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Nanomaterials have garnered recognition for their notable surface effects and demonstration of superior mechanical properties.
Previous studies on the surface effects of nanomaterials, employing the finite element method, often relied on simplified two-
dimensional models due to theoretical complexities. Consequently, these simplified models inadequately represent the me-
chanical properties of nanomaterials and fail to capture the substantial impact of surface effects, particularly the curvature
dependence of nanosurfaces. This study applies the principle of minimum energy and leverages the Steigmann-Ogden surface
theory of nanomaterials to formulate a novel finite element surface element that comprehensively accounts for surface effects.
We conducted an analysis of the stress distribution and deformation characteristics of four typical 2D and 3D nanomaterial
models. The accuracy of the developed surface element and finite element calculation method was verified through comparison
with established references. The resulting finite element model provides a robust and compelling scientific approach for
accurately predicting the mechanical performance of nanomaterials.
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1. Introduction

Classical elasticity theory is conventionally regarded as in-
dependent of both size and time. In macroscopic materials,
where the surface area is significantly smaller in relation to
their volume, the surface contribution is typically negligible,
and only the mechanical properties of the bulk materials are
taken into account [1,2]. However, as the size of a structure
diminishes, the proportion of atoms located on the outermost
layer gradually increases. The influence of the material’s
surfaces can no longer be dismissed at the nanoscale, unlike
in macroscopic materials [3-6]. It is the strain energy con-
tained within the surface and interface layers that gives rise
to the notably distinct material properties exhibited by na-
nomaterials and nanostructures [7,8]. This phenomenon,

attributed to the elevated specific surface area of nanoma-
terials, is denoted as the surface effects [9].
To incorporate surface effects into a mechanical frame-

work, Gurtin and Murdoch developed a surface elasticity
model that encompasses both surface tensile and shear
stresses [10,11]. Their model conceptualizes the nanosurfaces
as a two-dimensional film adhering to the three-dimensional
substrate materials [12,13]. Subsequently, Steigmann and
Ogden [14,15] supplemented the Gurtin-Murdoch model and
introduced a new surface model capable of accommodating
out-of-plane bending deformation of nanosurfaces.
Following the pioneering research outlined above, the

theoretical examination of surface effects on nanomaterials
transitioned toward application in various mechanical sce-
narios. Initially, mechanical properties including deflection,
deformation, and Young’s modulus of nanomaterials with
straightforward physical structures like nanowires [16-19],
nanobeams [20,21], nanoplates [22], and nanofilms [23,24]
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were extensively investigated. Scholars also delved into the
analysis of stress perturbations [25,26], stress concentrations
[27-29], stress distributions [30-33], displacement distribu-
tions [34,35], and the mechanical behaviors of indenters in
both idealized infinite elastic space and elastic half-space
problems. Moreover, the alignment and combination of one-
dimensional nanobeams in space enabled the creation of
mechanical metamaterials with markedly enhanced me-
chanical properties. The reinforcing influences of surface
effects on the equivalent Young’s modulus and bending
behavior were demonstrated in classical open- and closed-
hole Gibson-Ashby models [36], the Kelvin model [37], and
their hierarchical structures [38,39]. Utilizing interface
phase models or cohesion models to predict equivalent
elastic properties offers valuable insights into characterizing
nanomaterial interfaces [40,41].
In addition to theoretical approaches, molecular dynamics

methods have demonstrated effectiveness in capturing mi-
crostructural surface effects by tracking atomic interactions
[42-45]. However, for nanomaterials with feature sizes in
the range of several hundred nanometers or larger, traditional
molecular dynamics methods become computationally ex-
pensive, leading to reduced efficiency [46]. On the other
hand, the finite element method, rooted in continuous med-
ium mechanics principles, provides higher computational
efficiency and greater flexibility in mesh density. Never-
theless, conventional finite element methods face challenges
in accurately simulating nanoscale mechanical behavior due
to a lack of formulations capable of accounting for micro-
structural surface effects [47-50]. A few researchers are
working towards modeling the mechanical response of na-
nosurfaces by adapting surface finite elements. For instance,
Wei et al. [51] investigated the mechanical properties of two-
dimensional nanomaterials by integrating one-dimensional
surface elements into a standard finite element program.
Similarly, Wang et al. [52] and Tian and Rajapakse [53]
employed a comparable approach to study stress con-
centration near two-dimensional circular nanovoids.
The preceding studies employing the finite element

