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The ground-based experimental tests are crucial to verify the related technologies of the drag-free satellite. This work presents
a design method of the ground simulator testbed for emulating the planar dynamics of the space drag-free systems. In this
paper, the planar dynamic characteristics of the drag-free satellite with double test masses are analyzed and non-
dimensionalized. A simulator vehicle composed of an air bearing testbed and two inverted pendulums is devised on the basic
of equivalent mass and equivalent stiffness proposed firstly in this paper. And the dynamic model of the simulator equivalent to
the sensitive axis motion of the test mass and the planar motion of the satellite is derived from the Euler-Lagrange method.
Then, the dynamic equivalence conditions between the space prototype system and the ground model system are derived from
Pi theorem. To satisfy these conditions, the scaling laws of two systems and requirements for the inverted pendulum are put
forward. Besides, the corresponding control scaling laws and a closed-loop control strategy are deduced and applied to
establishing the numerical simulation experiments of underactuated system. Subsequently, the comparative simulation results
demonstrate the similarity of dynamical behavior between the scaled-down ground model and the space prototype. As a result,
the rationality and effectiveness of the design method are proved, facilitating the ground simulation of future gravitational
wave detection satellites.
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1. Introduction

Since the drag-free control technology was proposed by
Lange [1] in the 1960s, many scholars have conducted a lot
of further research on it and proposed several important
application prospects of drag-free satellites in earth gravity
field measurement [2] and space gravitational wave detec-
tion [3-6] and other tasks. Space agencies around the world
have performed lots of in-orbit experiments and completed
corresponding space missions to verify a large number of
relevant studies, such as GOCE satellite [7], GP-B satellite
[8], Lisa-pathfinder (LPF) satellite [9] and Taiji-1 [10,11].
With the subsequent development of LISA project [12],

Taiji project [13] and Tianqin project [14], the drag-free
control technology will become one of the critical re-
searches of space gravitational wave detection and deep
space exploration in the future.
For all kinds of spacecraft, including drag-free satellites,

experimental verification is a necessary final step and per-
haps the most crucial step. Because the related technologies
must be rigorously demonstrated and verified before it can
be used on space missions. One of the verification methods
is to launch a test satellite, which is also the most direct way.
In 2015, ESA launched the satellite LPF [9] to complete the
drag-free control experiments to testify the relevant tech-
nologies of gravitational wave detection and gained the re-
presentative results. In 2019, the Chinese Academy of
Sciences also launched Taiji-1 [10] and performed in-orbit
experiments of single-degree-of-freedom drag-free control.
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Kawano et al. [15] successfully completed the first in-orbit
autonomous rendezvous docking flight using relative GPS
navigation in the whole world.
Another verification method is using the simulator [16],

which can be generally divided into two broad types: ki-
nematics simulator and dynamics simulator. The ground
kinematics simulators [16,17] can use the cartesian system,
robotic manipulators and other simulator technologies to
reproduce the spacecraft motion. Caon et al. [18] present a
series of tests conducted on a custom robotic arm to re-
produce many aspects of the spacecraft motion. Zong and
Emami [19] developed an error compensation scheme to
make the closed-loop ground manipulator have similar joint
movements to those of the space manipulator. But the ki-
nematics simulator can only be used to reproduce the ki-
nematic and differential kinematic aspects of spacecraft
motion. Different from the kinematics simulator, the dy-
namics simulator can simulate not only the kinematic and
differential kinematic aspects but also at least a portion of
the dynamic aspects of spacecraft motion. The dynamics
simulators include microgravity orbit simulator [20], falling
simulator [21] and ground dynamics simulator [22-27]. The
ground dynamics simulators can achieve microgravity con-
ditions using drop tower [22], air-bearing [22-26], suspen-
sion [27], and other methods [16,17,28].
All kinds of the simulators must satisfy the dynamic

equivalence conditions [29], which make the dynamics of
simulator equivalent to the dynamics of the space prototype
system. The condition is described in Buckingham’s Pi
theorem (called Pi theorem) in Ref. [30], stating that all of
the dimensionless Pi parameters have the same numerical
values for both the prototype and the model. As a con-
sequence, two systems are completely similar. Through the
use of Buckingham’s Pi theorem, Ciarcià et al. [24] re-
produced the orbital relative dynamics of CW equation on a
ground air-bearing testbed equivalent to the prototype sys-
tem. The experimental results showed the dynamical simi-
larity of the simulator with three degrees of freedom.
Fernandez et al. [26] designed and developed a new granite
hardware-in-the-loop air-bearing testbed that can emulate
the relative orbital dynamics between two orbiting space-
craft. Eun et al. [25] devised a new state-of-the-art ground-
based hardware-in-the-loop test facility, using linear/hemi-
spherical air-bearings. And the experimental results verified
the successful development of the entire facility for the
spacecraft proximity operation strategy in the near future.
Zappulla et al. [31] designed a state-of-the-art air-bearing
testbed and performed a test campaign to showcase its
capabilities and illustrate the testbed operations to develop
guidance, navigation, and control methods for close-proxi-
mity operations. Using the air-bearing technology can op-
erate the testbed for a long time, while other model
simulators are too short to maintain the microgravity con-

dition. And test satellites have a higher cost, a higher risk
and a longer cycle.
However, different from other spacecraft missions, drag-

free control manipulates not only the absolute orbit motion
of satellite but the relative motion between the satellite body
and the test mass. As a result, it is extremely difficult to
build a completely ground simulation model. For the per-
formance index of the micro-thruster used in drag-free
control, Yang et al. [28] designed a set of high-accuracy
torsion pendulum device to measure the thrust response time
of micro-thrusters on the ground. In addition, Zhang et al.
[27] established a ground semi-physical drag-free control
simulation system based on suspension pendulum and con-
ducted closed-loop control experiments simulating the sin-
gle-degree-of-freedom drag-free control.
The above research and the relevant research published at

present barely mentioned the ground simulation of drag-free
satellite with double test masses. Therefore, it is greatly
challenging to design an equivalent model for the ground
simulation. And for the future gravitational wave detection
program, it is also necessary to provide a ground experi-
mental platform for demonstration and verification of cor-
relative techniques. Therefore, this paper presents a
similarity design method of the drag-free satellite simulator
based on dimensional analysis and Pi theorem. For emu-
lating the planar dynamics behavior of the spacecraft, we
designed an air-bearing spacecraft simulator testbed on a
high-accuracy flat surface. The small angle rotation of two
inverted pendulums equipped on the testbed can be theore-
tically equivalent to the sensitive axis motion of two test masses.
Besides, dynamic equivalent conditions of the designed
model are derived from similarity criterion as well as the
corresponding scaling laws, which are applied on the closed-
loop simulation model. In addition, A closed-loop control
strategy for the underactuated model system is devised to
complete simulation experiments of drag-free control under
the displacement model. Finally, the simulation results of the
scaling ground model are compared with that of the satellite
according to the similarity relationship. It is expected to be
verified that the dynamic behavior of the ground model is
similar to that of the drag-free satellite with two test masses.
The paper is organized as follows: Section 2 describes the

nondimensionalization of similarity criterion. Section 3 es-
tablishes the dynamic equivalent simulator model and
scaling laws using Pi theorem. Section 4 reports the appli-
cation of a control strategy, control scaling laws and thrust
allocation. Section 5 discusses the similarity between two
systems. Section 6 makes a conclusion.

