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Lumbar degeneration leads to changes in geometry and density distribution of vertebrae, which could further influence the
mechanical property and behavior. This study aimed to quantitatively describe the variations in shape and density distribution
for degenerated vertebrae by statistical models, and utilized the specific statistical shape model (SSM)/statistical appearance
model (SAM) modes to assess compressive strength and fracture behavior. Highly detailed SSM and SAM were developed
based on the 75 L1 vertebrae of elderly men, and their variations in shape and density distribution were quantified with
principal component (PC) modes. All vertebrae were classified into mild (n = 22), moderate (n = 29), and severe (n = 24)
groups according to the overall degree of degeneration. Quantitative computed tomography-based finite element analysis was
used to calculate compressive strength for each L1 vertebra, and the associations between compressive strength and PC modes
were evaluated by multivariable linear regression (MLR). Moreover, the distributions of equivalent plastic strain (PEEQ) for
the vertebrae assigned with the first modes of SSM and SAM at mean ± 3SD were investigated. The Leave-One-Out analysis
showed that our SSM and SAM had good performance, with mean absolute errors of 0.335±0.084 mm and 64.610±26.620 mg/cm3,
respectively. A reasonable accuracy of bone strength prediction was achieved by using four PC modes (SSM 1, SAM 1, SAM
4, and SAM 5) to construct the MLR model. Furthermore, the PEEQ values were more sensitive to degeneration-related
variations of density distribution than those of morphology. The density variations may change the deformity type (com-
pression deformity or wedge deformity), which further affects the fracture pattern. Statistical models can identify the mor-
phology and density variations in degenerative vertebrae, and the SSM/SAM modes could be used to assess compressive
strength and fracture behavior. The above findings have implications for assisting clinicians in pathological diagnosis, fracture
risk assessment, implant design, and preoperative planning.
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1. Introduction

As one of the most important bone structures, lumbar spine
is subject to large compressive loads and repetitive motions
[1]. Due to this load-bearing characteristic, the lumbar
vertebrae are at high risk of degenerative changes [2].
Lumbar degeneration is a particularly common condition

among aging adults, and its major complication is low back
pain. It was estimated that more than 40% of people aged
over 60 suffered from degeneration-related low back pain
[3]. Early diagnosis and intervention of degeneration is the
most effective way to prevent and relieve low back pain. In
general, degeneration could lead to changes in geometry and
density distribution of vertebrae [4,5], which may further
influence bone mechanical property and behavior. There-
fore, it is necessary to quantify the variations of shape and
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density distribution in vertebrae among the elderly popula-
tion to improve understanding of the relevant mechanisms
of lumbar degeneration, which could assist clinicians in
pathological diagnosis and disease treatment.
In previous studies, the shape variation in human verteb-

rae was quantified by direct measurements on cadaveric
specimens [6], manual measurements from computed to-
mography (CT) images [7], and analysis of three-dimen-
sional (3D) reconstructed models [8]. Furthermore, the
regional measurement of bone mineral density (BMD) was
usually used to quantify the variation of density distribution
in vertebrae. To investigate the variation of density dis-
tribution in L1 vertebral bodies, 36 regions in vertebral body
(three layers with twelve regions) were defined in our pre-
vious study, and the corresponding regional densities of 80
subjects were statistically analyzed [9]. In a recent study, the
variation of density distribution in 148 L3 vertebral bodies
was characterized by using seven regional densities (ante-
rior, posterior, superior, mid-transverse, inferior, central, and
outer regions) [10]. However, the above methods entailed
heavy manual effort, which could be tedious, time-con-
suming, and expert-driven [11]. In addition, these quantita-
tive methods are implemented at a subject-specific level by
measuring limited geometric and density features, thus they
are unable to capture all detailed variations within the study
population [12].
To address the above issues, the statistical shape model

(SSM) and statistical appearance model (SAM) were pro-
posed to systematically quantify and analyze the variations
of shape and density distribution [13]. SSM and SAM are
regarded as promising tools, because they could capture all
of the available information from radiology images [14,15].
The key concept behind statistical modeling is to perform
principal component analysis (PCA) on contour landmarks
and the sampled densities within the contours to extract the
independent modes (principal components) of variation
[16,17]. Therefore, the shape and density distribution of
bones could be described by a linear combination of prin-
cipal components in details. Recently, the bone research
community has realized that SSM and SAM have great
potential in many orthopedic applications, especially in
implant design [18,19] and fracture risk prediction [20-22].
For the lumbar spine, studies were focused on the use of

statistical models to describe the morphology variations in
the vertebrae, functional spinal units, and entire spine [4], to
identify the significant differences in anatomical shapes
between men and women [23], and to develop an automatic
segmentation pipeline for patient-specific biomechanical
models [24]. To the best of our knowledge, it is not yet well
understood about the variations of shape and density dis-
tribution in degenerated vertebrae, and little is known about
the influences of these variations on bone strength and
fracture behavior.

Accordingly, the purposes of this study were: (1) to de-
velop detailed statistical models to quantitatively describe
the variations of the shape and density distribution in de-
generated vertebrae, (2) to compare the differences in shape
and density distribution among the vertebrae with different
degenerative states, (3) to investigate the associations be-
tween compressive strength and principal component (PC)
modes identified by statistical models, and (4) to explore
influences of major PC modes on fracture risk and fracture
pattern.