method to assess the mechanical properties of nanomaterials
have predominantly relied on relatively straightforward two-
dimensional computational models. Consequently, these
models fall short in capturing the mechanical response of
nanostructures in the z-direction and fail to account for the
significant influence of surface effects. Despite the proposal
of the Steigmann-Ogden model over two decades ago, the
impact of surface bending stiffness on nanosurfaces has
seldom been addressed in the existing literature, both in
theoretical analyses and numerical simulations. Conse-
quently, the investigations aimed at capturing surface effects
in three-dimensional nanostructures while considering the
dependence on nanosurface curvature remain notably
scarce. This study aims to develop a novel surface element

and formulate a robust multi-scale computational method
that integrates surface curvature stiffness, enabling a com-
prehensive understanding of the surface behavior exhibited
by two- and three-dimensional nanomaterials with diverse
structural geometries. The present paper is structured as
follows: Sect. 2 details the construction of the novel nano-
surface element. In Sect. 3, we scrutinize the stress dis-
tribution and displacement characteristics of several typical
nanomaterials to validate the accuracy of the surface ele-
ment and finite element calculation method established in
Sect. 4. Lastly, Sect. 4 encapsulates the primary conclusions
drawn from this research endeavor.

2. Model and method

2.1 System energy equations

Consider a deformable region V encompassing a nano in-
terface or surface Γ (if no differentiation is stipulated, in-
terface and surface in the latter case are uniformly
denominated as surface). We assume that V is subjected to a
prescribed body force b and a surface traction t along the
outer boundary (St), as illustrated in Fig. 1. The total po-
tential energy of this system, denoted as Π, is a combination
of three constituent components: the strain energy of the
matrix material, denoted as UM, the strain energy of the
surface, denoted as UF, and the mechanical work performed
by external forces, represented as W. This relationship can
be mathematically represented as follows:

U U W= + + . (1)M F

The principle of minimum energy ensures that the varia-
tion in the total energy of the system is zero. This leads to
the reformulation of Eq. (1) as follows:

= 0. (2)
Within the framework of linear elastic materials, each

component in Eq. (1) is expressed as follows:

U V,

U S,

W V S,u b u t

= d

= d

= d d

(3)

V

V S

M M

F F.

t

Figure 1 Schematic of nano systems: (a) interface and (b) surface.
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where u represents the displacement vector. γM and γF re-
present the elastic energy density of the matrix and surface.
Building upon the Steigmann-Ogden surface model [14,15].
we can further specify these quantities as follows:

D= 1
2 : : , (4)M M M M

cD C= + : + 1
2 : : + 1

2 : : , (5)F
0

F F F F F
F

F F F

where γ0 and τF represent the free energy density and re-
sidual stress tensor of the surface, respectively. εM, εF and κF

represent matrix strain tensor, surface strain tensor, and
change of surface curvature tensor, respectively. DM, DF and
CF denote matrix elastic stiffness tensor, surface tensile
stiffness tensor, and surface bending stiffness tensor, re-
spectively. The Gurtin-Murdoch model can be regarded as
the Steigmann-Ogden model, under the assumption of ne-
glecting the contribution of surface bending stiffness. Thus,
we utilize the coefficient, cF, to differentiate between the
two surface models. When cF is equal to 0, it pertains to the
Gurtin-Murdoch model [10,11], whereas when cF is equal to
1, it pertains to the Steigmann-Ogden surface model [14,15].
By incorporating Eqs. (4) and (5) into Eq. (3), we can

derive the variational equations corresponding to each dis-
tinct type of energy:

( )
U V

U c S,

W V S.

D

D C

b u t u

= : : d ,

= : + : : + : : d

= d d

(6)

V

V S

M M M M

F F F F F F
F

F F F

t

The equations, as delineated in Eq. (6), serve as the
foundational basis for the subsequent derivation.