2. Dimensional analysis of the prototype

According to description in Refs. [29,30], if a physical
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phenomenon can be described by a dimensional equation of
p variables with q fundamental units, the original equation
could be rewritten in a nondimensional form by using r = p
− q dimensionless parameters. These dimensionless para-
meters generally called the “Pi” parameters and constitute
similarity criterion of the system. In this section, the Pi
parameters corresponding to the dynamic characteristics of
the drag-free satellite with double test masses are deduced.

2.1 Dynamics model of the drag-free satellite with two
test masses

Drag-free control means that the satellite utilizes the active
control forces and torques generated by actuators to com-
pensate the nonconservative disturbance forces acting on the
satellite, which aims to make satellite body to track the free-
falling test mass and maintain a relative static state without
contact. Based on the concept of drag-free satellites, the
space gravitational wave detection program [13] is planning
to use three drag-free satellites with an equilateral triangle
formation in orbit around the sun or the Earth. The con-
ceptual model of a drag-free satellite with two test masses is
shown in Fig. 1.
On the basic premise of rigid body dynamics, the motion

model of the satellite with 6 degrees of freedom can be
expressed as

M r̈
I ¨

= f
l

, (1)

where M′ is the mass matrix of the satellite, and I′ is the
inertia matrix of the satellite. r′ and φ′ represent the dis-
placement and rotation of the satellite body in the inertial
coordinate system. f′ and l′ are external forces and moments
exerted on the satellite, respectively. The test masses back-
forward forces on the satellites can be ignored, because the
back-forward forces on the satellites are much less than the
external disturbance f′ and l′. The mass of the test masses is
much less than the mass of the spacecraft. Without the
change in the center of mass, each element of M′ and I′
remains constant.
Without deformation, the displacement and rotation of the

test mass relative to the satellite body can be regarded as the
displacement and rotation of the test mass relative to the
electrode cage. Therefore, the dynamic model of the test
mass is as follows:

M q̈ K q f f f M q̈+ = + + + , (2)c dtm tm tm tm sc sc

where M tm is the generalized mass matrix of test masses.
qtm is the position and attitude of test masses relative to the
spacecraft body. Msc is the generalized sensitivity matrix of
test masses relative to the absolute acceleration of the
spacecraft. qsc is the absolute position and attitude of the

spacecraft. K′ is the stiffness matrix of test masses. f c is the
controlling forces and torques applied on test masses. f tm is
the interaction forces acting on test masses. f d is the dis-
turbance force exerted on test masses. For translational and
rotational, Eq. (2) can be rewritten as
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where (r1, 1) and (r2, 2) represent the displacement and
rotation of the corresponding test mass with respect to the
nominal position in the electrode cage, respectively. f i and l i
are the external forces and torques applied to the test mass,
respectively. C′ is the coordinate-transformation matrix. r pi

is the skew-symmetric cross product matrix, expressed as

z y
z x
y x

r =

0
0

0
, (4)pi

pi pi

pi pi

pi pi

where r pi is defined by the nominal position vector of the
test mass 1 and 2 in the spacecraft body coordinate system,
which is r pi = (xpi, ypi, zpi).

2.2 Dynamics equation of the prototype system

With the limitation of the ground environment, the ground
experiment cannot simulate the whole dynamics behavior of
the drag-free satellite with full degrees of freedom. There-
fore, this paper mainly studies the planar motion of the sa-
tellite and the sensitive axis motion of two test masses and
establishes the corresponding drag-free control dynamics
model.
From Eq. (1), the planar dynamic equation of the space-

craft is obtained as follows:

Figure 1 Diagram of the drag-free satellite with two test masses.
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¨
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/

, (5)
x

y

z z

where x′ and y′ represent the displacement and rotation of
the spacecraft along x′ and y′ axis, respectively. φ′ represents
the rotation of the spacecraft along z axis. Fx and Fy are the
resultant force along x and y axis applied to the spacecraft.
Tz is the torques along z axis applied to the spacecraft. Iz is
the inertia matrix of the satellite. On this basis, the plane
schematic diagram of the test mass is shown in Fig. 2.
Subsequently, the translational dynamic equation of the i-

th test mass is

( )r̈ K r f
m C r̈ r ¨+ = , (6)i i

i
i i pi/SC

where Ci/SC is the coordinate transformation matrix. The
expression is given in Eq. (A1).
Through deduction and simplification, the simplified dy-

namic equation of the sensitive axis motion of the test
masses can be written as

( ) ( )

( ) ( )

x K x
f
m x y y x

x K x
f
m x y y x

¨ + = cos ¨ ¨ sin ¨ + ¨ ,

¨ + = cos ¨ ¨ sin ¨ + ¨ .
(7)

x
p p

x
p p

1 1 1
2

1
1 1 1 1

2 2 2
2

2
2 2 2 2

Regardless of the attitude change of the test mass with
respect to the satellite, 1 and 2 are both the constant va-
lues. Thus, the similar dynamic characteristics of the pro-
totype phenomenon are shown in Table 1.

2.3 Nondimensionalization of similarity parameter

According to Pi theorem, each Pi parameter corresponding
to each variable in the prototype system is the product of this
variable and q arbitrarily selected fundamental variables
containing all of the fundamental units. Generally, the fun-
damental dimensions of the dynamic equation are time,
length and mass. However, the two coordinate systems in-
volved in the dynamic equations (5) and (7) are independent
of each other, so the length dimension of the prototype
system in Table 1 can be divided into two independent di-
mensions: Lsc and Ltm. On this base, there are 4 independent
basic dimensions among the 27 system variables in the
prototype system, including M, Lsc, Ltm and T.
In this paper, the chosen basic variables with all in-

dependent basic dimensions are M′, x′, x1 and t′. Combined
with other remaining variables in Table 1, the expression of
dimensionless Pi parameter (πi) is

M x t P= , (8)i i
i i i

where Pi represents a variable apart from the four basic
variables. The exponents of the fundamental variables in

each Pi parameter are determined by the exponent of the
remaining variable Pi . And the dimension of Pi need to be
analyzed, as follows:

P M L T M L T= or , (9)i
a b c a b c

sc tm
i i i i i i

where Lsc and Ltm represent the length dimensions of vari-
ables x′ and x1 , respectively.
The exponents αi, βi and γi in Eq. (8) are the appropriate

integers to make πi become a dimensionless parameter.
Besides, ai, bi and ci in Eq. (9) are dimensionless integers.
Therefore, all exponents of πi satisfy the following restricted
relation:

a
b
c

+ = 0,
+ = 0,
+ = 0.

(10)
i i

i i

i i

We can take the parameter xp1 as an example. According
to the dimensions of parameters in Table 1, it can be seen
that a1 = 0, b1 = 1, c1 = 0. Based on Eq. (10), it shows that α1
= 0, β1 = −1 and γ1 = 0. Consequently, the parameter π1 can

Figure 2 Plane diagram of the drag-free satellite with two test masses.

