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Convection driven by a spatially non-uniform internal heat source between two horizontal isothermal walls is studied by theoret-
ical analysis and numerical simulation, in order to explore the bounds of the temperature and the vertical heat flux. Specifically,
the rigorous lower bound of the weighted average temperature ⟨QT ⟩ is derived analytically, by decomposing the temperature field
into a background profile and a fluctuation part. This bound obtained for the first time to consider non-uniform heat sources is
found to be compatible with the existing bound obtained in uniform internal heat convection. Of physical importance, an analyt-
ical relationship is derived as an inequality connecting ⟨QT ⟩ and the average vertical heat flux ⟨wT ⟩, by employing the average
heat flux on the bottom wall (qb) as an intermediary variable. It clarifies the intrinsic relation between the lower bound of ⟨QT ⟩
and the upper bound of ⟨wT ⟩, namely, these two bounds are essentially equivalent providing an easy way to obtain one from
another. Furthermore, the analytical bounds are extensively demonstrated through a comprehensive series of direct numerical
simulations.
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1. Introduction

Internally heated convection (IHC) is widely encountered in
nature and industry and is therefore of great scientific and
practical importance. The internal heat source originates
from various physical and chemical processes [1, 2], such as
the decay of radioactive elements in mantle convection [3],
the absorption of stellar radiant by the planetary atmosphere
[4, 5], and the Joule heat generated by the electric current in
liquid metal batteries [6,7]. Understanding the IHC is essen-
tial in explaining these natural phenomena as well as guiding
thermal designs and management of industrial equipments.

As a fundamental model problem, IHC has attracted a
vast variety of research efforts including experimental mea-
surements [8-11] and numerical simulations [12-18], which
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intend to pave the way for a comprehensive understanding of
its intriguing fluid dynamics. When the flow is maintained
static in an IHC which has the same temperature fixed on the
top and the bottom walls, the temperature interior of the fluid
layer is known to be always higher than the wall tempera-
ture [14], resulting in a stable thermal stratification near the
bottom wall whereas an unstable one near the top wall. Go-
luskin [19] performed instability analyses for the IHC with
a constant heat source (Uniformly Internally Heated Con-
vection, UIHC), and found that the critical Rayleigh num-
bers for the linear instability and the energy instability are
RL = 37325.2 and RE = 26926.6, respectively. There-
fore, when the Rayleigh number R is large enough, thermal
convection occurs inevitably. In the UIHC, the top ther-
mal boundary layer is much thinner than the bottom one,
which reflects the up-down asymmetry of the systems [19]
and more heat escaping through the top wall than the bottom
one [10, 13]. The momentum and heat generated in the un-
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stable region are transferred to the stable region when the up-
per layer pulls cold eddies off the bottom boundary layer by
shearing forces, which is the so-called penetrative convection
[20, 21]. Penetrative convection essentially changes the flow
dynamics and energy transport characteristic in the UIHC,
which is drastically different from the classical Rayleigh-
Bérnard Convection (RBC) [22-24] where the convection is
driven purely by the heated bottom wall.

In the UIHC, as argued by Goluskin and Spiegel [14], the
average temperature ⟨T ⟩ and the vertical heat-flux ⟨wT ⟩ are
better diagnostic quantities than the Nusselt number which
is extensively analyzed in the RBC. Here, w and T are the
dimensionless vertical velocity component and the tempera-
ture, respectively. The bracket ⟨·⟩ denotes the temporal and
spatial averaging. Numerical results indicate that the aver-
age temperature ⟨T ⟩ has a scaling of R−1/5 in a broad high-R
regime (0.01 ≤ Pr ≤ 100, 104 ≤ R ≤ 5 × 1010) [13, 18].
In rigorous theoretical analysis, the asymptotic behaviours or
bounds of the ⟨T ⟩ and ⟨wT ⟩ are also obtained [25-31]. The
first analytical bound of ⟨T ⟩ in the UIHC is reported by Lu et
al. [31]. Recently, a series of bounds of ⟨T ⟩ and ⟨wT ⟩ have
been reported to obtain more accurate flow diagnosis in the
UIHC, as listed in Table 1 [14, 31-35].

In the pioneering work of Lu et al. [31], a background
method [36, 37], which decomposes the flow into a back-
ground profile and a fluctuation part, is introduced in the
study of the UIHC. By constructing feasible solutions to a
convex variational problem, Arslan et al. [32] found an R-
dependent scaling of ⟨wT ⟩ ≤ 2−21/5R1/5, which improves
the uniform bound of ⟨wT ⟩ ≤ 1/2 [14] in the range of
R < 65536. With an improvement of the background pro-
file in the boundary layers, Kumar et al. [34] found a dif-
ferent bound of ⟨wT ⟩ ≤ 1/2 − 3.29R1/5 exp

(
−17.58R3/5

)
for

R ≥ 31. For R → ∞, this bound increases to its asymptotic
value of 1/2. Nevertheless, because the magnitude of the ad-
ditional negative term decays exponentially, this correction
term has a maximum value of approximately 10−60 over the
entire range of R, rendering that the bound is not so valuable
in practice. The most recent work of Arslan et al. [33] estab-
lished a bound of ⟨wT ⟩ for the infinite Pr showing that ⟨wT ⟩
approaches 1/2 at a rate of R−2 as R→ ∞.