2.2 Element equilibrium equations

This section is dedicated to formulating a systematic ap-
proach to derive the equilibrium equations that govern the
system’s components based on the foundational principles
elucidated in Sect. 2.1. The methodology we adopt involves
applying the classical technique of piecewise interpolation.
This is used to describe displacement and strain across the
diverse elements of the system, encompassing both the
matrix and surface domains. This is encapsulated in the
equation below:

u N
u N

= ,
= ,

(7)M M M
e

F F F
e

B
B

= ,
= ,

(8)M M M
e

F F F
e

where NM and NF denote the shape function of the matrix

and surface elements, respectively. Likewise, BM and BF
denote the strain matrix of the matrix and surface elements,
respectively. M

e and F
e denote nodal displacement of the

matrix and surface elements. Especially, the nodal dis-
placements of the matrix elements and surface elements
satisfy the following equation:

T= . (9)M
e 1

F
e

The transformation matrix T in Eq. (9) represents the
projection from the comprehensive global frame to the lo-
calized frame. It succinctly denotes the complex transfor-
mation that occurs within the elemental nodal displacement
components.
By substituting Eqs. (7)-(9) into Eqs. (2) and (6), the finite

element format for the system energy equation can be ob-
tained

(
)

V

c S

V S

B D B

B T B T D B T

B T C B T

N b N t

: : d

+ : + : :

+ : : d

: d : d = 0, (10)

V

V S

M
M

M M
e

FT
F

FT
F

FT M
e

F FB
F

FB M
e

M M
t

where BFT and BFB denote tensile and bending components
in the strain matrix of the surface elements. Then, the ele-
ment equilibrium equations in discrete systems can be de-
rived as follows:

( )c cK K f+ = , (11)1 M
e

2 F
e

M
e

( )
V

c S

V S c S

K B D B

K B T D B T B T C B T

f N b N t B T

= : : d ,

= : : + : : d ,

= : d + : d : d ,

(12)

V

V S

M
e

M
M

M

F
e

FT
F

FT F FB
F

FB

M M 2 F
F

t

where f represents the element nodal force. K M
e and K F

e

denote the stiffness matrix for both the matrix and surface
elements. The constants c1 and c2 are defined as follows: for
matrix elements, c1 equals 1 and c2 equals 0; conversely, for
surface elements, c1 equals 0 and c2 equals 1. It is worth
noting that we adopt the conventional approach towards
surface residual stresses, regarding them as one part of the
element nodal forces in conjunction with the external loads.
In fact, Eqs. (11) and (12) are important theoretical supports
of the approach of constructing surface elements to emulate
surface effects.

2.3 Finite element equations of two-dimensional model

The surface within a two-dimensional nanostructure can be
discretized as one-dimensional elements, as can be seen in
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Fig. 2(a). The Gurtin-Murdoch model posits that the nano-
surface is a zero-thickness film capable only of withstanding
tensile deformations, while the Steigmann-Ogden model
considers the bending characteristics of the nanosurface.
Thus, based on their deformation characteristics, we in-
novatively categorize one-dimensional surface according to
the Gurtin-Murdoch model and Steigmann-Ogden model as
truss and beam elements, as can be seen in Fig. 2(b) and (c).
The nodal displacement of the truss element can be ex-

pressed in the local and global coordinate systems as F
e and

F
e
. The relationship between the two nodal displacements is

satisfied by

T= , (13)S
e

S
e

where the coordinate transformation matrix satisfies the
following equation:

T =

cos sin 0 0
sin cos 0 0
0 0 cos sin
0 0 sin cos

. (14)

It is imperative to acknowledge that the nodal displace-
ments of the surface element must align with the corre-
sponding matrix element in the global coordinate system to
ensure deformation compatibility. Hence, the element strain
matrix BF and element stiffness matrix KF

e
can be derived in

the global coordinate system through the application of
coordinate transformation, as illustrated in the subsequent
expression:

l l l lB = cos sin cos sin , (15)F
truss truss truss truss

E A
lK =

cos cos sin cos cos cos sin cos
sin cos sin sin sin cos sin sin
cos cos sin cos cos cos sin cos
sin cos sin sin sin cos sin sin

, (16)F
e truss truss

truss

where Etruss, Atruss, and ltruss represent the elastic modulus,
cross sectional area, and length of the truss element, re-
spectively.
The axial force of the truss element and the 2D con-

stitutive relation of the nano surface based on the Gurtin-
Murdoch model can be expressed as

N E A= , (17)truss truss truss truss

( )µ= +2 + , (18)F
0 0 0

F
0

where truss represents the axial strain of the truss element.
F and F represent surface stress and strain. τ0 represents

surface residual stress. λ0 and μ0 represent the surface Lamé
constants. Comparing Eq. (17) with Eq. (18), it is not dif-
ficult to derive the following relationship:

( )E A µ l= +2 . (19)truss truss 0 0 0 truss

Figure 2 Diagram of 2D (a) nanosurface systems considering, (b) Gurtin-Murdoch model, and (c) Steigmann-Ogden model.
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Using a similar approach, we can obtain the coordinate
transformation matrix of the beam element. The strain ma-
trix and stiffness matrix of the beam element in the global
coordinate system can be expressed as

T =

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0 0
0 0 0 cos sin 0
0 0 0 sin cos 0
0 0 0 0 0 1

, (20)

B B B B B B
B B B B B BB = , (21)F

11 12 13 14 15 16

21 22 23 24 25 26

K K K K K K
K K K K K K
K K K K K K
K K K K K K
K K K K K K
K K K K K K

K = . (22)F
e

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 45

51 52 53 54 55 56

61 62 63 64 65 66

The submatrices in Eqs. (21) and (22) can be expressed as

B l B l B B l

B l B B l l x

B l l x B l l x

B l l x B l l x

B l l x

= cos ,  = sin ,  = 0,  = cos , 

= sin ,  = 0,  = 6 + 12 sin , 

= 6 + 12 cos ,  = 4 6 ,

= 6 12 sin ,  = 6 12 cos , 

= 2 6 ,

(23)
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12
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13 14
beam

15
beam
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22
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2
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3 23

beam beam
2

24
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2

beam
3 25

beam
2

beam
3

26
beam beam

2

K K K K
E A

l
E I

l
K K K K

E A
l

E I
l

K K K K K K K K
E I

l
K K K K K K K K

E I
l

K K K K K K K K
E A

l
E I

l

K K K K E I
l

= = =

= cos cos + 12 sin sin ,

= = =

= sin sin + 12 cos cos ,   

= = = = = = =

= 6 sin ,

= = = = = = =

= 6 cos , 

= = = = = = =

= cos sin 12 sin cos ,

= = 2 = 2 =4 . 

(24)

11 41 14 44
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beam

beam beam

beam
3

22 52 25 55

beam beam
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beam
3

13 16 43 46 31 61 34 64

beam beam

beam
2

23 26 53 56 32 62 35 65

beam beam

beam
2

12 42 15 45 21 51 24 54

beam beam

beam

beam beam

beam
3

33 66 36 63
beam beam
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The bending moment of the beam element and the 2D
constitutive relation of the nano surface based on the
Steigmann-Ogden model can be expressed as

M E I= , (25)beam beam beam beam

( )M = + 2 , (26)F
0 0

F

where truss represents the curvature of the beam element.
M F and F represent surface bending moment and curva-
ture. ξ0 and η0 denote a set of constants that measure the
bending stiffness of the surface. Comparing Eq. (25) with
Eq. (26), it is not difficult to derive the following relation-
ship:

( )E I l= + 2 . (27)beam beam 0 0 beam

Eqs. (19) and (27) delineate the conversion relationship
between the material parameters of the truss/beam elements
and the surface of 2D nano structures, respectively. In-
corporating this conversion relation into the derived strain
and stiffness matrices of the surface elements facilitates the
construction of these elements.

2.4 Finite element equations of three-dimensional
model

In contrast to the 2D scenario, the surface of 3D nano
structures can be discretized into 2D elements. Considering
the deformation characteristics of the nano surface, we ad-
vocate employing a three-node triangular planar element to
simulate surface elasticity in accordance with the Gurtin-
Murdoch model, as shown in Fig. 3(a). Furthermore, the
surface elasticity considering the Steigmann-Ogden model
is replicated by overlaying a layer of four-node rectangular
thin plate elements onto three-node triangular face elements,
as shown in Fig. 3(b).
The coordinate transformation matrix of a three-node

triangular planar element satisfies the following equation:

a a a
a a a
a a a

T
T

T
T

T

=
0 0

0 0
0 0

,

= ,

(28)