Table 1 Physical parameters of the prototypea)

Similar characteristic Variables Dimension
Inertial coordinate

system xp1, xp2, yp1, yp2, x′, y′ [Lsc]

Test mass coordinate
system x1 , x2 [Ltm]

Time t′ [T]

Mass M′, m1 , m2 [M]

Force Fx
, Fy

| f x1 , f x2
[M Lsc T −2] | [M LtmT −2]

Acceleration ẍ′, ÿ′ | ẍ1 , ẍ 2 [Lsc T −2] | [Ltm T −2]

Stiffness K1
, K2

[T −2]

Torque Tz
[M Lsc

2 T −2]

Rotational inertia Iz
[M Lsc

2]

Attitude angle 1

Angle velocity [T −1]

Angle acceleration ¨ 1 [T −2]

a) The 27 variables construct the similar characteristics of the prototype
system.
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be written as

x x= . (11)p1
1

1

Corresponding to Table 1, other Pi parameters can be
calculated in the same way. And the results are shown as
follows:

x x x x x y x y x y x x

M m M m M x t F M x t F M x t f M x t f

x t x x t y x t x x t x t K t K

M x t T M x I t t

= , = , = , = , = , =

= , = , = , = , = , = ,

= ¨ , = ¨ , = ¨ , = ¨ , = , = ,

= , = , = , = , = ¨ . (12)

p p p p

x y x x

z z
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2 3
1

1 4
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2 5
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6 1
1
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1 8
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1 1 2

11
1

1
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1 12
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1
1 2

2

13
1 2

14
1 2

15 1
1 2

1 16 1
1 2

2 17
2

1 18
2

2

19
1 2 2

20
1 2

21 22 23
2

All of Pi parameters constitute the π group corresponding
to the similar characteristics of the prototype system and
establish the similarity criterion of the system. Due to that
the π group defines the dynamic equivalence conditions, the
model system must have the same π group exactly consistent
with Eq. (12).

3. The scaled model with complete physical
similarity

In order to reproduce the dynamic process of the prototype
system in the ground experiment, a design method of an air
floating model simulator is proposed. In this section, the
constraint relationship of similarity criterion between the
ground model system and the space prototype system is
theoretically analyzed to ensure that the π group of the two
systems are consistent with each other. And the principle of
similarity is applied to deducing the scaling law, which
determines that all parameters in the ground model can be
correctly and reasonably scaled equivalently.

3.1 The dynamics model of the ground simulator
system

The ground simulator is designed to be equivalent to the
drag-free satellite. And the corresponding system dynamics
model is theoretically derived through the use of Euler-La-
grange method.

3.1.1 The design of the ground simulator vehicle
The spherical air-bearing system allows the reproduction of
three-degree-of-freedom attitude dynamics, while the planar
air-bearing system has two degree-of-freedom translation
and one degree-of-freedom rotation. In order to simulate
microgravity environment and frictionless state of satellites,
planar air-bearing technology is employed in designing a
testbed, which could produce the smooth and steady air
cushion between the testbed and the base surface. The
schematic diagram of design is shown in Fig. 3.
In Fig. 3, the ground simulator vehicle is composed of the

air-bearing testbed and two inverted pendulums. The angle
between the plane projection of the inverted pendulum and
the x-axis is φi, which is a constant. The centroid coordinate
of the inverted pendulum is (xci, yci) and the position of the
rotation shaft is (xpi, ypi). xpi and ypi are constants. The re-
lationship between the two coordinates is as the following
equations:

x x e
y y e

= + sin cos ,
= + sin sin ,

(13)ci pi i i i

ci pi i i i

where θi is the small angle of the inverted pendulum. ei
represents the distance between the center of mass and the
axis of rotation of the inverted pendulum, which is a con-
stant. Assuming that the experiment is carried out under the
ideal condition, the friction force could be negligible.
Therefore, the simplified dynamic model of the air-bearing
testbed is expressed as

x F M
y F M

T I

¨ = / ,
¨ = / ,
¨ = / ,

(14)
x

y

z z

where x and y represent the displacement and rotation of the
air-bearing testbed along x and y axis, respectively. φ re-
presents the rotation of the air-bearing testbed along z axis.
Fx and Fy are the resultant force along x and y axis applied to
the air-bearing testbed. Tz is the torques along z axis applied
to the air-bearing testbed. Iz is the inertia matrix of the air-
bearing testbed.

Figure 3 Ground simulator model.
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In Fig. 3, two inverted pendulums are installed on the air-
bearing testbed at the x-axis symmetrical position. The de-
sign model is shown in Fig. 4.
In Fig. 4, Pe is the center of mass of the inverted pendu-

lum, and xi is the displacement of the monitoring point on
the inverted pendulum. di is the distance between the action
point of force fi and the rotation center of the inverted
pendulum. Li represents the distance between the monitoring
point and the rotation center.
In addition, the inverted pendulum model is designed to

reproduce the weak stiffness effect of the test mass. As-
suming that the angle rotation of the inverted pendulum is
enough small, we put forward the design concepts of the
equivalent stiffness Ki and the equivalent mass m͂i (i = 1, 2)
of the inverted pendulum.
Ki and m͂i are defined as follows:

K k m ge
J

m J
L d

= ,

= ,
(15)

i
i i i

i

i
i

i i

where mi is the mass of the i-th inverted pendulum. ki is the
rotational stiffness of the rotating shaft of the i-th inverted
pendulum. Ji is the rotational inertia of the i-th inverted
pendulum at the center of the rotating shaft. On this basis,
the simplified dynamic model of two inverted pendulums is
written as

( ) ( )
( ) ( )

x K x f
m x y y x

x K x f
m x y y x

¨ + = cos ¨ ¨ sin ¨ + ¨ ,

¨ + = cos ¨ ¨ sin ¨ + ¨ .
(16)

p p

p p

1 1 1
1
1 1 1 1 1

2 2 2
2
2 2 2 2 2

3.1.2 Deduction of the dynamic equation of the air-
bearing testbed
The Euler-Lagrange method [32] is used to deduce the dy-
namic model of the above design from rigid body dynamics.
The method can be written as

t
L
r

L
r Fd

d = , (17)r

where r represents the system generalized displacement x, y,
φ, θ1, and θ2. Fr is the system generalized force. And L is the
lagrangian of the system, defined as the difference value
between the kinetic energy T and the potential energy U.
Firstly, the kinetic energy T of the whole system needs to

be calculated before establishing the dynamics model. The
generalized displacement vector rM of the platform is (x, y,
φ)T. And the generalized displacement vector of the i-th
inverted pendulums is rmi, expressed as follows:

e
e

y
xr r=

sin cos
sin sin

0
+

1 0
0 1
0 0 1
0 0 0

. (18)mi

i i i

i i i

i

ci

ci
M

Hence, the system kinetic energy T can be described as

T r Mr r m r r m r= 1
2 + 1

2 + 1
2 . (19)M M m m m m

T
1

T
1 1 2

T
2 2

The right three terms of the above formula are the kinetic
energy of the testbed and the two inverted pendulums, re-
spectively. Msc and mi are the generalized mass matrices of
the testbed and the i-th inverted pendulum. ṙM and ṙmi are the
generalized displacement vector of the testbed and the i-th
inverted pendulum. Their expressions can be seen in Eq.
(A2).
Jmi represents the rotational inertia of the i-th inverted

pendulum around the center of mass. Iz represents the ro-
tational inertia of the air-bearing testbed around the z axis.
Jmi and Iz are both a constant value. Izi represents the rota-
tional inertia of the inverted pendulum around the z axis.
The value of Izi varies with the center of mass. Given that the
inverted pendulum is regarded as a long bar with even
distributed mass, Izi can be as follows:

( )
( )

I m e m x e

y e

= 1
12 sin + + sin cos

+ + sin sin . (20)

zi i i i i pi i i i

pi i i i

2 2 2

2

Corresponding to the generalized coordinate r = (x, y, φ,
θ1, θ2)T, the system kinetic energy T is rewritten as

T r Mr r A M A r r A M A r= 1
2 + 1

2 + 1
2 . (21)T T

1
T

cp 1
T

2
T

cp 2

The first term on the right represents the kinetic energy of
each degree of freedom, the second and third terms represent
the kinetic energy generated by the coupled motion. The
expressions of each matrix and each vector are shown in Eq.
(A3).
The next step is to calculate the whole system potential

energy U. The gravity potential energy is defined as zero if
no displacement of the inverted pendulum generates. And
supposing that the elastic potential energy only exists in the
rotation shaft of inverted pendulum. Therefore, the system
potential energy U is

Figure 4 Model diagram of the inverted pendulum.
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( )U k m ge= 1
2

1 cos . (22)
i

i i i i i
=1

2
2

In consequence, the lagrangian L of the system can be
written as the following formula:

( )

L T U

k m ge

r Mr r A M A r r A M A r= = 1
2 + 1

2 + 1
2

1
2

1 cos .
(23)

i
i i i i i

T T
1
T

cp 1
T

2
T

cp 2

=1

2
2

Combined with Eq. (17), we can obtain the following
expression:

t
T T UF r r r= d

d + . (24)

Each term in Eq. (24) is

( )
( )

( )

( )

F b x F b y T b f d f d
T

T

U k m ge k m ge

F

r Mr A M A r A M A r

r r M
r r r r A M A r

r r A M A r

r

= ,  ,  ,  ,  ,

= + + ,

= 1
2 + 1

2

         + 1
2 ,

= 0,  0,  0,  sin ,  sin .

(25)

x x y y z z 1 1 2 2
T

1
T

cp 1 2
T

cp 2

T T
1
T

cp 1

T
2
T

cp 2

1 1 1 1 1 2 2 2 2 2
T  

By the use of the small-angle approximation principle,
sinθi is equivalent to θi so the small quantity can be ignored.
The degrees of freedom of the testbed include x, y, φ. After
simplification, the dynamic model of the air-bearing testbed
is deduced as the following equations:

( )

( )

( )

( ) ( ) ( )

F bx t
T
x

T
x Mx m x y e e

F by t
T
y

T
y My m y x e e

T b t
T T I I I m y x y e e

m x y x e e m e x y e m e y x e

= d
d = ¨ + ¨ ¨ + ¨cos sin ,

= d
d = ¨ + ¨ + ¨ + ¨sin + cos ,

= d
d = ¨ + ¨ + 1

2
¨ ¨ + ¨cos sin

   + ¨ + ¨ + ¨ sin + cos sin + cos + cos + + sin .

(26)

x
i

i pi i i i i i i

y
i

i pi i i i i i i

z z
i

zi zi
i

i pi pi i i i i i i

i
i pi pi i i i i i i

i
i i i i pi i i i

i
i i i i pi i i i

=1

2

=1

2

=1

2
2

=1

2

=1

2

=1

2

=1

2

In the third equation, the expression of İzi is

( )I m e x y= 2 cos + sin . (27)zi i i i pi i pi i

The relationships between the testbed and the i-th inverted
pendulum satisfies that M mi, Iz Izi, i = 1, 2. On the
basis, only the first term on the right of Eq. (26) is kept.
Besides, the friction force of the ground model can be ig-
nored under the condition of air-bearing testbed. As a result,
the second term on the left of Eq. (26) can be simplified so that
the dynamic models (14) can be derived. This shows that the
simulator testbed could be equivalent to the satellite platform.

3.1.3 Deduction of the dynamic equation of the inverted
pendulum
With the same method, the dynamics model of the inverted
pendulum could be derived from Eq. (24) as follows:

f d t
L L

f d t
L L

= d
d ,

= d
d .

(28)
1 1

1 1

2 2
2 2

Based on the small-angle approximation principle, we sort
out the formula of the inverted pendulum, as follows:

D¨ G r r K f C r̈+ ( , ) + = , (29)g M

where θ is the rotation vector of the inverted pendulums. f is
the generalized forces. D is the inertia matrix. K is the

stiffness matrix. Their expressions respectively are ex-
pressed as follows:

f d
f d

J
J J J m e

G
G

k m ge
k m ge

f D

G r r K

= ,  = ,  =
0

0 ,  = + ,

( , ) =
0

0 ,  =
0

0
,

(30)
i mi i i

1

2

1 1

2 2

1

2

2

1

2

1 1 1

2 2 2

where Cg is the transformation matrix as shown in Eq. (A4).
G(r, ṙ) contains Coriolis terms and centrifugal terms. By
ignoring higher order small quantities, the expression of Gi

is written as

( )
( )

( )

G m e m e y x

m e x y m e

m e m e x e y

= 2 + 2 sin +

+2 cos +
7
6 cos + sin . (31)

i i i i i i i i i pi

i i i i i pi i i i i

i i i i i pi i i pi i

2

2 2

2 2 2

The ground simulator device meets the conditions, the same
as conditions of the drag-free satellite in the scientific mode.
First, the angular velocity of the testbed is extremely small.
Second, the angle and angular velocity of the inverted pendu-
lum are approaching 0. Thus, the Coriolis forces and cen-
trifugalforces are negligible and Eq. (29) can be simplified as

D¨ K f C r̈+ = . (32)g M

The small angle θi of the inverted pendulum can be
transformed by the displacement xi of the monitoring point
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on the inverted pendulum. And the expression is θi = xi/Li.
Hence, Eq. (32) can be rewritten as follows:

L
L

L¨ LD f LD K LD C r̈

L

= ,

=
0

0 .
(33)

g M
1 1 1

1

2

In order to establish the completely consistent π group
with the prototype system, we apply the designed concepts
of the equivalent stiffness Ki and the equivalent mass m͂i (i =
1, 2), which are defined as Eq. (15). As a result, Eq. (33) can
be expressed as

x
x

f m
f m

K
K

x
x LD C r̈

¨
¨

=
/
/

+
0

0
+ . (34)g M

1

2

1 1

2 2

1

2

1

2

1

In addition, a necessary requirement that transforms Eq. (16)
to Eq. (34) must be satisfied. And this necessary require-
ment is about designing the inverted pendulum, as follows:

m e
m eLD E

0
0 = , (35)1 1 1

2 2

E is the identity matrix. By substituting Eq. (35) into Eq.
(34), we can obtain the dynamic equation model (15).
Consequently, through the above theoretical analysis, the

similarity between the small angle rotation of the inverted
pendulum in the ground model and the sensitive axis
movement of the test mass in the space drag-free control
system can be properly verified.