As the analytical bounds discussed above are limited to the
UIHC, the present work is dedicated to exploring the analyt-
ical bounds of the non-uniformly internally heated convec-
tion (NUIHC) having a positive internal heat source Q ≥ 0,
which is more common in nature and industry [3,5], however,
rarely concerned up to date. Specifically, by using the back-
ground method, we derived the analytical rigorous bounds of
the ⟨QT ⟩ and ⟨wT ⟩ that highly depend on the distribution of
heat sources Q and control parameter R. Extensive numeri-
cal simulations have been considered for different heat source

distributions to validate these theoretical results.
The rest of this paper is organized as follows: Section 2

introduces the governing equations and flow model. Section
3 presents the concise derivations and relevant discussions of
the theoretical bounds. Section 4 presents the numerical re-
sults and analysis of the effect of heat sources on flow struc-
ture as well as the demonstration of the theoretical bounds.
Finally, a brief conclusion is provided in Sect. 5. The detail
of the derivations of theoretical bounds and code validation
is described in Appendix A and Appendix B.

2. Problem description

Figure 1 shows a classical model of the NUIHC happening
in a fluid layer confined vertically between two horizontal
walls, with the top and bottom walls of a distance d∗ and
fixed at the same temperature T ∗c . The convection driven by
an internal heat source Q∗ is considered for the fluid of con-
stant kinematic viscosity ν∗, thermal diffusivity κ∗, coefficient
of thermal expansion α∗, density ρ∗, and specific heat capac-
ity c∗p. g∗ is the gravitational acceleration pointing along the
negative z-direction. Here, the superscript ∗ is used to denote
the dimensional variables.

By adopting the Oberbeck-Boussinesq approximation,
the dimensionless governing equations for the NUIHC are
given as

∇ · u = 0, (1a)

∂tu + u · ∇u + ∇p = Pr∇2u + PrRTez, (1b)

∂tT + u · ∇T = ∇2T + Q. (1c)

The dimensionless quantities involved in the above gov-
erning equations are obtained as follows:

x =
x∗

d∗
, t =

t∗

d∗2/κ∗
, u =

u∗

κ∗/d∗
,

p =
p∗

ρ∗κ∗2/d∗2
, T =

T ∗ − T ∗c
d∗2γ∗/(κ∗ρ∗c∗p)

, Q =
Q∗

γ∗
.

(2)

Here, x and t are the dimensionless spatial coordinates and
time, respectively. u, p and T denote the dimensionless ve-
locity, pressure, and temperature, respectively. Q represents

Figure 1 Flow configuration.
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Table 1 Summary of bounds in the UIHC

Ref. Bounds

⟨wT ⟩

Goluskin and Spiegel [14] 0 < ⟨wT ⟩ < 1/2

Arslan et al. [32] ⟨wT ⟩ ≤ 2−21/5R1/5, when R < 65536

Kumar et al. [34] ⟨wT ⟩ ≤ 1/2 − 3.29R1/5 exp
(
−17.58R3/5

)
, when R ≥ 31

Arslan et al. [33] ⟨wT ⟩ ≤ 1/2 − 216R−2, when Pr = ∞

⟨T ⟩
Lu et al. [31] ⟨T ⟩ ≥ 4.421R−1/3

Lu et al. [31] ⟨T ⟩ ≥ 0.810R−2/7, when Pr = ∞
Whitehead and Doering [35] ⟨T ⟩ ≥ 0.419(R log R)−1/4, when Pr = ∞

the prescribed dimensionless heat source that has an average
of ⟨Q⟩ = 1, with γ∗ being the averaged heat source. The
two key dimensionless parameters, the Prandtl number Pr
and the Rayleigh number R (or Rayleigh Robert number), are
defined as

Pr =
ν∗

κ∗
, and R =

g∗α∗d∗5γ∗

ρ∗c∗pν∗κ∗2
. (3)

The top and bottom walls are considered to have the no-
slip and isothermal conditions with the non-dimensional ve-
locity and temperature fixed as

u
∣∣∣
z=0,1 = 0, and T

∣∣∣
z=0,1 = 0. (4)

The average heat fluxes on the bottom (qb) and top (qt) walls
are obtained by

qb =
∂T
∂z

∣∣∣
z=0, qt = −

∂T
∂z

∣∣∣
z=1. (5)

Because of the conservation constraint of the internal energy,
there is qt + qb = ⟨Q⟩ = 1.