1

1

1

1

11 21 31

12 22 32

13 23 33

where ars denotes the projection of the basis vectors of the
local coordinate system along the basis vectors of the
global coordinate system. Thus, the element strain matrix
BF and element stiffness matrix KF

e
can be derived in the

global coordinate system through the application of co-
ordinate transformation, as illustrated in the following ex-
pression:
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A

b a b a b a b a
c a c a c a c a

c a b a c a b a c a b a c a b a

b a b a b a b a b a
c a c a c a c a c a

c a b a c a b a c a b a c a b a c a b a

B = 1
2

+ + + +

       
+ + + + +

, (29)

i i i j

i i i j

i i i i i i j j

j j m m m

j j m m m

j j j j m m m m m m

F tri

11 21 31 11

12 22 32 12

11 12 21 22 31 32 11 12

21 31 11 21 31

22 32 12 22 32

21 22 31 32 11 12 21 22 31 32

t AK B D B= , (30)F
e

F
T

tri F tri tri

where ttri, Dtri and Atri denote the thickness, elastic stiffness
matrix, and the area of the three-node triangular planar
element. bi and ci represent a set of constants. These values
can be expressed as follows:

E
v

v
v

v
D = 1

1 0
1 0

0 0 (1 ) / 2
, (31)tri

tri

tri
2

tri

tri

tri

A
x y

x y

x y

= 1
2

1

1

1

, (32)
i i

j j

m m

tri

b y y

c x x
i j m

= ,

= + ,
   , , , (33)i j m

i j m

where Etri and vtri are the elastic modulus and Poisson’s ratio
of the three-node triangular planar elements. The symbols
“i, j, m” in Eq. (33) represent the subscript rotation opera-
tion.
The constitutive relation of the three-node triangular

planar element and 3D nanosurface based on the Gurtin-

Murdoch model can be expressed as
D= , (34)tri tri tri

µI I I= +2( ) +( + )(tr ) , (35)F
0 F 0 0 F

F
0 0

F
F

where IF denotes the surface unit tensor. Comparing Eq.
(34) with Eq. (35), it is not difficult to derive the following
relationship:

E µ µ
µ t

v µ

= 4( + )( )
(2 + ) ,

= +
2 + .

(36)
tri

0 0 0 0

0 0 0 tri

tri
0 0

0 0 0

Using a similar approach, we can obtain the coordinate
transformation matrix of the four-node rectangular thin plate
element, the strain matrix and the stiffness matrix in the
global coordinate system:

T

T
T

T
T

T
T

T

=

0 0 0
0 0 0
0 0 0
0 0 0

,

=
0

0 ,

(37)

2

2

2

2

2
1

1

Figure 3 Diagram of 3D nanosurface systems considering (a) Gurtin-Murdoch model and (b) Steigmann-Ogden model.
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
( )
( )

( )
( )

( )
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ab r i j m k

b
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b a

a

b
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b a

a

b
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a
b a

a

b a
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b a a a

b a
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b a a a
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b a a a
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B B B B B

B B B B B B B

B B

B B

B

B
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= 1
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=

3 (1 + )

3 1 +

(3 + 3 4)

,  =

3 (1 + )

3 1 +

(3 + 3 4)

,

=

3 (1 + )

3 1 +

(3 + 3 4)

,  =

1 + 3 (1 + )

1 + (1 + 3 )

3 + 2 1 + 3 + 2 1

,

=

1 + 3 (1 + )

1 + (1 + 3 )

3 + 2 1 + 3 + 2 1

,

=

1 + 3 (1 + )

1 + (1 + 3 )

3 + 2 1 + 3 + 2 1
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(38)

i j m k
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2
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2
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2
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5
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2
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2
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6

32

31

2
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2
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abK B D B= d d , (39)F
e

1

1

1

1
F
T

rec F
T

where T1 denotes the submatrix of the coordinate transfor-
mation matrix in Eq. (28). The coefficients a and b are half
of the length and width of the four-node rectangular thin
plate element. For ease of Gaussian integration, we establish
a local coordinate system denoted as C, where the origin is
set at the center of the rectangular thin plate element. ξ and η
are employed as the horizontal and vertical coordinates,
respectively. The coordinates of the four nodes of the ele-
ment under local coordinate system C are denoted as ξr and
ηr, and they satisfy the following relation:

= 1,  = 1,
= 1,  = 1,
= 1,  = 1,
= 1,  = 1.