3.2 The scaling laws

Let the principle of similarity applied to the dynamic
equivalent conditions between the model system and the
prototype system. It demands that the numerical values of
model Pi parameters must be identical to that of the corre-
spondent prototype Pi parameters. P represents the variable
in the model system. The similarity criterion constraint re-
lation between P′ and P can be deduced from dynamic
equivalent conditions, as the following expression:

M x t P M x t P= . (36)i i
i i i i i i

As a consequence, 23 similarity criterion constraints can
be derived and written as follows:

x x x x x x x x x y x y x y x y

x y x y x x x x M m M m M m M m

M x t F M x t F M x t F M x t F M x t f M x t f M x t f M x t f

x t x x t x x t y x t y x t x x t x x t x x t x

t K t K t K t K M x t T M x t T M x I M x I

t t t t

= , = , = , = ,

= , = , = , = ,

= , = , = , = ,

¨ = ¨, ¨ = ¨ , = ¨ , ¨ = ¨ ,

= , = , = , = ,

= , = , ¨ = ¨.

(37)

p p p p p p p p

x x y y x x

z z z z

1
1

1
1

1
2

1
2

1
1

1
1

1
2

1
2

1 1
1

1
2 1

1
2

1
1

1
1

1
2

1
2

1 1 2 1 1 2 1 1 2 1 1 2 1
1

1 2
1

1
1

1 2
1

1
1

1 2
2

1
1

1 2
2

1 2 1 2 1 2 1 2
1

1 2
1 1

1 2
1 1

1 2
2 1

1 2
2

2
1

2
1

2
2

2
2

1 2 2 1 2 2 1 2 1 2

2 2

In order to explicitly describe the constraint relationship
constructed by the 23 equations in Eq. (37), the scaling
factor associated to P′ and P is introduced and defined as

P
P= . (38)P

Based on the definition of the scaling factor, we can obtain
all of the scaling laws corresponding to Eq. (37):

= = = = = ,

= , = = , = = ,

= = , ¨ = ¨ = , ¨ = ¨ = ,

= = 1 , = , = ,

= 1, = 1 , ¨ = 1 .

(39)

y y x x y x

x x m m M F F
x M

t

f f
x M

t
x y

x

t
x x

x

t

K K
t

I x M T x
x M

t

t t

2

1
2 2 2

2
2

2

2

p p p p

x y

x x

z z

2 1 2 1

2 1 1 2

1 2 1 2
1

1 2

It is important to note that the π group is not unique, which
is depended on the chosen fundamental variables. Different
choices of fundamental variables result in different π groups.
But the scaling laws determined by the dynamic similarity
are unique and independent of the particular π group, which
derive these laws. Because there are 4 independent factors
among 27 scaling factors. And once numerical values of
these 4 independent factors are set, the remaining 23 scaling
factors are determined. Hence, the scaling laws play the key
roles in physically correct scaling the testbed and two in-
verted pendulums.

3.3 The demands of the scaled model

To ensure that the model can reproduce the dynamic beha-
vior of the prototype system in a similar way, the model
must be scaled reasonably and correctly. And we need to
choose the key scale factors involving all the basic units to
design the ground experimental platform.
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3.3.1 Demands of the basic scaling laws
In this paper, 4 independent scaling factors corresponding to
the selected fundamental variables are λM, λx, λx1 and λt. But
more factors need to be considered. At first, the value of λx1
is determined by the ratio between the real satellite size dsc
and the designed testbed size dsimulator, as the following ex-
pression:

x
x

d
d= = . (40)x

p

p

1

1

simulator

scp1

Secondly, the scaled testbed must float on the limited base
surface. The scaling factor λx must satisfy

( )
x
x

d
x y= max , , (41)x

float
max max

xmax is the maximum displacement of satellite, the same as
ymax; “float” is the range of base surface. The above in-

equation means that the scaled motion must be accom-
plished on the base surface.
Thirdly, the mass M of the air-bearing testbed is designed

in consideration of the bearing capacity Mmax of the air
bearing system. And the ratio between the value of M and
the real satellite mass M′ determines the mass scaling factor
λM, which is limited by

M
M

m
m

M
M= = . (42)M

i
i

max

Then λx1 is decided by the parameters of the inverted
pendulum. The maximum displacement of the test mass in
the direction of the sensitive axis is dmax. And the rotation
range of the inverted pendulum is set as [−θmax, θmax]. As a
result, the maximum displacement of the sensor monitoring
point is Liθmax by using the principle of small angle ap-
proximation. So, the scaling factor λx1 can be expressed as

x
x

L
d= . (43)x
i1

1

max

max1

Last, scaling factor λt can be determined by the active
controlling forces. A certain interference force is exerted on
the satellite in orbit around the Sun. and the satellite would
produce the control forces to compensate the interference
force. Assuming that the maximum control force provided
by the space prototype system is Fcmax, we can obtain

M a F= . (44)cmax max

The maximum active control force provided by the ac-
tuator of the ground model system is Fmax and the maximum
acceleration ɑmax that the air-bearing testbed can reach is

a F
M . (45)max
max

According to the definition of scaling factor and the
scaling laws, ɑmax can be expressed as

a a a= ¨ = . (46)x

t
max max 2 maxx

Combining Eq. (45) with Eq. (46), we can derive

t
t

F
F= . (47)t

M x cmax
max

Equations (40)-(43) and (47) constrain the values of four
independent scaling factors corresponding to the chosen
fundamental variable. As a consequence, scaling factors of
the remaining variables can be computed.

3.3.2 Demands of the inverted pendulum
Aimed to be similar to the stiffness effect applying on the
test mass in the prototype system, the equivalent stiffness Ki
and the equivalent mass m͂i are constructed. The corre-
spondentscaling laws λK1, λK2, λm1 and λm2 can be written as

K
K

K
K

m
m

m
m

= = = = 1 ,

= = = = .
(48)

K K
t

m m M

1

1

2

2
2

1

1

2

2

1 2

1 2

It can be seen that Ki and m͂i are depended on the scaling
factors λt and λM, respectively. But the related parameters of
Ki and m͂i include ki, mi, ei, Ji and Li, which decide the design
of inverted pendulums. Hence, we put forward the following
design requirements:
(1) The numerical values of λM and λt are decided by Eqs.

(42) and (47). In addition, according to the definition (34) of
Ki and m͂i, the relations between the relevant parameters of
the inverted pendulum can be described as follows:

k m ge
J K

J
L d m

= 1 ,

= .
(49)

i i i
i t

i

i
i i

M i

2

(2) π group of the inverted pendulum must be equivalent
to that of the space prototype system. Consequently, it can
be derived from Eq. (35) that the physical parameters of the
inverted pendulum should also meet the following equation
conditions:
m e L

J = 1. (50)i i i
i

Equations (49) and (50) constitute the necessary condi-
tions for designing the inverted pendulum to keep the dy-
namic characteristics of the model system similar with that
of the prototype system.
According to the analysis of the dynamic equivalence

conditions and the establishment of the scaling laws, the
scaled model can simulate the dynamic characteristics of
capturing the test mass, as well as the displacement drag-
free control and acceleration drag-free control. Hence, the
air-bearing simulator platform installed with two inverted
pendulums can reproduce the plane dynamic behavior of the
drag-free satellite with double test masses. And the related
drag-free control algorithms can be verified in the scaled
model system.
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4. The simulation strategy

For verifying that the designed model is equivalent to the
drag-free control system, the closed-loop control numerical
simulation experiment is designed while it is an under-
actuated system [33]. A closed-loop control strategy is pro-
posed to keep the control stability of two systems. Besides, π
theorem is applied to constructing the control scaling laws to
keep the similarity between two closed-loop systems. Fur-
thermore, we utilize the redundant thruster layout to ma-
nipulate the testbed, using a thrust allocation method.