2. Materials and methods

2.1 Study participants and QCT imaging

In this study, 75 subjects (age 71±4.1 years) were included
from the Osteoporotic Fractures in Men (MrOS) cohort in
Hong Kong part, which is a cross-sectional study in-
vestigating the risk factors of osteoporosis fractures in el-
derly men (age ≥ 65 years) [25]. All participants were
classified into mild (n = 22), moderate (n = 29), and severe
(n = 24) groups according to the overall degree of L1 ver-
tebral degeneration identified from quantitative CT (QCT)
images in lateral and anteroposterior views by means of the
grading system [26], which covers the three main radio-
graphic signs (i.e., height loss, osteophyte formation, and
diffuse sclerosis). Differences in demographic character-
istics of study participants in the three degenerative groups
were compared using one-way ANOVA. Age, weight, and
height showed no significant differences among the groups
(p > 0.05) (Table 1).
After obtaining written informed consent from partici-

pants, the QCT scans of their lumbar vertebrae were per-
formed by the standard protocol. Scan parameters were as
follows: 120 kVp, 205.95 mA, 0.9375 × 0.9375 mm/pixel
resolution, 1.25 mm slice thickness, 48 cm field of view, and
512×512 matrix in spiral reconstruction mode (GE Medical
Systems/LightSpeed 16, Wakesha, WI, USA). To convert
CT grayscale value from Hounsfield units (HU) to equiva-
lent BMD, a three-sample calibration phantom (Image
Analysis, Columbia, KY, USA) was scanned with partici-
pants (hydroxyapatite density: 0, 75, and 150 mg/cm3).

2.2 Development of SSM and SAM for L1 vertebra

To quantitatively describe the independent variations of the

Table 1 Demographic characteristics of the study participants in different
degenerative groups (data are presented as mean (standard deviation))

Characteristics Mild (n = 22) Moderate (n = 29) Severe (n = 24)

Age (years) 69.50 (3.07) 71.24 (3.59) 70.75 (5.24)
Weight (kg) 58.87 (7.65) 59.52 (7.27) 61.60 (7.16)

Height (cm) 163.61 (6.47) 162.36 (5.36) 162.23 (4.96)
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shape and bone density distribution in the L1 vertebra from
elderly men, the QCT images of all subjects were used to
develop the SSM and SAM. The modeling process was
performed while blinded to the degeneration state of each
L1 vertebra to eliminate potential bias.
The detailed procedures for developing SSM and SAM

are shown in Fig. 1. To obtain the 3D bone geometry from
QCT scans for developing SSM, each L1 vertebra was semi-
automatically segmented by using Stradview (University of
Cambridge Department of Engineering, Cambridge, UK).
Afterward, the similarity transformation and thin plate
spline (TPS) registration algorithm were used to nonrigidly
align each vertebra surface to a canonical surface with 8329
vertices in wxRegSurf (University of Cambridge Depart-
ment of Engineering, Cambridge, UK) [27]. Following the
Procrustes analysis, the effects of translation, rotation, and
scaling were removed [28], and the vertex coordinates of all
vertebrae were standardized. PCA was then applied on the
vertex matrix to identify a number of orthogonal modes with
PC scores that could describe the shape variation of 75
vertebrae [29].
The first step in the development of SAM is obtaining the

template vertebra surface by averaging vertex coordinates
for all vertebrae. A template mesh was generated based on
the average vertebral surface, which consisted of 81952
tetrahedral elements and 18104 nodes. To establish the mesh
correspondence among different vertebrae, the template
mesh was morphed to match the target vertebra through
displacement vectors calculated between corresponding
vertices on the template and individual vertebral surfaces
(HyperMesh 13.0; Altair Engineering, Troy, USA). Subse-
quently, grayscale values were mapped from the QCT scans
to the morphed finite element meshes by using Mimics 17.0
(Materialise, Leuven, Belgium). Following the relationship
between BMD and grayscale value, the spatial density dis-
tribution of each vertebra was obtained. Similar to the SSM,
the SAM was developed by performing PCA on the BMD

values assigned to the tetrahedral elements. The main modes
with PC scores were obtained to describe the variation in the
density distribution of 75 vertebrae.
The generalization capabilities of the SSM and SAM were

evaluated by using the leave-one-out (LOO) analysis, which
was normally used for validating the ability of the statistical
model to reconstruct an unknown or previously unseen
subject [30,31]. In this analysis, one vertebra was removed
in turn from 75 samples and used as the left-out vertebra.
PCA was then applied to the vertex matrix/BMD values of
the remained vertebrae to develop a statistical model. The
shape and density distribution of each left-out vertebra were
reconstructed by the statistical models. To quantify the ac-
curacy of shape reconstruction, the mean absolute error
between vertex coordinates of the left-out vertebra and the
reconstructed vertebra (MAESSM) was computed. Similarly,
the mean absolute error between BMD values of meshes in
the left-out vertebra and the reconstructed vertebra
(MAESAM) was computed to estimate the reconstruction
accuracy of spatial density distribution.

2.3 Estimation of compressive strength of the L1 vertebra

The compressive strength of the L1 vertebra in our study
was estimated following the QCT-based finite element
analysis (QCT/FEA) processes similar to those described
elsewhere [32,33]. Of note, the QCT/FEA model of each L1
vertebra was developed according to the original QCT
images, and not the template vertebra with mapped BMD.
Specifically, the QCT images were rotated into a standard
orientation and then resliced to 1 mm isotropic resolution.
L1 vertebra was segmented from the consecutive QCT
images. Each QCT voxel was converted directly to a voxel-
type mesh (1 mm × 1 mm × 1 mm, cube-shaped, eight-
noded linear brick element) and assigned elastic and plastic
material properties based on the proposed empirical re-
lationships to BMD [34]. A total of 150 kinds of material

Figure 1 Schematic description about the procedures of developing SSM and SAM.
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properties were set [9]. To simulate the uniaxial compres-
sion configuration commonly used in the mechanical test,
the superior and inferior ends of each vertebral body were
embedded into two 3 mm layers of polymethylmethacrylate
(PMMA) [35]. The material properties of PMMA were set
as isotropic linear elastic (E = 2500 MPa, μ = 0.3) [36]. All
nodes on the inferior PMMA layer were fixed, and a pre-
scribed displacement equivalent to 2% longitudinal com-
pressive strain was applied to the superior PMMA layer. The
compressive strength of the L1 vertebra was defined as the
total reaction force generated at 2% strain [33]. The calcu-
lated strengths were validated by comparing with the results
from previous studies, which were described in the Dis-
cussion section.

