. (1996) for monthly
returns of a value-weighted index: skewness = −0.29; excess kurtosis = 2.42. We assume a market
price of risk such that η = 4.5, a degree of risk aversion of γ = 5 and a horizon (in years) of T = 10

investor that allocates optimally $(1-ε). More explicitly, from Eq. (51) we can
find the expected utility for a given allocation π . We compute the optimal π

for the Merton (1971) case (ignoring higher moments). Equation (51) gives us
the expected utility for that allocation when higher moments are taken into
consideration. We find what is the ε such that the utility for $(1-ε) investment
with optimal allocation (taking higher moments into consideration) yields the
same utility (from Eq. (51)) as $1 investment according to the optimal allocation
following the Merton (1971) rule.

In Table 1 we find the welfare loss for the moments reported in Campbell
et al. (1996). The numbers are relatively low, especially for a context of low vola-
tility (as it was most of the time period covered by the sample used by Campbell
et al. 1996). This is consistent also with Cremers et al. (2004). In Fig. 1 we extend
that analysis to study the effect of higher volatility. We observe that for context
of high (but not impossible) volatility, the wealth loss resulting from ignoring
higher moments is significant. Additionally, in Fig. 2 we compare the wealth loss
resulting from overinvesting in the context of our model with higher moments
with a similar overinvesting in a Gaussian setting like in Merton (1971). We
observe that the wealth loss in a setting with higher moments is about 30%
higher than in the benchmark Merton (1971) setting, although, as pointed by
Brennan and Torous (1999), the wealth loss in that setting is not very large.

7 Conclusions

In this paper, we study the effect of higher moments on the optimal investment
strategy of a risk-averse investor. We analyze our problem for a large class
of Lévy processes. For tractability purposes, we consider a particular type of
process, the pure-jump variance gamma process, which has been widely used
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Fig. 2 The plot shows the the difference in wealth loss between the model presented in this
paper and the Merton (1971) optimal allocation model, resulting from overinvesting. In both cases,
parameter values are such that the optimal allocation in the risky security is 80.72%. Overinvest-
ment measures the additional proportion allocated to the risky security. For the model described in
this paper, parameter values have been calibrated so as to approximate the level of skewness and
excess kurtosis reported by Campbell et al. (1996) for monthly returns of a value-weighted index:
skewness = −0.29; excess kurtosis = 2.42. Annual volatility is 25.14%. We assume a market price of
risk such that η = 4.5, for the model in this paper and η = 4.036 for the Merton (1971) model (so
that optimal allocation is identical). We assume for both models a degree of risk aversion of γ = 5
and a horizon (in years) of T = 10

in the option pricing literature. We compare optimal asset allocation to that of
an investor in a Merton (1971) setting. We find that higher moments affect the
optimal allocation of a risk averse investor, although the importance of the devi-
ations will depend strongly on the level of volatility. We characterize the optimal
allocation in the presence of multiple risky assets, possibly correlated, but we do
not obtain numerical results, since a computational algorithm does not appear
obvious. We leave the solution of this numerical problem for future work.

Appendix

Proof of Theorem 1 Assuming that J is of the form (17), we take a derivative
in the HJB equation (16) with respect to π , and we get (18) as the first-order
condition. Substituting back π∗ in the HJB equation, we see that the equation
is satisfied with J, if F solves (20). The initial condition F(v, T) = 1 is self
explanatory since at time T there is no more opportunity to invest.

Proof of Theorem 3 When the state follows (45), the Hamilton–Jacobi–
Bellman equation (24) becomes

max
π

1
2
σ 2

v vJvv + k(v0 − v)Jv + (r + π (c − r)) WJW

+
∞∫

−∞

[
J(W(1 + π(ex − 1)), v, t) − J(W, v, t)

]
�(vt, dx) + Jt = 0 (60)
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We conjecture that the function J satisfies equation (17) in the form

J(W, v, t) = U(W)eA(t)+B(t)v

where A(t) and B(t) are deterministic functions of time. If that is the case, the
optimal investment strategy of this investor is given by the value π∗ that solves
the Eq. (42).

We now show that the conjecture is true, by deriving the ordinary differential
equations for the time dependent coefficients A and B. It is easy to check that,
if the conjecture is true, we have WJW = (1 − γ )J, Jv = JB, Jt = J(A′ + B′v),
W2JWW = −γ (1 − γ )J, Jvv = JB2 and WJWv = B(1 − γ )J. Substituting the
optimality conditions (42) for π back into the HJB equation, we recover an
affine relation for v

σ 2
v v
2

B2 +
(

r + π
[
η(K(2) − 2K(1)) − K(1)

]
v
)

(1 − γ )

+k(vo − v)B + vM2(π) + (A′ + B′v) = 0

where

M2(π) =
∞∫

−∞

(
R(π , x)1−γ − 1

)
�(dx) (61)

is the average jump in utility for the π policy. For this condition to be satisfied
for all v, the constant term and the linear coefficient have to be equal to zero
separately, which provides the two ODEs from the statement of Theorem 3
that the A and B functions have to satisfy. If those ODEs are satisfied, then the
function J of the conjectured form does, indeed, satisfy the HJB equation.

Proof of Proposition 2 From (13), we see that the wealth at time T when the
investor starts with Wt is

WT = Wter(T−t)+π(c−r)(T−t)+∫ T
t

∫ +∞
−∞ y(x)N(dt,dx)

with y(x) = ln R(π , x) being the wealth exposure of the investor to a jump of
size x. The investor’s utility becomes

EtU(WT) = U(Wt)Ete
a(T−t)+(1−γ )

∫ T
t

∫ +∞
−∞ y(x)N(dt,dx)

where

a = (1 − γ )[r + π(c − r)]
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Denote

Pt = e(1−γ )
∫ t

0
∫ +∞
−∞ y(x)N(dt,dx)

or equivalently

Pt = e(1−γ )Yπ
t

with the Lévy process Yπ being defined through

Yπ
t =

t∫

0

+∞∫

−∞
y(x)N(dt, dx)

Taking expectations, we get

Ete
(1−γ )

∫ T
t

∫ +∞
−∞ y(x)N(dt,dx) = 1

Pt
EtPT = e(T−t)KY (1−γ )

with the kernel defined as

KY(s) = v

∞∫

−∞
(Rs − 1)�(dx) (62)

Thus

1
Pt

EtPT = e(T−t)v
∫ +∞
−∞ (R1−γ −1)�(dx) (63)

This implies the statement of the proposition.
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