4.1 The simulation strategy

Under the control mode of displacement, the satellite pro-
duces the active control forces to compensate the external
interference force so that the satellite body is stationary
relative to the test masses. In this process, there are five
degrees of freedom involved, including x1 , x2, x′, y′ and φ′.
But the independent control quantities of the whole system
are x′, y′ and φ′. It makes the simulation system become an
underactuated system. Therefore, the closed-loop experi-
ment needs a reasonable control strategy to guarantee that
the five degrees of freedom of the whole system can all be
controlled stably.
Corresponding to the satellite prototype system, there 5

degrees of freedom of the air bearing simulator testbed need
to be controlled, involving x1, x2, x, y, and φ. And we intend
to use redundant thrusters to control the degree of freedom x,
y and φ. On this basis, the closed-loop control system and
the simulation experiment verification strategy are estab-
lished as shown in Fig. 5.
The set quantities x d1 , x d2 and d of the space prototype

system were scaled down and input into the ground closed-
loop simulation system. The results of x1, x2, x, y and φ were
scaled up and compared with the output results of the sa-
tellite to demonstrate the similarity of the dynamic beha-

viors of the two systems.
Similar to the spatial prototype system, the inverted pen-

dulums are no longer controlled independently in the displace-
ment control mode. As a result, the measured displacement x1
and x2 determine the displacement x, y and φ of the testbed
tracking to the inverted pendulum. Through the analysis of
Eq. (18), it can be seen that the coupling term of θi and φ
varying with the change of the center of mass of the inverted
pendulum is a high order small quantity so that it can be
ignored. And given the existence of inertia, the relationship
between the displacements x, y and φ and the measured
displacements x1 and x2 can be deduced as follows:

x
x

x
yC= , (51)1

2 tr

where Ctr represents the conversion relationship of dis-
placement between air float platform and inverted pendu-
lum. And the expression of Ctr can be seen in Eq. (A5).
The inverted pendulum is installed on the testbed so that

φtm is consistent with rotation angle φ of the testbed. Ac-
cordingly, Eq. (51) can be further written as

x
x

x
yC

=
0 0 1

. (52)
1

2
tr

Through matrix inversion, x1, x2 and φ can be converted
into the displacement x, y and φ required in the control
system. Hence, we can obtain the input einput of the con-
troller, expressed as follows:

e
e
e

x x
x xe B= = cos sin cos sin . (53)

x

y
d

d

d
input

1 2 2 1

1 1

2 2

The matrix B is the result of matrix inversion. The ex-
pression is in Eq. (A6). x1d, x2d and φd are the designed
values of x1, x2 and φ. System state can be observed by
measuring x1, x2, x, y and φ.

Figure 5 Simulation strategy of closed-loop control underactuated systems.
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4.2 The control scaling laws

A very important and remarkable point in the above control
strategy is that there is no independent control force exerted
on the inverted pendulum along the sensitive axis in the
simulation experiment. In addition, x1, x2 and φ are trans-
formed into x, y and φ. As a consequence, the two co-
ordinate systems x1 and x are not independent with each
other. It means that λx1 = λx.
On this basis, the control scaling laws are derived from Pi

theorem. The PID controller is utilized in the simulation
experiment. The expression is as follows:

F K e t K e K e t

F K e t K e K e t

T K e t K e K e t

= ( ) + ( )d + ( ),

= ( ) + ( )d + ( ),

= ( ) + ( )d + ( ).

(54)

x px x ix t

t
x dx x

y py y iy t

t
y dy y

z p i t

t
d

0

0

0

Parameters Kpx, Kix and Kdx are the proportional, integral
and differential coefficient of the controller along the x-axis,
respectively, the same as Kpy, Kiy and Kdy along the y-axis and
Kpφ, Kiφ and Kdφ along the φ axis.
The output instructions of the controller involve forces and

torques, the dimension of forces Fx and Fy are both [M Lsc T −2]
and the dimension of Tz is [M Lsc

2 T −2]. The dimensions of the
input commands ex, ey and ez are [Lsc], [Lsc] and 1, respec-
tively. The dimension of ėx and ėy are both [Lsc T −1]. The
dimensions of ∫exdt and ∫eydt are both [Lsc T]. To be consistent
with the dimensions of the output orders, the dimensionsof the
control parameters are deduced, as shown in Table 2.
Applying π theorem to controllers of the two systems, we

can get the π group corresponding to the satellite control
parameters, written as follows:

M t K M t K M x t K

M t K M t K M x t K

M t K M t K M x t K

= , = , = ,

= , = , = ,

= , = , = .

(55)

K px K py K p d

K ix K iy K p d

K dx K dy K p d

1 2 1 2 1
1
2 2

1 3 1 3 1
1
2 3

1 1 1
1

2

px py

ix iy

dx dy d

d

d

With the same deduction in Sect. 3.2, the control scaling
laws of two systems are figured out, as follows:

= , = , = ,

= , = , = ,

= , = , = .

(56)

K M t K M t K M x t

K M t K M t K M x t

K M t K M t K M x t

2 2 2 2

3 3 2 3

1 1 2 1

px py d

ix iy d

dx dy d

Therefore, the control parameters of the ground model
system can be calculated by using the scaled control para-
meters of the satellite closed-loop simulation system.

4.3 Thrust allocation

The thruster is generally taken as the actuator of the drag-
free control system to manipulate the satellite. But re-
dundant thrusters are usually configured to ensure control
stability, due to the unidirectional characteristic of the
thruster. To increase the similarity with the actual situation,
the simulation is designed to use a redundant thruster layout.
Furthermore, the control allocation [34] is introduced into
the control algorithm to improve the computational effi-
ciency and increase the stability of the system. Thus, the
process of thrust allocation is involved in the simulation
experiments. It means that the control instruction derived
from the PID controller is input into the control allocation
algorithm to compute the distribution instruction, which is
executed by the thrusters. This process is shown in Fig. 6.
The unidirectional characteristic of thrusters causes a

limitation of thrust range. To solve this problem, a hybrid
optimal allocation algorithm is involved in the experiment.
First step of this method is that the control instruction u,
calculated by the control law, are divided to the positive and
negative, as follows:

F
F
T

u u u= = + . (57)
x

y

z

+

Secondly, we can calculate the efficiency matrix A, which
is defined by the redundant thruster configuration. Based on
A, we can work out the matrices A+ and A−, which are
defined as the following formulas:

AA E
AA E

= ,
= .