In the following, theoretical and numerical analyses are
performed for the statistically stationary convection, in the
context of temporal-horizontal averaging ( f ) and temporal-
spatial averaging (⟨ f ⟩) that are defined for a given variable
f (x, τ) as follows:

f (z) = lim
t→∞

1
tLxLy

∫ t

0
dτ

∫
Ω

f (x, τ)dxdy, (6a)

⟨ f ⟩ = 1
d

∫ d

0
f (z)dz, (6b)

where the horizontal domain is represented by Ω = [0, Lx] ×
[0, Ly], with Lx and Ly being the domain sizes in the x- and y-
directions, respectively. Following Kumar et al. [34], Lx and
Ly are considered to be sufficiently large so that the effect of
very low-frequency fluid motions and large-scale structures
can be ignored and the convective flow is assumed to be pe-
riodic in the horizontal (x- and y-) directions.

3. Theoretical analysis

3.1 Lower bound of
√
⟨T2⟩

As detailed in Appendix A, we extend the approach adopted
by Lu et al. [31] for the UIHC to the present NUIHC and
derive the bound of the weighted average temperature ⟨QT ⟩
at a finite Prandtl number, which reads

⟨QT ⟩ ≥ αg(1) − g(α) − αR−
1
3 , (7)

where

α = 1 − 4R−
1
3 , (8a)

g(z0)=
∫ z0

0
h(z′)dz′, (8b)

h(z0)=
∫ z0

0
Q(z′)dz′. (8c)

Using the Hölder’s inequality, for any m, n > 1 and
1/m + 1/n = 1, one obtains

⟨Qm⟩1/m⟨T n⟩1/n ≥ ⟨QT ⟩.

Therefore, a lower bound related to the temperature is de-
rived as

⟨T m⟩1/m ≥ ⟨Qn⟩−1/n[αg(1) − g(α) − αR−
1
3 ]. (9)

Obviously, one can obtained the lower bound of the root-
mean-square of the temperature (

√
⟨T 2⟩) easily based on Eq.

(10) by setting m = n = 2, reading as

⟨T 2⟩1/2 ≥ ⟨Q2⟩−1/2[αg(1) − g(α) − αR−
1
3 ]. (10)

3.2 Upper bound of vertical heat flux

Taking the temporal-horizontal average of Eq. (1c), the sta-
tistically stationary convection yields

d2T
dz2 =

dwT
dz
− Q. (11)

Integrating Eq. (11) from the bottom wall (z = 0) to a given
vertical position z gives

dT
dz
= wT − h(z) + qb. (12)
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Further integrating Eq. (12) over z up to the top wall (z = 1)
yields

qb = −⟨wT ⟩ + g(1). (13)

Equation (13) shows that the heat flux on the bottom
wall (qb) is affected by both the Q-related term g(1) =∫ 1

0

∫ z
0 Qdz′dz and the average vertical convective heat flux

⟨wT ⟩. When the fluid layer is maintained stationary (namely,
a state of purely thermal conduction), the Q-related term g(1)
is in physics equivalent to qb.

To derive the bound of the vertical heat flux, it is neces-
sary to follow Goluskin and Spiegel [14] assuming that the
horizontally averaged temperature profile T satisfies the fol-
lowing inequality:

T (z) ≤ T st(z, z0) =

(1 − z0)z, 0 ≤ z ≤ z0,

(1 − z)z0, z0 ≤ z ≤ 1,
(14)

where z0 = 1 − qb. Here, T st(z, z0) is the temperature profile
of a stationary flow generated by a concentrated heat source
at z0. T st(z, z0) and T (z) have the same heat flux on the walls
if z0 = 1 − qb. Goluskin and Spiegel [14] has proved that
T ≥ 0 for Q ≥ 0, and so Eq. (14) means that the profile of T
is confined within a triangle formed by T = 0 and T st(z, z0).

First, for the stationary state where there is w = 0, Eq. (11)
becomes d2T/dz2 = −Q ≤ 0. Therefore, the term dT/dz de-
creases monotonically from qb at z = 0 to qb − 1 at z = 1.
Equation (14) can be proved easily by the integration of in-
equality

qb − 1 ≤ dT/dz ≤ qb. (15)

Generally, near the bottom wall of IHC flows with z go-
ing to zero, the vertical velocity w has the order of O(z2), the
temperature has the order of O(z) and therefore wT has the
order of O(z3). This situation also holds near the upper wall.
From Eq. (12), one obtains dT/dz = qb − zQ(0) + O(z3), of
which the integration is T = qbz − 0.5z2Q(0) + O(z4). So,
Eq. (14) is valid in an immediately neighboring domain of
the wall if Q(0) > 0. On the other hand, numerous numeri-
cal results support the rationality of Eq. (14) or its resultant
sufficient condition Eq. (15) [38-40].