2.4 Statistical analyses

The differences in scores of the SSM and SAM modes be-
tween the degenerative groups were compared by one-way
ANOVA with LSD post-hoc tests in SPSS 19.0 (IBM Inc.,
Chicago, USA). To investigate the associations between
compressive strength of L1 vertebra and PC modes identi-
fied by SSM and SAM, multivariable linear regression
(MLR) models were constructed with PC modes as the in-
dependent variables and the compressive strength as the
dependent variable. To obtain the optimized predictive
model and avoid over-fitting, only the first 10 modes of
SSM and the first 10 SAM modes were included in the MLR
models [15]. The model selection was based on Bayes in-
formation criterion. To quantify the performance of MLR
models, the root mean squared error (RMSE) and the ad-
justed coefficient of determination R2 (Radj

2 ) were used.
Three-fold cross-validation analyses repeated 10 times were
used to compare the predictive ability of the obtained MLR
models [37]. The 30 estimates of RMSE and Radj

2 for each
MLR model were averaged and their 95% confidence in-
tervals (CI) were calculated. Pairwise t-tests were then used
to compare the performance metrics (i.e., RMSE and Radj

2 )
across the predictive models, with the Holm method for
adjusting p-values. The MLR analysis was performed in R
v4.0.3 (R Foundation for Statistical Computing, Vienna,
Austria). The level of significance for all statistical analyses
was set to 5%.

3. Results

3.1 Geometrical comparisons of vertebrae in different
degenerative groups

The typical geometries of L1 vertebrae in the three degen-
erative groups (i.e., subjects #17, #40, and #52) are shown in
Fig. 2(a). To quantitatively describe the shape variations

with increasing severity of degeneration, the differences of
vertex coordinates in the average vertebrae for the mild,
moderate, and severe groups (mild vs. moderate groups and
moderate vs. severe groups) were calculated and illustrated
in Fig. 2(b). For the degenerative process from mild to
moderate grades, the shape changes of L1 vertebra were
uniform. The shape variations in vertebral body were
dominated by the decreased height and increased width,
whereas it was found that the height of spinous process was
visibly increased in the posterior elements, with the max-
imum deformation of 1.87 mm. The spinal nerves may be
easily impinged and irritated because of hypertrophy in the
tips of the spinous process, which could lead to acute or
chronic low back pain.
For the degenerative process from moderate to severe

grades, the shape changes in the vertebral body were non-
uniform, and the predominant variations were caused by the
growth of bone spurs (also known as osteophytes) at the
anterolateral edges of the vertebral body, with the maximum
deformation of 2.50 mm. Moreover, the decreased length of
the transverse process was the most obvious change in the
posterior elements. The intertransverse ligaments are inter-
posed between the transverse processes of adjacent verteb-
rae. Thus, the above shape change may contribute to the
overstretching and damage of ligaments, which could
eventually lead to the limited movement of the upper lumbar
levels (i.e., L1-L2 and L2-L3).

3.2 Comparisons of BMD distribution for vertebrae in
different degenerative groups

The means and standard deviations of BMD values in the
overall vertebra, vertebral body, and posterior elements
fordifferent degenerative groups are shown in Fig. 2(c).
The BMD value of vertebral body in the severe group
was significantly higher than those in mild and moderate
groups (233.02±27.38 mg/cm3 vs. 208.00±31.88 mg/cm3 and
214.36±23.44 mg/cm3, respectively; p < 0.05). Conversely,
there were no significant BMD differences in the overall ver-
tebra and posterior elements among the three degenerative
groups (p > 0.05). To further compare the spatial density
distribution between vertebrae in the severe group and mild/
moderate group, the differences between average BMD
values of meshes were calculated and depicted in Fig. 2(d),
with higher BMD in the severe group having a positive
value. For the comparison of BMD distribution between the
mild and severe groups, severely degenerated vertebrae had
lower densities in the posterior region of spinal foramen,
and higher densities at the anterolateral edges of the ver-
tebral body and the tips of the spinous process, reaching a
maximum difference with the value of 261.10 mg/cm3. Si-
milarly, the BMD values at the anteroinferior edges of the
vertebral body and the tips of the spinous process tended to
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be higher in the severe group than the moderate group, reaching
a maximum difference with the value of 203.40 mg/cm3.
Furthermore, vertebrae in the severe group had slightly
lower densities in the posterior region of spinal foramen
compared to moderately degenerated vertebrae.