(58)
+

Then, each column A i
+ in A+ is computed by using the

least square method,

Table 2 Dimensions of the control parameters
Control parameter Dimension Control parameter Dimension

Kpx, Kpy [M T −2] Kpφ [M Lsc
2 T −2]

Kix, Kiy [M T −3] Kiφ [M Lsc
2 T −3]

Kdx, Kdy [M T −1] Kdφ [M Lsc
2 T −1]

Figure 6 Process diagram of control allocation.
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{ }A

A 0
AA E

min

,
= ,

(59)

i

i

i i

+
2

+

+

where A i
+ represents the i-th column of A+. And Ei re-

presents the i-th column of E. After the matrix A+ is figured
out, A− can be obtained by using the same way. But it should
be noted that the second constraint should be changed to
AA i = −Ei.
Finally, the formula for calculating the thrust command

through the matrix A+ and A− is as follows:

T A u A u= . (60)t
+ +

In the above formula, A+u+ > 0, A−u− < 0. Hence, each
element of Tt must be greater than 0, which conforms to
reality that actual thrust range of the cold air thruster is
greater than 0.

5. The simulation results and analysis

In this section, all parameters and the basic scaling factors
are designed according to the actual ground situation. And a
redundant thruster layout is designed to apply to the simu-
lation experiment.
Let us set the mass and size of the spatial prototype

parameters. And compared with the similar experience, the
mass and size both of testbed and the inverted pendulum are
reasonably designed. Consequently, correspondent scaling
factors can be determined. The relevant parameters and
scaling factors are shown in Table 3.
Last scaling factor required in simulation system is λt,

which determines the rest of other scaling factors. Different
values of λt are designed for simulation verification. Given
that K1 = K2 = K and K1 = K2 = K′, the relevant parameters
are shown in Table 4.
Combined with parameters and scaling factors designed in

Tables 3 and 4, the results of the control scaling laws are
shown in Table 5.
In the closed-loop simulation experiment, we intend to use

4 clusters of 8 adjustable cold gas thrusters as actuators of
the drag-free control system. For using each thruster rea-
sonably and sufficiently, a redundant thruster layout is de-
signed and shown in Fig. 7.
As shown in Fig. 7, all the thrusters were paired and in-

stalled at 4 positions on the edge of the testbed. At each
position, the angle between each one of paired thrusters and
the horizontal symmetry axis is 45°. The thruster layout is
always fixed and unchanged. The specific position and or-
ientation are shown in Table 6.
The efficiency matrix A can be derived from the para-

meters in Table 6. Throughout the use of the hybrid optimal

allocation algorithm in Sect. 4.3, the matrix A+ and A− can
be deduced from the efficiency matrix A. And the calcula-
tions of A, A+ and A− are shown in Eq. (A7).

Table 3 Basic parameters
Parameter of the proto-

type system
Designed value of the

model system Value of scaling factors

M′ = 500 kg M = 100 kg λM = 0.2

dsc = 3.2 m dsimulator = 0.8 m λxp1 = λx = 0.25

xi = 1000 μm xi = 250 μm λx1 = 0.25

m′ = 1.45 kg m͂i = 0.29 kg λm = 0.2

Iz
= 640 kg·m2 Iz = 8 kg·m2 λIz = 0.0125

Table 4 Two groups of scaling laws
Group Scaling law Value Parameters Value

Group 1 (λt = 1)

λK 1
K (s−2) −0.00015
K (s−2) −0.015

λFx 0.05 Fx
(μN) 100

Fx (μN) 5

Group 2 (λt = 0.1)
λK 100

λK 1
λFx 0.05

λFx 5
K (s−2) −0.00015
Fx (μN) 5

Table 5 Control scaling laws
Values Group 1 Group 2
λKpx 0.2 20
λKpy 0.2 20
λKpφ 0.0125 1.25
λKix 0.2 200
λKiy 0.2 200
λKiφ 0.0125 12.5
λKdx 0.2 2
λKdy 0.2 2
λKdφ 0.0125 0.125

Figure 7 Thruster layout.

Table 6 Positions and orientations
Installation position Orientation vector
p1 = (0.4 m, 0) τ1 =(0.707, −0.707) τ2 = (0.707, 0.707)
p2 = (0, 0.4 m) τ3 = (0.707, 0.707) τ4 = (−0.707, 0.707)
p3 = (−0.4 m, 0) τ5 = (−0.707, 0.707) τ6 = (−0.707, −0.707)
p4 = (0, −0.4 m) τ7 = (−0.707, −0.707) τ8 = (0.707, −0.707)
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A+ and A− can be directly input into the closed-loop
control system to calculate the thrust command efficiently.
And we take the command Tt as the actual thrust in the
simulation experiment. The efficiency matrix A can be used
to map the thrust command directly to Fx, Fy and Tz, which
compensate the impulse disturbance exerted on the testbed.
The steps in the simulation experiment are as follows:
(1) Establish the closed-loop control system in terms of

Fig. 4.
(2) Input all of parameters in the satellite system. The

values of interference forces along x-axis and y-axis are set
to 100 μN, 100 μN. The moment along z-axis is 100 μN·m.
The duration of action is 10 s.
(3) Adjust and record control parameters of the prototype

system to realize the system stability control.
(4) Input scaled control parameters and scaled interference

force impulse into the ground model for comparative test.
After debugging and adjustment, the control parameters of

the space prototype and two groups of ground models are
shown in Table 7.
Column 2 represents the parameters of prototype. Column

3 represents the parameters of Group 1. Column 2 represents
the parameters of Group 2. Three sets of results according to
the experimental steps are recorded.
First, the comparison between the experimental results of

prototype and Group 1 is shown in Fig. 8.
The blue curve and red dash line in Fig. 8 represent the

displacement simulation results of the space prototype and
the ground model respectively. The blue solid line shows
that although the closed-loop system in the displacement
mode is stimulated by a certain impulse, the air-bearing
testbed and the inverted pendulum can remain stable. The
red dashed line indicates that the ground closed-loop system,
designed on the basis of dynamic equivalent conditions and
the control scaling law, can also maintain stability under the
same control strategy. The first four diagrams show that the
variation tendency of displacement x, y, x1 and x2 are con-
sistent with that of the prototype system despite the incon-
sistent results. The cause is that the scaling law λx, λx1 and λM
are unequal to 1. The time scale factor λt of Group 1 is equal
to 1. Consequently, two curves of φ′ and φ in the fifth dia-
gram are coincident.
Then we scaled up the above results according to scaling

laws. The scaled results of the model system are compared
with the results of the prototype system in Fig. 9.
The two overlapping curves in each picture indicate that

the ground model variable scaled up is basically equal to the
corresponding spatial prototype variable. It demonstrates the
similarity between the ground model and the spatial proto-
type. Because the angle φ is a dimensionless variable, the
fifth picture in Fig. 9 has no change, compared with the fifth
picture in Fig. 8.
Second, the comparison between the simulation experi-

Table 7 Simulation experimental parameters

Parameters Prototype Group 1 Group 2
Fx (μN) 100 5 500
Fy (μN) 100 5 500
Tz (μN·m) 100 1.25 125
Duration (s) 10 10 1

Experiment time (s) 100 100 100
Kpx 170 34 3400
Kix 10.8 2.16 2160
Kdx 660 132 1320
Kpy 170 34 3400
Kiy 10.8 2.16 2160
Kdy 660 132 1320
Kpφ 20 1.5 150
Kiφ 5.6 0.07 70
Kdφ 600 7.5 75