From Eq. (14), one obtains

⟨QT ⟩ = ⟨Q T ⟩ + β ≤ ⟨Q T st⟩ + β, (16)

with β = ⟨(Q−Q)(T −T )⟩. By using integration by parts, the
term ⟨Q̄T̄st⟩ is obtained as

⟨Q T st⟩ =
∫ 1−qb

0
qbzQdz +

∫ 1

1−qb

(1 − qb)(1 − z)Qdz

= (1 − qb)g(1) − g(1 − qb) ≡ F(qb).
(17)

Substituting Eq. (13) into Eq. (17) yields an intrinsic rela-
tion between the vertical heat flux ⟨wT ⟩ and the ⟨QT ⟩, given
as

⟨QT ⟩ − β ≤ F (g(1) − ⟨wT ⟩) . (18)

Of physical importance, this novel inequality establishes for
the first time an intriguing connection between ⟨QT ⟩ and
⟨wT ⟩, via which the lower bound of ⟨QT ⟩ can be easily con-
verted into the upper bound of ⟨wT ⟩.

Furthermore, based on the inequality (7), a new bound of
the vertical heat flux ⟨wT ⟩ can be obtained as the following
inequality:

F (g(1) − ⟨wT ⟩) ≥ αg(1) − g(α) − αR−
1
3 − β. (19)

It should be noted that the analytical bounds derived above
have an intriguing dependence on the Q-related term g(1)
whose value ranges in the interval [0, 1], and g(1) = 0 and
1 correspond to the special heat source Q localized at the top
and bottom walls, respectively.

3.3 Degradation to the UIHC

All the above theoretical results are obtained for the NUIHC.
In the next, we consider the degraded situation, namely, the
UIHC where the heat source is prescribed as Q ≡ 1. Because
Q is a constant, the results obtained above can be greatly sim-
plified.

Of importance, the lower bound of ⟨T ⟩ is obtained via Eq.
(7) as

⟨T ⟩ ≥ R−
1
3 (1 − R−

1
3 ). (20)

Equation (20) is formulated as the same derived by Lu et al.
[31]. In the UIHC, one has qb = 1/2 − ⟨wT ⟩ (degraded from
Eq. (13)). Therefore, Eq. (18) reduces to

⟨T ⟩ ≤ 1
8
− 1

2
⟨wT ⟩2, (21)

which establishes an intrinsic link between the bounds of ⟨T ⟩
and ⟨wT ⟩ in an analytical way. Taking advantage of Eq. (21),
the bound of ⟨T ⟩ obtained by Lu et al. [31] (see Table 1), can
be easily converted into the upper bound of ⟨wT ⟩

⟨wT ⟩ ≤
(

1
4
− 8.842R−

1
3

) 1
2

, Pr , ∞. (22)

Compared to the bounds given by Kumar et al. [34] and Ar-
slan et al. [33], Eq. (22) provides an analytically stricter
bound for ⟨wT ⟩. This improved bound is indicated to in-
crease asymptotically up to 1/2 with a rate of R−1/6, also re-
covering the bound obtained by Goluskin and Spiegel [14] as
R is increased sufficiently high.
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4. Numerical simulations

4.1 Simulation set-up

To demonstrate the analytical analysis derived above, numer-
ical simulations are performed using an open-source CFD
solver, buoyantBoussinesqPimpleFoam, in OpenFOAM [41,
42] which is based on the unstructured finite volume method.
The PIMPLE algorithm that combines the PISO and SIM-
PLE (SIMPLEC) algorithms has been incorporated into this
solver for the pressure-velocity coupling. A second-order im-
plicit backward differencing scheme is employed for the dis-
cretization of the temporal term and a second-order central
differencing scheme for the convection terms and diffusion
terms [41, 42].

The code validations are conducted extensively in Ap-
pendix B. As the simplified cases of the NUIHC, two-
dimensional (2-D) numerical simulations are performed fol-
lowing Golusking and van der Poel [13], with the com-
putational size Lx = 4d chosen along with a grid size of
Nx × Nz = 380 × 160. Typically, the Rayleigh number is
fixed at R = 107 and the Prandtl number is Pr = 1. The con-
vection is assured to achieve the fully developed (statistically
stationary) states when ⟨T ⟩ obtains a time variation less than
0.5%.

Without loss of generality, the non-uniform heat resources
are chosen to be z-dependent-only functions, i.e., Q(z).
Specifically, we design to use two representative families of
functions as illustrated in Fig. 2. The family 1 is composed
of continuous functions taking the forms expressed in

Q1, j(z) =

 n jzn j−1, j ≤ 4,

n j(1 − z)n j−1, j ≥ 5,
(23)

where n j = {11, 7, 4, 2, 1, 2, 4, 7, 11} in sequence for j =
1, 2, ..., 9. The family 2 is composed of step functions tak-
ing the forms expressed in

Q2, j(z) =


1

1 − m j
, z ≥ m j,

0, z < m j,

j ≤ 4, (24a)

Q2, j(z) =


1

m j
, z ≤ m j,

0, z > m j,

j ≥ 5, (24b)

where m j =
{

19
20 ,

9
10 ,

4
5 ,

1
2 , 1,

1
2 ,

1
5 ,

1
10 ,

1
20

}
in sequence for j =

1, 2, ..., 9. In the following, Qi,1-Qi,9 (i = 1, 2), are used to
represent the members of each family in order.