3.3 SSM analysis

The SSM identified 74 independent modes to describe the
total shape variation of the L1 vertebra. The first 37 modes
cumulatively explained more than 95% of shape variation,
in which the first three modes were responsible for 51.2% of
the overall variation. The mean shape of 75 vertebrae and
the shape variations explained by the first three modes are
shown in Fig. 3. As expected, the first mode of SSM (SSM
1) described geometrical scaling, capturing most of the
shape variations (34.7%). However, the scaling variation

was non-uniform, scalings in mediolateral and ante-
roposterior directions of vertebra were greater than that in
superoinferior direction. The size of vertebral body and the
length of transverse process were identified by the shape
mode 2 (SSM 2), which accounted for 9.7% variability.
Additionally, the third mode of SSM (SSM 3) comprised
6.8% of the total anatomical variation and it corresponded to
pedicle transverse angle roughly. The LOO analysis for the
SSM resulted in relatively low MAESSM (0.335±0.084 mm),
which implied that the present SSM could properly describe
the shape variation of the L1 vertebra in elder men.
Statistically significant differences were observed in the

scores of the fifth and the eleventh modes of SSM (i.e., SSM
5 and SSM 11) among all degenerative groups (p < 0.05).
SSM 5 related closely to the height of vertebral body (Fig. 3),
which explained 3.7% of shape variation. For this mode, the
score in the mild group was significantly higher than those

Figure 2 Comparisons of geometry and BMD distribution for L1 vertebrae with different degeneration states. (a) The typical geometries of vertebrae in the
three degenerative groups. Subjects #17, #40, and #52 were from the mild, moderate, and severe groups, respectively. (b) The differences of the vertex
coordinates in the average vertebrae for the mild, moderate, and severe groups (mild vs. moderate groups and moderate vs. severe groups). (c) The means and
standard deviations of BMD values in the overall vertebra, vertebral body, and posterior elements for different degenerative groups. a Statistically different
from the mild group (p < 0.05); b Statistically different from the moderate group (p < 0.05); c Statistically different from the severe group (p < 0.05). (d) The
differences of spatial density distribution between vertebrae in the severe group and mild/moderate group.
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in the moderate and severe groups (p < 0.05), with the va-
lues of 0.604±1.120 vs. −0.049±0.710 and −0.495±0.922,
respectively (Table 2). Moreover, SSM 11, which captured
the height of spinous process and width of vertebral body
(Fig. 3), significantly discriminated the severe group and
mild/moderate group (p < 0.05), with the scores of −0.513
±0.816 vs. 0.447±0.801 and 0.084±1.106, respectively (Ta-
ble 2). Accordingly, the degeneration state of individual L1
vertebra could be roughly identified by the score values of
SSM 5 and SSM 11. As shown in Fig. 4(a), most of ver-
tebrae in the mild group were distributed in the right-top
region of the scatter plot (corresponding to high scores of
SSM 5 and SSM 11), whereas the vertebrae in the left-
bottom region were mainly from the severe group (corre-
sponding to low scores of SSM 5 and SSM 11).

3.4 SAM analysis

The SAM was less compact than SSM, 63 modes (out of a
total of 74 modes) were needed to account for more than
95% of the variation in BMD distribution. The first three
modes of SAM accounted for only 27.9% of the variation,
and the density variations described by them are visualized
in Fig. 5. The first mode of SAM (SAM 1) described the
overall change in density, which accounted for 17.5% of the
total variation in BMD distribution. The second mode (SAM
2) was primarily associated with the density variation in

posterior elements, explaining 6.4% variability. The third
mode of SAM (SAM 3) captured 4.0% of the variation and
identified the density changes in the vertebral body and
posterior region of spinal foramen. From the LOO analysis,
the MAESAM values for the reconstructed BMD distribution
of unknown vertebrae were 64.610±26.620 mg/cm3, sug-
gesting a relatively high accuracy of our SAM.
Analysis of the SAM scores for the three degenerative

groups showed that statistical differences were only ob-
served for modes 2, 3, and 5 (p < 0.05). The SAM 2 and
SAM 3 scores in the severe group were negative, and they
were significantly lower than those in the mild/moderate
group (p < 0.05) (Table 2). The fifth mode of SAM (SAM 5)
mainly described the variations of BMD distribution in the
cortical bone of vertebral body and the spinous process,
accounting for 2.7% variability (Fig. 5). The SAM 5 score in

Figure 3 Mean shape of 75 vertebrae and the shape variations identified by the specific SSM modes (SSM 1, SSM 2, SSM 3, SSM 5, and SSM 11) with
indication for the percentage of overall variation. Green is +3SD, red is −3SD.

Table 2 Score values of SSM 5, SSM 11, SAM 2, SAM 3, and SAM 5 in
different degenerative groups (data are presented as mean (standard deviation))

Mild (n = 22) Moderate (n = 29) Severe (n = 24)
SSM 5 0.604 (1.120) b, c −0.049 (0.710) a −0.495 (0.922) a

SSM 11 0.447 (0.801) c 0.084 (1.106) c −0.513 (0.816) a, b

SAM 2 0.516 (0.685) c 0.218 (0.857) c −0.736 (1.008) a, b

SAM 3 0.516 (0.681) c 0.073 (0.759) c −0.562 (1.225) a, b

SAM 5 0.518 (1.305) b, c −0.301 (0.708) a −0.112 (0.817) a

a Statistically different from the mild group (p < 0.05); b Statistically
different from the moderate group (p < 0.05); c Statistically different from
the severe group (p < 0.05).
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the mild group was significantly different from the moder-
ate/severe group (0.518±1.305 vs. −0.301±0.708 and
−0.112±0.817, respectively; p < 0.05) (Table 2). Accord-
ingly, the degeneration state of individual L1 vertebra could
be roughly identified by means of SAM 2, SAM 3, and
SAM 5. As shown in Fig. 4(b), SAM 2 and SAM 3 could be

used to identify the vertebrae in the severe group, and the
vertebrae in the mild and moderate groups could be roughly
discriminated through the score of SAM 5, because the di-
rections of the SAM 5 scores in these two groups were
generally inverse (positive value for the mild group and
negative value for the moderate group).