Figure 8 Results of prototype and Group 1.
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ment results of prototype and Group 2 is shown in Fig. 10.
The blue lines in Figs. 8 and 10 represent the same si-

mulation results of the prototype system. The red dashed
line in Fig. 10 represents the simulation experiments of the
Group 2. The above results show that the ground model
system of the Group 2 stimulated by the scaled impulse can
reach a stable state faster than both Group 1 and the pro-
totype. Besides, the amplitudes of two groups are basically
consistent with each other, which indicates that changing the
time scale factor cannot change the displacement amplitude.
In the simulation experiment of Group 2, all but one of 4

basic scale factors is the same as Group 1. The difference is
that λt = 0.1. Because both kinematic similarity and dynamic
similarity must be satisfied, we need to compare the results
of the two systems at the homologous time. As a result, the
whole simulation time of the space prototype simulation and
the first 10 s of the ground model simulation need to be

normalized. Then, the data of the Group 2 simulation within
the first 10 s can be scaled up according to the scaling laws.
The corresponding consequences are compared with the
prototype system, as shown in Fig. 11.
The above pictures show that the scaled displacement

curve of the ground model could overlap the corresponding
displacement curve of the space prototype after time nor-
malization. It indicates that homologous points of two sys-
tems lie at same positions at homologous time. And the
same tendency reveals that the homologous masses experi-
ence homologous forces at homologous time. In addition,
difference of λt between two groups has no influence on the
system stability.
In order to simulate the space system more realistically,

the thruster noise and sensor noise are introduced into the
ground model system. The noises are formed by using the
existing thruster noise index requirement [9,10,28] com-

Figure 9 Results of prototype and scaled Group 1. Figure 10 Results of prototype and Group 2.
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bined with the noise discrete shaping filter. The Band-lim-
ited White Noise in Simulink is used to simulate the white
noise of the specified frequency. The produced white noise
can be turned into the coloured noise through the noise
discrete shaping filter modeled by transfer function. The
coloured noises are used as the input of the system. And the
noises of the sensors or thrusters can be formed by the white
noise and the shaping filter with different parameters.
In this paper, the actuator noise is set to be 0.1 μN/Hz0.5.

The sensor noises of x, y, x1 and x2 axis are both 1 nm/Hz0.5.
And the sensor noises of φ axis and x2 axis are both 1 nrad/
Hz0.5. Corresponding to the scaling laws, the noises must be
scaled up or scaled down. By setting the parameters in the
above transfer function models, different coloured noises are
generated and input into the system. The results of two
groups of simulation experiments can be performed. And the

results of two groups of simulation experiments with cor-
responding scaled noises are presented in Fig. 12.
The red lines represent the results of Group 1. The green

lines represent the results of Group 2. Compared with the
simulation results without noises, the ground model system
with equivalent thruster noise and sensor noise can simulate
the space system more realistically. Different from the for-
mer results without noises, the new results show that the
effect of control system is lightly reduced. But the difference
is less marked and the trend of simulation results is the
same. The simulation system with noises can still maintain
stability.
Moreover, the scaling laws are applied to the above si-

mulation results. The new scaled results can be obtained, as
shown in Fig. 13.
The above pictures show the scaled simulation results.

Figure 11 Results of prototype and scaled Group 2. Figure 12 Results of prototype and Groups.
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The red lines represent the results of scaled Group 1. The
green lines represent the results of scaled Group 2. And it
can be found that the motion trajectory of the model with
thruster noises and sensor noises is not completely con-
sistent with that of the prototype system. But the simulation
results with noises are still similar, to a large extent, to
results of the prototype system. It indicates that the
equivalent similarity of the two systems still exists. The law
of similarity can still be applied to the design of ground air-
bearing floating simulator. In addition, the equivalent scal-
ing results of thruster and sensor noise can be used to design
actuators for ground model system tests, including thrust
ranges and thrust noise.

6. Conclusion

For the ground physical simulation experiment of the space
gravitational wave detection satellite, we put forward a si-
milar design method of the scaled drag-free spacecraft si-
mulator. A ground air-bearing simulator testbed with two
test masses is designed to emulate the planar dynamics of
the drag-free spacecraft. Through theoretical analysis and
simulation experiments, the following conclusions are
drawn:
(1) Based on dimensional analysis and π theorem, the

dimensionless similarity criterion is established, represent-
ing the dynamic characteristics of the space drag-free sa-
tellite with two test masses. Dynamic equivalent conditions,
determined by the similarity criterion, are deduced to con-
struct the scaling laws which could make the model simu-
lator be correctly scaled.
(2) We firstly proposed the concepts of the equivalent

mass and equivalent stiffness of the inverted pendulum in
this paper. By using these concepts, the equivalent dynamic
model is deduced from the Euler-Lagrange method to verify
the similarity between the ground model and the space
prototype. And the necessary conditions, listed for designing
the inverted pendulum equivalent to the test mass along the
sensitive axis, are also derived theoretically.
(3) To address the problem of the underactuated system, a

closed-loop control strategy of drag-free control in the dis-
placement mode is devised and succeeds in manipulating the
model simulator steadily. The comparative simulation ex-
periments, involving control scaling laws and different
scaling factors, demonstrate that both kinematic similarity
and dynamic similarity hold true.
(4) The research results demonstrate that the proposed

design method is reasonable and effective, which can be
used not only for the physical simulation research of space
gravitational wave detection satellites, but also for the
ground physical simulation research of other satellites or-
biting the sun or the earth.

Appendix

Ci/SC is the coordinate transformation matrix.

C =
1 0 0
0 cos sin
0 sin cos

cos 0 sin
0 1 0

sin 0 cos

cos sin 0
sin cos 0
0 0 1

. (A1)i x x

x x

y y
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Figure 13 Results of prototype and scaled Groups.

M. Chen, et al. Acta Mech. Sin., Vol. 41, 524026 (2025) 524026-16



Msc and mi are the generalized mass matrices of the
testbed and the i-th inverted pendulum. ṙM and ṙmi are the

generalized displacements vector of the testbed and the i-th
inverted pendulum.
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The calculation of A, A+ and A− are
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等效模拟无拖曳卫星动力学的地面气浮装置相似设计方法

陈明伟, 章楚, 贺建武, 杨超, 段俐, 康琦

摘要 为了设计无拖曳卫星相关技术演示验证的地面仿真平台, 本文基于量纲分析和π理论等方法提出了一种与空间无拖曳卫星平面

动力学行为相似的地面模型设计方法. 该方法从双检验质量无拖曳卫星动力学模型中分析出相似特征, 设计了由倒立摆和平面气浮台

组成的地面气浮模拟装置. 文中利用欧拉-拉格朗日方法推导了等效于检验质量敏感轴平动和卫星平面运动的模拟器动力学模型, 得出

地面模型系统等效空间原型系统的动力学等效条件. 此外, 本文首次提出了等效质量和等效刚度的概念, 并在此基础上提出了满足等

效条件的相似律设计要求以及倒立摆的设计要求. 在物理相似性条件下, 本文设计了欠驱动系统的闭环控制策略, 推导出相应的控制

相似律并应用于数值仿真. 最后, 等效缩放后仿真结果与原型仿真结果的对比验证了二者动力学行为具有相似性, 也证明了本文提出

的相似性设计方法的合理性和有效性, 为未来引力波探测计划的无拖曳卫星地面仿真设计提供了更多依据.
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