4.2 Choice of Q(z)

As seen in Fig. 2, Qi,1-Qi,9 (i=1, 2) correspond to a series of

Figure 2 The z-dependent heat source distributions described as family 1
(a) and family 2 (b).

heat sources which are highly localized in the vertical direc-
tion, namely, from being localized near the top wall (Qi,1)
to near the bottom wall (Qi,9). Firstly, these types of Q(z)
represent the simplified heat source from some natural or in-
dustrial problems [4,5]. In addition, this design of such fam-
ilies of heat sources yields typical sample values of the Q-
related term g(1) in the interval [0, 1], standing for different
NUIHC flows. In that, it is rational to demonstrate the analyt-
ical bounds derived in Sect. 3 based on the numerical results
obtained for these two families of heat sources.

4.3 Numerical results

Figures 3 and 4 show the instantaneous temperature fields
obtained via numerical simulations for typical heat sources
of family 1 and family 2, respectively. Correspondingly, the
averaged temperature rescaled as T/T st are plotted in Fig. 5.
Previous studies have indicated a clear correlation between
flow structures and heat transfer efficiency [43]. In NUIHC,
of interest, the flow structures also depend on the distribution
of heat sources. One should note that when the heat sources
are mainly concentrated closer to the top wall (Qi,1), more
heat will directly escape through the top wall and the fluid
therefore remains cold and even stationary, especially in the
bottom wall region. In this situation, the NUIHC is not well
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Figure 3 (a)-(d) Instantaneous temperature field obtained for heat source
Q1,1,Q1,4,Q1,6,Q1,9 of family 1.

Figure 4 (a)-(d) Instantaneous temperature field obtained for heat source
Q2,1,Q2,4,Q2,6,Q2,9 of family 2.

energized (penetrating vertically across the fluid layer) so it
imposes a very weak impact on the lower half of the fluid
layer where it has a stable stratification, for example, see
Figs. 3(a) and 4(a). Consequently, the profiles of T/T st are
close to 1, particularly within the region of a stable stratifica-
tion, as plotted in Fig. 5 for Qi,1.

As the heat sources are more spreading vertically leading
to an extending in the upper layer of an unstable stratification,
for example, Q2,4 and Q2,6, convection occurs more energeti-
cally resulting in well mixing of the hot fluid in the bulk (see
Fig. 4(b) and (c)). Therefore, the profile of the T in the bulk
region obtains an obvious increase, causing a rapid decline
when rescaled as T/T st in Fig. 5(b). For the case of Q2,4

which corresponds to most of the heat source spreading only

Figure 5 Profiles of the averaged temperature rescaled as T/T st for differ-
ent heat sources of family 1 (a) and family 2 (b).

in the upper half of the fluid layer, the thermal boundary layer
near the bottom wall is still considerably thick and of stable
stratification, see Fig. 4(b). The values of T/T st in the lower
stably stratified layer remain close to 1. For the case of Q2,6,
as the heat source is prescribed to exist only in the lower
half of the fluid layer, enhanced convection emerges with the
plumes almost penetrating the entire fluid layer, leading to
the thinning of the thermal boundary layer near the bottom
wall where it is even of stable stratification, see Fig. 4(c).

When the heat source is prescribed highly localized im-
mediately close to the bottom wall (for example, Q2,9), con-
vective flow is driven to penetrate the whole fluid layer as it
becomes almost fully unstably stratified and thus this NUIHC
behaves reminiscent of the classic RBC that is heated by the
hot bottom wall. As seen in Fig. 4(d), the large-scale circula-
tions appear to dominate the entire fluid layer, a characteristic
flow pattern of the classic RBC, even though most of the fluid
layer is absent of heat source. As a consequence, the profiles
of T/T st are similarly shaped for Qi,5-Qi,9, as shown in Fig.
5. Note that, the value of T/T st is always not greater than 1
for all the heat sources considered in the present simulations,
which demonstrates that Eq. (14) is acceptably reasonable.

Figure 6 shows the comparison between ⟨T ⟩ and ⟨Tst⟩ for
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Figure 6 Comparison of ⟨T ⟩ and the corresponding ⟨Tst⟩ for different heat
sources: (a) Q1, j of family 1; (b) Q2, j of family 2.

different heat sources of both family 1 and family 2, which
also confirms the rationality of the assumption ⟨T ⟩ ≤ ⟨Tst⟩.
It is seen that the disparity between ⟨T ⟩ and ⟨Tst⟩ is small
when the heat sources are concentrated near the top wall
(namely, Q1, j and Q2, j with j = 1, 2), causing that the flow
is not well energized and thus almost stationary. When the
heat sources become more localized and closer to the bot-
tom wall, namely, for Q1, j and Q2, j with j > 3, convection
is strengthened enhancing the heat transfer efficiency of the
fluid layer. In that, the fluid layer is maintained to have a
decrease in ⟨T ⟩ which obtains greater deviation from ⟨Tst⟩
compared to the cases of Q1, j and Q2, j with j=1, 2. This un-
derscores that the analytical bound we derived works more
stringently as the heat sources are localized near the top wall
and the flow remains almost stationary.