(40)

i i

j j

m m

k k

The constitutive relation of the four-node rectangular thin
plate element and the 3D constitutive relation of the nano-
surface based on the Steigmann-Ogden model can be ex-
pressed as

M D= , (41)rec rec rec

E t
v

v
v

v
D = 12(1 )

1 0
1 0

0 0 (1 ) / 2
, (42)rec

rec rec
3

rec
2

rec

rec

rec

M I= tr( ) +2 , (43)F
0

F
F 0

F

where Erec, vrec and trec are elastic modulus, Poisson’s ratio
and thickness of the four-node rectangular thin plate ele-
ment, respectively. Comparing Eq. (41) with Eq. (43), it is
not difficult to derive the following relationship:

E t

v

= 48 ( + )
+ 2 ,

= + 2 .
(44)

rec rec
3 0 0 0

0 0

rec
0

0 0

Equations (36) and (44) delineate the conversion re-
lationship between the material parameters of the three-node
triangular planar elements (or the four-node rectangular thin
plate elements) and the surface of the 3D nanostructures,
respectively. The construction of the surface elements can be
further accomplished by taking the above parameter re-
lationships into the strain and stiffness matrices of the sur-
face elements.

2.5 Secondary development of programs

The FORTRAN programming language is employed to
construct a surface element to facilitate data exchange be-
tween the main solver and the user element. The specific
steps are outlined below: (1) build the matrix elements; (2)
get the global coordinates of the surface nodes; (3) construct
the coordinate transformation matrix; (4) initialize the
stiffness matrix of the surface elements; (5) construct the
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strain matrix, the elasticity matrix and the stiffness matrix of
the surface elements; (6) calculate stress and strain of the
surface elements; (7) construct element balance equations;
(8) calculate, iterate and update data.

3. Results and discussions

To validate the accuracy of the developed surface elements
and finite element calculation method, we analyze the stress
distributions and deformation characteristics of various 2D
and 3D models. Subsequently, we compare these calcula-
tions with the corresponding references. The specific models
under discussion comprise: a 2D simply supported plate, a
2D infinite plane with a circular void, a 3D soft solid con-
taining liquid inclusion, and a 3D half space subjected to
normal traction.

3.1 2D simply supported plate

As can be seen in Fig. 4(a), we focus on the transverse
displacement v of a simply supported plate under
plane strain subjected to a distributed pressure
p x p x w( ) = sin( / )0 , where p0 is the peak pressure magni-
tude of 5 MPa. The plate’s width w and thickness t0 are
0.2 μm and 10 nm, respectively. The Young’s modulus Eb

and Poisson’s ratio vb of the matrix are 78 GPa and 0.42. The
surface residual stress τ0, surface Lamé constants λ0 and μ0
are 1 N/m, 5 N/m and 10 N/m, respectively [22]. The se-
lected material parameters align with the theoretical solu-
tions employed for comparison. The mesh of the matrix is
accomplished using three-node linear plane-strain triangular
elements (CPE3) in ABAQUS, while upper and lower na-
nosurfaces are discretized by truss elements. The number of
elements in the model is 16000 and the calculation time is
around 5 min.
The cases 0, 1, 2, and 3 correspond, respectively, to sce-

narios without surface effects (τ0 = λ0 = μ0 = 0), with only
surface tension (τ0 ≠ 0 and λ0 = μ0 = 0), with only surface
elasticity (τ0 = 0, λ0 ≠ 0 and μ0 ≠ 0), and with both effects (τ0
≠ 0, λ0 ≠ 0 and μ0 ≠ 0). In Fig. 4(b), the finite element
calculations closely align with the theoretical values [54].
The accuracy of the developed finite element calculation
method is very high, which is attributed to the model is not
complex. The transverse displacements in Fig. 4(b) reveal
that the surface effects tend to increase the stiffness of the
simply supported plate under the selected nanosurface
parameter conditions. In particular, the surface residual
stress exerts a greater influence on model hardening com-
pared to the surface Lamé constant. This phenomenon aligns
with our earlier observations regarding Young’s modulus in
nanoporous metals [55].

3.2 2D plane with circular void

To address the influence of surface curvature, in this section,
we examine the stress distribution around a nanoscale cir-
cular void with a radius of R0 = 10 nm subjected to uniaxial
tension of py = 100 MPa along the y-direction, as shown in
Fig. 5(a). In the convenience of finite element analysis, we
adopt a quarter model which constraints the x-direction
displacement of the nodes at the negative x-direction
boundary, and the y-direction displacement of the nodes at
the negative y-direction boundary, depicted in Fig. 5(b). To
eliminate boundary effects, the square side length is set to 20
times the diameter of the void.
Analytical solutions for comparisons were provided by