Figure 4 Scatter plots of the specific SSM and SAM scores for vertebrae with different degeneration states. The blue lines indicate the rough classification
boundaries. (a) Scatter plot of SSM 5 vs. SSM 11 scores for vertebrae with different degeneration states. (b) Scatter plot of the SAM 2, SAM 3, and SAM 5
scores for vertebrae with different degeneration states.
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3.5 MLR models for compressive strength of L1 vertebra

Five MLR models were constructed to describe the re-
lationships between compressive strength of the L1 vertebra
and the first 10 modes of SSM and SAM (Table 3). The
performance of MLR models improved with the number of
modes included, and the SSM and SAM modes identified
from MLR analysis were, in order of importance, SAM 1,
SSM 1, SAM 5, SAM 4, and SSM 2. SAM 1 was the most
important independent variable, yielding an Radj

2 value of
0.658. By adding the SAM 4, SAM 5, and SSM 1 to Model
1 (Model 4), the Radj

2 value improved to 0.825 and the RMSE
decreased from 931.473 N to 653.887 N. Further inclusion
of SSM 2 resulted in a minor increase in the Radj

2 value from
0.825 to 0.837 and a minor decrease in the RMSE from
653.887 N to 625.660 N (Model 5).
The predictive abilities of the obtained MLR models were

compared using the three-fold cross-validation analysis. As
shown in Table 4, the performance of Model 1 was significantly
worse than the other models (p < 0.001), with the RMSE of
926.945 N and the Radj

2 value of 0.654. Models 4 and 5

explained the greatest amount of variation in the compres-
sive strength of L1 vertebra (Radj

2 = 0.802 and 0.808, re-
spectively) and had the lowest RMSE among all predictive
models (RMSE = 646.143 N and 619.069 N, respectively).
Of note, no significant difference was found between the
RMSE and Radj

2 values of Models 4 and 5 (p > 0.05), which
implied that the performance of these two models was si-
milar. The RMSE of Models 4 and 5 were significantly lower
than those of other models (p < 0.05). In addition, the RMSE
of Model 2 was significantly higher than that of Model 3
(+7.9%, p = 0.048), and the Radj

2 of Model 2 was significantly
lower than those of Model 4 and Model 5 (p < 0.05).
To compare the performances of the MLR model for

predicting vertebral strength in different degenerative
groups, the relative errors between vertebral strengths ob-
tained from the QCT/FEA model and the MLR model 4
were computed. The mean relative error in the mild group
was less than those in the moderate and severe groups
(6.77% vs. 8.66% and 8.09%); however, there were no
significant differences in the relative errors among the three
degenerative groups (p > 0.05).

Figure 5 Variations of BMD distribution explained by the specific SAM modes (SAM 1, SAM 2, SAM 3, and SAM 5) with indication for the percentage of
overall variation. Each SAM mode is visualized at mean ± 3SD.
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3.6 Effects of shape and density variations on the
fracture behavior

SSM 1 and SAM 1 accounted for the largest proportions of
shape and density variations, respectively (Figs. 3 and 5).
Moreover, the MLR analysis revealed that these two modes
are the major determinants of compressive strength (Table
3). Therefore, SSM 1 and SAM 1 were used to explore the
effects of degeneration-related shape and density variations
on the fracture behavior. Given the well-established corre-
lation between vertebral fracture and regions of high strain
[38], distributions of equivalent plastic strain (PEEQ) for the

vertebrae assigned with SSM 1 and SAM 1 at mean ± 3SD
were investigated. With the increase of SSM 1 and SAM 1
scores, a discernible reduction in the average PEEQ value of
vertebra was observed, indicating a corresponding decrease
in the risk of bone fracture (Fig. 6). Furthermore, the PEEQ
was more sensitive to degeneration-related variations of
density distribution than those of morphology. Specifically,
with the same shape, an approximate 24% decrease in the
average PEEQ value of vertebra occurred when the SAM 1
score transitioned from −3 to 3 (mean ± 3SD); while with
the same density distribution, the decrease of PEEQ value
was about 9% when the SSM 1 score transitioned from −3

Table 4 Performance comparisons for different MLR modelsa)

Model RMSE (N) (95% CI)
p

vs. Model 2 vs. Model 3 vs. Model 4 vs. Model 5
Model 1 926.945 (888.626-965.263) < 0.001 < 0.001 < 0.001 < 0.001
Model 2 752.664 (728.035-777.293) – 0.048 < 0.001 < 0.001
Model 3 697.490 (663.288-731.691) – – 0.049 0.003
Model 4 646.143 (611.177-681.109) – – – 0.239
Model 5 619.069 (587.269-650.869) – – – –

Model Radj
2 (95% CI)

p
vs. Model 2 vs. Model 3 vs. Model 4 vs. Model 5

Model 1 0.654 (0.631-0.677) < 0.001 < 0.001 < 0.001 < 0.001
Model 2 0.760 (0.745-0.775) – 0.389 0.014 0.004
Model 3 0.781 (0.760-0.801) – – 0.389 0.208
Model 4 0.802 (0.781-0.822) – – – 0.665
Model 5 0.808 (0.788-0.827) – – – –

a) Statistically significant results are shown in bold font.