Figures 7 and 8 show the comparisons between the nu-
merical results and the analytical bounds of ⟨QT ⟩ (Eq. (7))
and ⟨wT ⟩ (Eq. (19)), respectively, in order to validate these
two bounds. As shown in Fig. 7, the analytic lower bound of
⟨QT ⟩ ≥ 0 presents a reasonable prediction, i.e., it obtains val-
ues smaller than those predicted as real values of the NUIHC
by numerical simulations. Specifically, as the heat source is
changed from be localized near the top wall to be uniformly
distributed in the fluid layer (Qi,1-Qi,5 with i = 1, 2), non-zero
bound values of ⟨QT ⟩ are obtained according to Eq. (7),

Figure 7 Comparison of ⟨QT ⟩ and the corresponding lower bound (Eq.
(7)) for different heat sources: (a) Q1, j of family 1; (b) Q2, j of family 2.

Figure 8 Comparison of ⟨wT ⟩ and the corresponding upper bound (Eq.
(19)) for different heat sources: (a) Q1, j of family 1; (b) Q2, j of family 2.



L. Chen, et al. Acta Mech. Sin., Vol. 40, 323630 (2024) 323630-8

demonstrating a trend qualitatively agree with the numerical
results. However, nearly zero bound values are obtained by
Eq. (7) for Qi,6-Qi,9, indicating the present analytical bound
recovers the uniform bound ⟨QT ⟩ ≥ 0 as the heat source be-
comes localized closer to the bottom wall and consequently
convection is more energized. In Fig. 8, the analytical bound
of ⟨wT ⟩ is shown to increase monotonically with Qi,1 → Qi,9

whereas the numerical results demonstrate a non-monotonic
behavior. It presents a significant overestimation of the upper
bound of ⟨wT ⟩ when the heat sources are distributed near the
bottom wall. In this sense, Eq. (19) yields acceptable upper
bound values for the NUIHC as they are all greater than the
real values obtained by numerical simulations.

5. Conclusions

The bounds of the temperature and the vertical heat flux in
the NUIHC are studied via analytical analysis and numeri-
cal simulations in the present work. Specifically, the tem-
perature bounds are analytically derived for the first time us-
ing the background method and obtained as inequalities of
the weighted average temperature ⟨QT ⟩ and the root-mean-
square temperature ⟨T 2⟩ 1

2 for the arbitrary heat source Q and
finite Pr. Of physical importance, a novel inequality con-
necting ⟨QT ⟩ and the average vertical heat flux ⟨wT ⟩ is es-
tablished, which works as an intrinsic relation to convert the
lower bound of ⟨QT ⟩ into the upper bound of ⟨wT ⟩. The
above analytical bounds are verified to degrade to the UIHC
situations, yielding an analytically stricter bound of ⟨wT ⟩,
namely ⟨wT ⟩ ≤ ( 1

4 −8.842R−
1
3 )

1
2 for finite Pr, by using of the

upper bound given by Lu et al. [31]. A series of numerical
simulations are conducted with two representative families
of Q to comprehensively validate the analytical bounds. By
comparing with numerical results, it is found the analytical
bounds derived in the present work yield more reasonable
predictions as the heat source is localized closer to the top
wall leading to weak convection.

It should be pointed out that there are still some limitations
in our work. First, the derivation of the bound of ⟨QT ⟩ is
based on the spatially-temporally averaged governing equa-
tions, which relaxes the constraints of the original partial dif-
ferential equations (N-S equations) and therefore expands the
function space of the physical solutions. As a result, the real
bound is expected to be contained by the analytical bound
we obtained. Second, we chose a piecewise linear function
as the background temperature profile for simplifications and
assigned special values to the undetermined parameters a, b,
∆1 and ∆2, rather than optimizing the background tempera-
ture profile to achieve the most stringent bounds. Third, the
use of Eq. (14) further amplifies the upper bound of ⟨wT ⟩. It

is expected that the analytical bounds for the NUIHC can be
further improved by addressing these issues in future work.

Appendix A. Derivation of the bound of ⟨QT⟩

The following is the analytical derivation of inequality Eq.
(7) using the background method. First, taking the temporal-
horizontal average of Eq. (1a) yields

dw
dz
= 0. (A1)

With the no-penetration boundary conditions on the walls,
one obtains w = 0.