Sharma et al. [13] for the Gurtin-Murdoch model and by
Zemlyanova and Mogilevskaya [56] for the Steigmann-
Ogden model. The matrix material chosen was freshly cut
aluminum, characterized by a Young’s modulus Eb = 70 GPa
and a Poisson’s ratio vb = 0.35. Additionally, the surface
parameters are as follows: surface residual stress τ0 is
0.911 N/m, surface Lamé constant λ0 is 6.851 N/m, and μ0 is
−0.376 N/m [53]. However, as of now, widely accepted

Figure 4 Simply supported plate under plane strain. (a) Diagram of the
model; (b) transverse displacements.
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surface bending constants in Eq. (27) have yet to be estab-
lished for nanomaterials. Consequently, to merely delineate
the influence trend of the surface bending constants on the
stress field surrounding nano voids, we assume a surface
bending constant of η0 = ξ0 = 500 nN nm [52,57]. The mesh
of the matrix is accomplished using eight-node quadratic
plane strain elements (CPE8R) in ABAQUS, while nano-
surfaces are discretized using beam elements. The number
of elements in the model is 10000 and the calculation time is
around 4 min.
The hollow scattering points in Fig. 5(c)-(f) accurately

align with the curves depicting the analytical solutions, af-
firming the precision of the finite element program in cap-
turing the mechanical behavior of nanosurfaces. Notably,
the surface effects augment the radial stress in proximity to
the circular nanovoid. Nevertheless, the surface curvature
still has a tendency to flatten the radial stress curve. On the
other hand, the hoop stress is contingent upon location.
Specifically, at φ = 0, the surface effect diminishes hoop
tensile stress, while at φ = π/2, it amplifies hoop compres-

sive stress. It is evident that considering the surface curva-
ture has minimal impact on the hoop stress. Moreover, as the
observation position moves farther from the void, the impact
of the surface effects diminishes gradually, becoming nearly
negligible when the observation position exceeds five times
the void diameter.

3.3 3D soft solids with liquid inclusion

A recent discovery in elastocapillary reveals that a soft solid
containing liquid inclusions can exhibit greater stiffness
compared to its counterpart lacking such inclusions, owing
to the influence of surface tension on the solid [58,59].
Figure 6(a) depicts a 3D model of a droplet within an ex-
tensive solid domain subjected to far-field strains, with 1/8
of the total domain analyzed due to symmetry considera-
tions. l and w represent the major and minor diameters of the
deformed droplet, respectively, while the liquid is assumed
to be incompressible. The incompressible soft solid pos-
sesses a Young’s modulus of 1.7 kPa, and the surface ten-
sion is denoted as τ0 = 3.6 mN/m [58]. To eliminate the
effects of the border, the ratio between the edge size of the
cube and the radius of the sphere is set at 20. The matrix
elements comprise the quadratic tetrahedral elements,
whereas the surface elements consist of the three-node tri-
angular planar elements, resulting in a total of approxi-
mately 500000 elements. The calculation time of every
model is around 30 min. We utilize the numerical predic-
tions by He and Park [60] as well as the theoretical and
experimental findings by Style et al. [58] for comparison
with our computations.
Figure 6(b) and (c) depict the aspect ratio l/w of liquid

inclusion under two displacement loading conditions. Spe-
cifically, Conditions 1 is εxx = 5.6% and εyy = −1.5%, and
Conditions 2 is εxx = 17.5% and εyy = −2.6%. Our predictions
align more closely with the theoretical solution curves
compared to those of He and Park [60]. This discrepancy
arises from our comprehensive consideration of surface re-
sidual stress in the Young’s modulus and Poisson’s ratio of
our element, which is in contrast to He et al.’s [60] ap-
proach. Given the discrete nature of the experiments, our
numerical predictions exhibit some deviation from the ex-
perimental results, but the overall trend remains remarkably
consistent. Moreover, as the size of the liquid inclusions
increases, the aspect ratio l/w stabilizes, signifying a re-
duction in the influence of the surface effects.