Table 3 Predictive models for compressive strength of L1 vertebra

Model Variables in the model Unstandardized coefficient B (SE) a) Standardized coefficient β p R2 Radj
2 RMSE (N)

Model 1
(Intercept) 6742.52 (109.02) – < 0.001

0.663 0.658 931.473
SAM 1 1315.56 (109.76) 0.814 < 0.001

Model 2
(Intercept) 6742.52 (89.05) – < 0.001

0.778 0.772 755.647SAM 1 1307.07 (89.66) 0.809 < 0.001
SSM 1 548.38 (89.66) 0.339 < 0.001

Model 3

(Intercept) 6742.52 (83.59) – < 0.001

0.807 0.799 704.377
SAM 1 1307.12 (84.17) 0.809 < 0.001
SAM 5 −275.46 (84.16) −0.171 0.00165
SSM 1 545.43 (84.17) 0.338 < 0.001

Model 4

(Intercept) 6742.52 (78.15) – < 0.001

0.834 0.825 653.887
SAM 1 1306.39 (78.69) 0.809 < 0.001
SAM 4 −267.78 (79.92) −0.166 0.00130
SAM 5 −274.96 (78.69) −0.170 < 0.001
SSM 1 592.34 (79.93) 0.367 < 0.001

Model 5

(Intercept) 6742.52 (75.32) – < 0.001

0.848 0.837 625.660

SAM 1 1301.33 (75.86) 0.805 < 0.001
SAM 4 −249.39 (77.36) −0.154 0.00193
SAM 5 −296.31 (76.30) −0.183 < 0.001
SSM 1 588.97 (77.04) 0.365 < 0.001
SSM 2 193.43 (76.66) 0.120 < 0.001

a) SE = standard error.
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to 3 (mean ± 3SD). Additionally, the degeneration-related
variations of density distribution would influence the pattern
of vertebral fractures. With the same shape, SAM 1 scores
below 0 (mean value) were associated with a tendency to-
wards wedge deformity-induced bone fractures; while po-
sitive SAM 1 scores indicated a propensity for compression
deformity-induced vertebral fractures. In contrast, shape
variation had almost no effect on the fracture pattern.

4. Discussion

In this study, highly detailed statistical models (SSM and SAM)
were developed based on the 75 L1 vertebrae with different
degenerative states (mild, moderate, and severe grades), and
their variations in shape and density distribution were quantified
with PC modes. The LOO analys is shown that our SSM and
SAM had good performance in shape and density reconstruc-
tions for unknown vertebrae (MAESSM = 0.335±0.084 mm,
MAESAM = 64.610±26.620 mg/cm3). There were significant
differences in the scores of specific modes (SSM 5, SSM 11,
SAM 2, SAM 3, and SAM 5) among the three degenerative
groups, which could be used to roughly discriminate de-
generation grade. The associations between compressive
strength and PC modes identified by SSM and SAM were
investigated by MLR analysis. A reasonable accuracy of
bone strength prediction (Radj

2 = 0.825, RMSE = 653.887 N)
was achieved by using SSM 1, SAM 1, SAM 4, and SAM 5
to construct the MLR model. The PEEQ values (high value
indicating high fracture risk) were more sensitive to de-
generation-related variations of density distribution than
those of morphology. Moreover, the density variations may

change the deformity type, which further influences the
fracture pattern. These findings have implications for as-
sessing fracture risk, assisting clinicians in pathological di-
agnosis, as well as guiding implant design and preoperative
planning.
In our study, the compressive strengths of vertebrae were

calculated by the noninvasive method (QCT/FEA). To en-
sure the accuracy and validity of strength assessment, our
QCT/FEA models of L1 vertebra were constructed follow-
ing the standard procedures [33]. For the 75 vertebrae in this
study, the compressive strengths were 6742.52±1615.57 N,
ranging from 3981.01 N to 9992.60 N, which were con-
sistent with those reported from the previous studies for the
male vertebrae with matched age (≥ 65 years) [9,33].
Moreover, the fracture sites of 75 vertebral bodies were
defined as the point that reached the maximum PEEQ at the
QCT/FEA-computed vertebral strength, and most of them
were located at the regions in the middle layer. These
fracture sites have been shown to agree with the subsequent
fracture locations [9,34]. Taken together, the QCT/FEA
models in our study were reliable and can be used to assess
bone strength and PEEQ. In clinics, BMD is currently
considered the standard surrogate of bone strength to diag-
nose osteoporosis and assess the related fracture risk. For
the spine, the recommended BMDQCT thresholds for osteo-
porosis and low bone mass correspond to 80 mg/cm3 and
120 mg/cm3, respectively [39]. In accordance with the linear
regression between vertebral strength and BMDQCT of men,
the strength interventional thresholds—“fragile bone strength”
corresponding to osteoporosis and “low bone strength”
corresponding to low bone mass—were defined as 6500 N
and 8500 N, respectively. Moreover, the probability of ver-
tebral fracture could be assessed through the well-estab-

Figure 6 Distributions of PEEQ for the specific vertebrae at the given shape and density modes (SSM 1 and SAM 1 at mean ± 3SD). Black arrows point to
predicted fractures, and PEEQave is the average value of PEEQ in the finite element model.
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lished logistic regression models from a previous study [33],
in which vertebral strength/BMDQCT and age were con-
sidered as predictors. On the basis of the average age and
vertebral strength of the subjects in this study, we estimated
that the risk of lumbar vertebral fracture in elderly men
would be 10%-15%, which was slightly higher than the
value estimated from the BMDQCT.
Our study showed that the shape and density distribution

of L1 vertebra changed with degeneration progresses. It
should be noted that degeneration may also affect bone
strength. To investigate the influence of degeneration on
bone strength of L1 vertebra, the compressive strengths
in different degenerative groups were compared. In parti-
cular, the compressive strength in the severe group was
significantly higher than those in mild and moderate
groups (7453.51±1707.87 N vs. 6138.72±1673.41 N and
6612.16±1290.16 N, respectively; p < 0.05). The reason for
the above results might be that the degeneration alters the
load transfer in vertebra, shifting loads from the weaker
anterior region (with lower density) to the stronger posterior
region (with higher density) [2]. Prior measurements have
shown that for the erect spinal posture, the load applied to
the anterior region of vertebra decreases with age [40].
Another reason is that the osteophyte growing in the de-
generative process may increase the density heterogeneity.
In general, the vertebra with greater heterogeneity in density
exhibits higher strength [40].
In addition to bone strength, the stress distribution within