Then, the temperature field T (x, y, z, t) is decomposed into
a time-independent background profile τ(z) and a fluctuating
part θ(x, y, z, t):

T (x, y, z, t) = τ(z) + θ(x, y, z, t). (A2)

The boundary conditions of τ(z) and θ(x, y, z, t) at the walls
are given as

τ(0) = τ(1) = θ(x, y, 0, t) = θ(x, y, 1, t) = 0. (A3)

With the above decomposition, Eq. (1b) and (1c) become

Pr−1(∂tu + u · ∇u + ∇p) = ∇2u + Rτez + Rθez, (A4a)

∂tθ + u · ∇θ = ∇2θ + Q + τ′′ − wτ′. (A4b)

As Pr is considered to be finite, taking the average of u·
(A4a) yields

⟨|∇u|2⟩ = R⟨wθ⟩. (A5)

Similarly, the averaging of θ× (A4b) and τ× (A4b) yields

⟨wθτ′⟩ = −⟨|∇θ|2⟩ − ⟨τ′∂zθ⟩ + ⟨Qθ⟩, (A6a)

− ⟨wθτ′⟩ = −⟨τ′∂zθ⟩ + ⟨Qτ⟩ − ⟨τ′2⟩. (A6b)

As ⟨T ⟩ = ⟨τ⟩ + ⟨θ⟩, the difference between (A6a) and (A6b)
is obtained as

⟨QT ⟩ = ⟨|∇θ|2⟩ + 2⟨wθτ′⟩ + 2⟨Qτ⟩ − ⟨τ′2⟩. (A7)

We define

H = ⟨|∇θ|2⟩ + 2⟨τ′wθ⟩

= ⟨|∇θ|2⟩ + ⟨(2τ′ − a)wθ⟩ + a
R
⟨|∇u|2⟩, (A8)

where a is an adjusting positive parameter. If H ≥ 0, one
obtains the lower bound of ⟨QT ⟩ as

⟨QT ⟩ = 2⟨Qτ⟩ − ⟨τ′2⟩ + H ≥ 2⟨Qτ⟩ − ⟨τ′2⟩. (A9)
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So we now turn to prove the existence of proper τ and a that
ensures H ≥ 0. Here we choose a piecewise linear back-
ground profile, as done by Lu et al. [31].

τ =



(
a
2
+

b
∆0

)
z, 0 ≤ z < ∆0,

a
2

z + b, ∆0 ≤ z < 1 − ∆1,

−
[
a
2

(
1
∆1
− 1

)
+

b
∆1

]
(z − 1), 1 − ∆1 ≤ z ≤ 1,

(A10)

where ∆0 and ∆1 are the thicknesses of the boundary layer
close to z = 0 and z = 1, respectively, and a and b are non-
negative parameters to be determined.

Then using the following inequality [36, 44]:∣∣∣∣∣∣
∫ ∆0

0
wTdz

∣∣∣∣∣∣ ≤ ∆2
0

4

[
c
4
⟨|∇u|2⟩ + 1

c
⟨|∇θ|2⟩

]
, (A11)

where c > 0, the nonlinear term ⟨(2τ′−a)wθ⟩ in Eq. (A8) can
be estimated by

|⟨(2τ′ − a)wθ⟩| ≤ b∆0

2

[
c1

4
⟨|∇u|2⟩ + 1

c1
⟨|∇θ|2⟩

]
+

(a + 2b)∆1

4

[
c2

4
⟨|∇u|2⟩ + 1

c2
⟨|∇θ|2⟩

]
,

(A12)

where c1 and c2 are free parameters required to be positive.
So the bound of H can be estimated as

H ≥
[
1 − b∆0

2c1
− (a + 2b)∆1

4c2

]
⟨|∇θ|2⟩

+

[
a
R
− b∆0c1

8
− (a + 2b)∆1c2

16

]
⟨|∇u|2⟩.

(A13)

A sufficient condition for H to be semidefinite is to let the
two coefficients on the right-hand side of Eq. (A13) be non-
negative, namely,

1 − b∆0

2c1
− (a + 2b)∆1

4c2
≥ 0,

a
R
− b∆0c1

8
− (a + 2b)∆1c2

16
≥ 0.

(A14)

Without loss of generality, we can set c1 = c2 = c > 0, and
specify a and b as

a = ∆1 − ∆0,

b =
∆0

2
(1 − ∆1).

(A15)

In that, Eq. (A14) is reduced to
4c ≥ ∆2

0(1 − ∆1) + ∆2
1(1 − ∆0),

64(∆1 − ∆0)
R

≥ [∆2
0(1 − ∆1) + ∆2

1(1 − ∆0)]c.
(A16)

Only one feasible solution is needed for our problem. For
simplicity, we can replace the inequality sign with an equality
sign, and then it is easy to obtain

64(∆1 − ∆0)
R

= [∆2
0(1 − ∆1) + ∆2

1(1 − ∆0)]2. (A17)

One can easily find that ∆0 = 0 and ∆3
1 =

64
R correspond

to a feasible solution to satisfy H ≥ 0. It indicates that
there indeed exist proper τ and a that ensure H ≥ 0. Us-
ing this special background temperature and defining h(z) =∫ z