3.4 3D half space with a normal traction

In this section, we analyze a simplified scenario involving a
uniform normal traction (p0) applied within a circular
boundary of radius (R0) on the elastic half space. To mitigate
boundary effects, we construct a finite element model of a

Figure 5 2D infinite plane with circular void: (a) configuration of the
model; (b) diagram of finite element mesh. Distribution of (c) radial stress
at φ = 0, (d) hoop stress at φ = 0, (e) radial stress at φ = π/2, and (f) hoop
stress at φ = π/2.
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cubic elastomer with side lengths 20 times the radius, de-
picted in Fig. 7(a). Surface effects are specifically analyzed
on the top surface of the cube, while the remaining surfaces
are left untreated. The half space solid is modeled as an
isotropic aluminum material. Consequently, the matrix ma-
terials and the Lamé constants of the surface match those
outlined in Sect. 3.2. The constant Gb in Fig. 7(b)-(d) in-
dicates the shear modulus of the matrix. The comparative
data is sourced from theoretical solutions advanced by Mi

[30], so the surface bending constants are also consistent
with them (ξ0 = 2η0 = 1 nN nm). The number of elements in
the model is 300000 and the calculation time is around
20 min.
Figure 7(b)-(d) shows the distribution of vertical dis-

placement uz at z/R0 = 0, 1 and 2, respectively. The com-
putational outcomes obtained through the finite element
method closely align with the theoretical values at ob-
servation positions of z/R0 = 0 and 1, with a slight increase
in error observed at z/R0 = 2. This is primarily attributed to
the significant distance between the observation position
and the loading surface, thereby amplifying the effect of the
perturbation. Nonetheless, the computational errors remain
minimal overall (below 3%), attesting to the continued high
accuracy of the developed computational method. Ob-
servably, the curvatures of all nine displacement curves
undergo a sign change along the circular loading boundary.
Both surface models contribute to augmenting the absolute
values of the radii of curvature at all three depths. Conse-
quently, they collectively contribute to the smoothing of the
displacement curves, particularly when accounting for sur-
face curvature.

4. Concluding remarks

This study facilitates the creation of a finite element cal-
culation model proficient in accounting for curvature-de-
pendent surface effects in 2D and 3D nanostructures,
achieved by innovating finite elements tailored for nano
surfaces. We formulated the stiffness matrix for the novel
surface element and established the correlation between the
nanosurface parameters and the surface element parameters.
The accuracy of the developed surface element and finite
element calculation method is verified by calculating the
stress distribution and deformation characteristics of typical
2D and 3D models and comparing them with the references.
We found that the surface residual stress exerts a greater
influence on model hardening compared to the surface Lamé
constant. Besides, a soft solid containing liquid inclusions
can exhibit greater stiffness compared to its counterpart
lacking such inclusions, owing to the influence of surface
tension on the solid. Moreover, the surface effects, parti-
cularly when accounting for surface curvature, contribute to
augmenting the absolute values of the radii of displacement
curvature on 3D elastic half space subjected to a normal
traction.
It is important to acknowledge that the finite element

computational model developed in this paper has certain
limitations. For instance, it currently lacks the capability to
simulate crack extension, rendering it applicable solely to
perfect interfaces. Furthermore, the interface elements con-
structed in the model are designed with very small thick-

Figure 7 3D elastic half-space subjected to a normal traction over a nano
sized circular area: (a) configuration of the model. Distribution of vertical
displacement uz at (b) z/R0 = 0, (c) z/R0 = 1, and (d) z/R0 = 2.

Figure 6 Soft solid stiffened by a liquid inclusion: (a) 1/8 of the 3D
model. Aspect ratio l/w of liquid inclusion under far-field strains (b) εxx =
5.6 % and εyy = −1.5 %, and (c) εxx = 17.5 % and εyy = −2.6 %.
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nesses, aiming to minimize the influence of element thick-
ness on the mechanical properties of nanostructures to the
greatest extent possible.
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考虑表面曲率依赖的纳米材料表面单元设计

张永超, 王连, 王方鑫, 李彬, 苟晓凡

摘要 纳米材料以其显著的表面效应和优异的力学性能而备受关注.由于理论复杂性, 以往采用有限元方法对纳米材料表面效应研究

常简化为较为简单的二维模型, 因此, 不能很好地反映纳米材料的力学性能, 也不能反映表面效应的实质影响, 特别是纳米表面曲率依

赖性. 本研究应用最小能量原理, 利用纳米材料Steigmann-Ogden表面理论, 提出了一种综合考虑表面效应的新型有限元表面单, 在此基

础上分析了四种典型二维和三维纳米材料模型的应力分布和变形特征. 通过与已有文献的对比, 验证了所提出有限元计算方法的准确

性. 所得到的有限元计算方法为精确预测纳米材料力学性能提供了一种可靠和令人信服的科学方法.
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