vertebra may also be influenced by degeneration. Figure 7
shows the distributions of von Mises stress for the specific
vertebrae in different degenerative groups (i.e., subjects
#5, #23, and #57). The compressive strengths of these

three vertebrae were similar, with values of 5726.01 N,
5752.89 N, and 5774.67 N, respectively. However, their
distributions of von Mises stress at the same compressive
strains were different. During the compressive deformation,
the variations of stress distribution were relatively uniform
in the mildly and moderately degenerated vertebrae. In
comparison, for the severely degenerated vertebra, more
regions with high stresses were found at the vertebral rim.
Severe osteophytes on the vertebral body mainly accounted
for the non-uniform stress distribution. As degeneration
progresses, a greater proportion of the applied loads would
be transferred to the outer regions of the vertebral body. This
non-uniform load distribution might trigger bone remodel-
ing and lead to bone resorption in the central region [40],
which could increase the fracture risk. The above findings
indicated that for the vertebrae with similar bone strengths,
the severely degenerated subjects may be at higher risk of
fracture. Therefore, besides bone strength, the degeneration
state also should be considered in the clinical assessment of
fracture risk.
Our results suggested some strategies for orthopedic im-

plant design, selection, and placement, as well as surgical
planning. Quantification of shape variation for degenerated
vertebra is important for pathology-specific implant design
since the shape of host bone tissue affects implant sizing and
stability [4]. Significant differences in the scores of SSM 5
and SSM 11 among the three degenerative groups indicated
that severely degenerated vertebrae have lower vertebral
body height, also manifesting as increase in vertebral body
width (Table 2 and Fig. 2(b)). This finding suggested that
intervertebral implants (such as interbody fusion devices)
should be designed to accommodate degeneration-related

Figure 7 Distributions of von Mises stress for the specific vertebrae at the given compressive strains. Subjects #5, #23, and #57 were from the mild,
moderate, and severe groups, respectively.
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shape variations. Moreover, fully understanding the density
distribution of vertebra could support decisions related to
prosthetic fixation, including selections of optimal place-
ment and trajectory for the insertion [2]. This study showed
significantly different density distributions in the posterior
elements (captured by SAM 2) for the vertebrae in the se-
vere group and other two groups (mild and moderate
groups), and this finding suggested that for the severely
degenerated vertebrae, pedicle screws for lumbar fusion
should be fixed slightly close to the proximal regions of
pedicle, since relatively high densities were observed in
these regions (Table 2 and Fig. 2(d)). Considering the pre-
operative pathological condition (degenerative changes) in
the design and positioning of spinal implants could reduce
micromotion, increase mechanical stability, and improve
patient outcomes.
In this study, five predictive variables of compressive

strength (SSM 1, SSM 2, SAM 1, SAM 4, and SAM 5) were
identified by the MLR analysis, and the results showed that
the global density distribution (SAM 1) is the primary de-
terminant of compressive strength for vertebra, and the
overall size (SSM 1) is the secondary factor. These two
predictors could explain a moderate amount of variation in
compressive strength (Radj

2 = 0.772) (Table 3). Similar to the
current finding, a recent study also demonstrated that the PC
modes describing the global density distribution and geo-
metry of femoral neck were important variables for femoral
neck strength prediction [15]. Generally, increasing the
number of predictive variables improved the performance in
the MLR models [15], whereas the increased computational
complexity may hamper their application in clinical prac-
tice. To select an appropriate predictive model of bone
strength, predictive abilities of the obtained MLR models
were compared using performance metrics (Radj

2 and RMSE).
Our results suggested that a reasonable level of performance

(Radj
2 = 0.825, RMSE = 653.887 N) could be achieved by

using 3 SAM modes (SAM 1, SAM 4, and SAM 5) and
SSM 1 as independent variables (Table 3), and the perfor-
mances of this MLR model for predicting bone strengths of
vertebrae with different degenerative states were similar.
To better understand the respective influence of each

shape/density mode selected by MLR analysis on the com-
pressive strength of L1 vertebra, a synthetically generating
method, as described in details elsewhere [15], was used to
quantify their relative contributions to bone strength. For
exploring the influence of shape (SSM 1 and SSM 2), the
finite element models with mean shape of 75 vertebrae and
the shape at ±1, ±2, and ±3 standard deviations of corre-
sponding shape modes were developed, and the mean spatial
density distribution was assigned to all models. Similarly, to
explore the influence of bone density distribution (SAM 1,
SAM 4, and SAM 5), the mean density distribution of 75
vertebrae and the bone densities at ±1, ±2, and ±3 standard
deviations of corresponding density modes were calculated
and assigned to the finite element models with the mean
vertebra shape. For the independent analyses of shape
modes, SSM 1 exhibited a moderate influence on com-
pressive strength, with the range of 4942.49 N to 8302.13 N
(Fig. 8(a)). In comparison, SSM 2 had only a negligible
influence, ranging from 5765.82 N to 7009.73 N (Fig. 8(a)).
It may explain why the MLR model was not sensitive to the
absence of SSM 2 (Tables 3 and 4). For the independent
analyses of density modes, as shown in Fig. 8(b), SAM 1
had a substantial effect on bone strength, with the widest
range varying from 2798.73 N to 9886.59 N. Although
SAM 4 accounted for just 3.4% of the variability, it was
found to have a moderate influence on bone strength (ran-
ging from 5608.32 N to 7254.09 N). The relative contribu-
tion of SAM 5 to bone strength was comparable to SAM 4,
and it may be due to the similar percentages of variability
explained by them (3.4% and 2.7%, respectively). From the