0 Q(z′)dz′ and g(z) =
∫ z

0 h(z′)dz′, the bound of ⟨QT ⟩ can be
obtained as

⟨QT ⟩ ≥ 2⟨Qτ⟩ − ⟨τ′2⟩

= 2
∫ 1

0
Qτdz −

∫ 1

0
τ′2dz

= 2(hτ)|10 − 2
∫ 1

0
hτ′dz −

∫ 1

0
τ′2dz

= −2
∫ ∆−0

0
hτ′dz +

∫ (1−∆1)−

∆+0

hτ′dz

+

∫ 1

(1−∆1)+
hτ′dz

]
−

∫ 1

0
τ′2dz

= −2
[(

gτ′
) |∆−00 + (gτ′)|(1−∆1)−

∆+0
+ (gτ′)|1(1−∆1)+

]
−

∫ ∆0

0
τ′2dz −

∫ 1−∆1

∆0

τ′2dz −
∫ 1

1−∆1

τ′2dz

= −g(∆0)
2b
∆0
− g(1 − ∆1)

a + 2b
∆1

+ 2g(1)
[
a
2

(
1
∆1
− 1

)
+

b
∆1

]
− ∆1

4
(1 − ∆1)

= g(1)(1 − ∆1) − g(1 − ∆1) − ∆1

4
(1 − ∆1)

= g(1)(1 − 4R−
1
3 ) − g(1 − 4R−

1
3 )

− R−
1
3 (1 − 4R−

1
3 ).

(A18)

By choosing appropriate values of ∆0 and ∆1, the right-
hand side of Eq. (A18), namely, 2⟨Qτ⟩ − ⟨τ′2⟩, will reach its
maximum value under the constrain of H ≥ 0. For the UIHC,
optimization has been conducted by Lu et al. [31] to deter-
mine the appropriate values of ∆0 and ∆1, while it is quite
challenging in the present NUIHC and would be one of the
motivations for our future work. At this point, selecting the
special values as ∆0 = 0 and ∆3

1 =
64
R is more practical, which

leads Eq. (A18) to be reduced as

⟨QT ⟩ ≥ g(1)(1−4R−
1
3 )−g(1−4R−

1
3 )−R−

1
3 (1−4R−

1
3 ). (A19)

Hence, Eq. (7) is obtained.



L. Chen, et al. Acta Mech. Sin., Vol. 40, 323630 (2024) 323630-10

Appendix B. Code validation

We first perform code validation via a series of 2D numerical
simulations for the UIHC by changing the Rayleigh number
as listed in Table B1 and fixing Pr = 1, for which the hori-
zontal and vertical domain sizes are set as Lx × Lz = 4d × d
corresponding a grid size of 360 × 160. The qb values ob-
tained by the present simulations compare fairly well with
those reported by Goluskin and van der Poel [13]. Further-
more, 3D numerical simulation is also performed for a typi-
cal case of R = 107, for which the computational domain is
set as Lx × Ly × Lz = 2d × 2d × d corresponding to a grid
size of 128 × 128 × 128. The grids are clustered in the wall-
normal (y) direction near the top and bottom walls and kept
uniform in x- and z-directions. The grid spacing grows lin-
early with a difference of 2.8× 10−4 (2D cases) or 3.7× 10−3

(3D cases), which is also the resolution of the first grid im-
mediately close to the wall. 14 (3D cases) or 19 (2D cases)
grids are placed within the thermal boundary layer, whose
dimensionless thickness is estimated by ⟨T ⟩/[1/2 + ⟨wT ⟩]
[13]. The average Kolmogorov length scale can be esti-
mated by η = Pr1/2/[R⟨wT ⟩]1/4 [13]. The ratio of the av-
erage Kolmogorov length scale to the maximum gird length
(max{δx, δy, δz}) is 1.78 (for 3D cases) or 2.64 (for 2D cases).
The ratio of the average Kolmogorov time scale, calculated
by τη = η2/ν, to the simulation time step is 78.6 (for 3D
cases) or 98.2 (for 2D cases). So the current grid size and
time step can adequately resolve the Kolmogorov scale in
fully developed turbulent convection considered. In Fig. B1,
the good agreement of the averaged temperature with that of

Table B1 Comparison of qb with Goluskin and van der Poel [13]

R David Goluskin Present Error (%)

106 0.403 0.412 2.25

107 0.360 0.363 0.83

108 0.335 0.336 0.30

Figure B1 Profile of the averaged temperature obtained by OpenFOAM,
compared with Goluskin and van der Poel [13] for R = 107.

Goluskin and van der Poel [13] further confirms that the
present simulations based on OpenFOAM are reliable for
producing the essential flow features of the NUIHC.
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摘要 通过理论分析和数值模拟研究了两个水平等温壁面之间受非均匀内部热源驱动的对流,以探索温度和数值热通量的界. 具体
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量,我们得到了一个解析关系用于构建⟨QT ⟩和平均竖直热通量⟨wT ⟩的不等关系.它揭示了⟨QT ⟩的下界和⟨wT ⟩的上界之间的内在关联,

即这两个界本质上是等价的,它提供了一种简单的方法将一个界转化为另一个.此外，我们通过一系列全面的数值模拟，对解析界进

行了广泛的测试验证.
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