Figure 8 Influences of shape and density distribution on compressive strength. (a) Influence of shape (SSM 1 and SSM 2) on compressive strength. (b)
Influence of density distribution (SAM 1, SAM 4, and SAM 5) on compressive strength.
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above independent analyses, it was indicated that the SAM
modes contributed more to bone strength than the SSM
modes, although the compactness of SAM was poor. Fully
understanding the contributions of SSM and SAM modes to
compressive strength has implications for optimizing MLR
models to improve the accuracy and clinical utility for
vertebral fracture assessment.
In addition to bone strength, our findings provided insight

into the degeneration-related shape and density variations to
fracture behavior. The major determinants (SSM 1 and SAM
1) of compressive strength were suggested to monitor
fracture risk in degeneration processes. A one standard de-
viation decrease in SSM 1 was associated with a 550 N
decrease in bone strength, and that in SAM 1 was associated
with a 1200 N decrease. Vertebral strength could serve as a
good predictor for assessing risk of bone fracture [41]. For
example, the probability of the men aged 75 years at fragile
bone strength (6500 N) was 14.80% [33]. Of note, SAM 1
exhibited great potential in the assessment of vertebral
fracture patterns (Fig. 6). SAM 1 could describe the density
distributions of degenerative vertebrae and quantify the lo-
cations with low densities, thus demonstrating the ability to
recognize the regions with high strain. The positive SAM 1
represents relatively high-density bone, and the middle
cross-section of vertebra tends to be the weakest area [36],
leading to compression deformity. By contrast, the negative
SAM 1 represents relatively low-density bone, the ante-
rosuperior region of vertebral body cannot bear the applied
load, and this situation might trigger deflection of the
weakest cross-section, leading to wedge deformity. Taken
together, SSM 1 and SAM 1 may help clinicians evaluate
vertebral fracture risk and predict fracture locations.
There were several limitations to this study. First, the SSM

and SAM of the L1 vertebrae were derived from an all-male
dataset. Gender-related variations of shape and density dis-
tribution have been found in the vertebrae [6,42]. Therefore,
statistical models would be re-constructed targeting the all-
female or mixed-gender cohorts. Second, only the uniaxial
compressive loading condition was simulated to calculate
the strength of L1 vertebra. This is because this clinical
relevant configuration is well-defined and repeatable [35],
and it was proven to have a strong association with high
fracture risk [33]. It should be noted that PC modes iden-
tified from the MLR analysis for bone strength under other
loading configurations (e.g., lateral bending, forward flex-
ion, etc.) may differ from those for compressive strength
prediction. Finally, in our study, demographic information
(e.g., age, height, weight, etc.) was not considered as the
potential variable for developing MLR models. It was pro-
ven that demographic characteristics have only a minor
contribution to the prediction of bone strength and related
fracture risk [20].

5. Conclusions

In conclusion, the novelties of this study were that it
quantitatively described the variations in shape and density
distribution for the degenerated vertebrae with different
degenerative states by using statistical models, identified the
specific SSM/SAM modes to predict compressive strength,
and quantified the effects of major modes on fracture be-
havior. These findings have great potential in different
clinical applications, including disease diagnosis, fracture
risk assessment, optimal implant design and selection, as
well as preoperative planning for surgical treatments (such
as lumbar fusion and disc replacement). In addition, this
study may improve understanding of the pathological pro-
cess of vertebra degeneration.
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通过量化形态和密度分布评估退变椎骨的强度及断裂行为

张萌, 宫赫, 张明

摘要 腰椎退行性病变可导致椎骨形状和密度分布发生改变, 进而影响其力学性能和行为. 本研究旨在通过统计形状模型(SSM)和统

计外观模型(SAM)定量描述退变椎骨形状和密度分布的变化, 并利用特定主成分模式来评估椎骨的强度和断裂行为. 基于75名老年男

性L1椎骨建立详细的SSM和SAM, 提取其主成分模式来定量描述退变椎骨形状和密度分布特征. 根据L1椎骨的退变程度, 将所有受试

者分为轻度退变组(n = 22)、中度退变组(n = 29)和重度退变组(n = 24). 基于定量CT的有限元分析计算每个椎骨的抗压强度, 并利用多

元线性回归分析来评估椎骨强度与主成分模式之间的关系. 对比分析SSM和SAM第一模式(平均值±3倍标准差)下等效塑性应变

(PEEQ)的分布以评估退变椎骨的断裂模式. 留一法结果显示所建立的SSM和SAM具有良好的性能, 用它们对未知椎骨的形状和密度

分布进行重建, 其平均绝对误差分别为0.335±0.084 mm和64.610±26.620 mg/cm3. 使用4个主成分模式(SSM 1、SAM 1、SAM 4和SAM
5)构建的多元线性回归模型, 其强度预测性能良好. 此外, 与椎骨退变相关的形态变化相比, PEEQ的数值对密度分布的变化更为敏感.
椎骨密度分布的变化可能会影响其受力后的变形类型(压缩变形和楔形变形), 进而影响其骨折模式. 统计模型可以识别退变椎骨形状

和密度分布的变化, 并且SSM/SAM模式可以用来评估椎骨的抗压强度和断裂行为. 上述研究结果对协助临床医生进行病理诊断、骨

折风险评估、植入体的设计和术前规划具有重要意义.
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