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The symplectic approach was utilized to derive solutions to the orthotropic micropolar plane stress problem. The Hamiltonian
canonical equation was first obtained by applying Legendre’s transformation and the Hamiltonian mixed energy variational
principle. Then, by using the method of separation of variables, the eigenproblem of the corresponding homogeneous Ha-
miltonian canonical equation was derived. Subsequently, the corresponding eigensolutions for three kinds of homogeneous
boundary conditions were derived. According to the adjoint symplectic orthogonality of the eigensolutions and expansion
theorems, the solutions to this plane stress problem were expressed as a series expansion of these eigensolutions. The
numerical results for the orthotropic micropolar plane stress problem under various boundary conditions were presented and
validated using the finite element method, which confirmed the convergence and accuracy of the proposed approach. We also
investigated the relationship between the size-dependent behaviour and material parameters using the proposed approach.
Furthermore, this approach was applied to analyze lattice structures under an equivalent micropolar continuum approximation.
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1. Introduction

With the development of the microelectronics technology,
the use of microstructures has become increasingly pre-
valent [1-3], and many microstructures such as joints,
cracks, and voids can be found in composite structures [4].
Some studies [5-7] have shown that the mechanical prop-
erties of structures undergo significant changes when the
characteristic size approaches the micron level, resulting in a
size-dependent behaviour.
According to the classical elasticity theory, the con-

stitutive relations of structures do not incorporate the char-
acteristic length, and microelement surfaces only transmit
forces without transmitting couples. Therefore, materials
containing microstructures do not exhibit size effects within
the framework of the classical elasticity theory [8]. To

predict the size-dependent behaviour of a material, Eringen
[9,10] proposed the micropolar theory, which assumes that
the microstructure can rotate independently of the sur-
rounding medium. Owing to the incorporation of micro-
structures in the modelling process, the theory can correctly
describe the size effect. Consequently, the micropolar theory
has garnered significant attention and found extensive ap-
plications in the mechanical analysis of actual micro-
structures. Sargsyan and Sargsyan [11] utilized the
micropolar theory to establish a dynamic mathematical
model for geometrically nonlinear micropolar elastic thin
plates and solved the free vibration problems of rectangular
plates, circular plates, and shallow shells based on this
model. Zhu et al. [12] developed a smoothed particle hy-
drodynamics code based on the micropolar theory, which
proved effective in addressing problems involving large
deformations and localized shear strain. Alemi and Shodja
[5] introduced the concept of an eigencurvature field into the

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2024

*Corresponding author. E-mail address: qgao@dlut.edu.cn (Qiang Gao)
Executive Editor: Shujuan Hou

http://ams.cstam.org.cn
https://doi.org/10.1007/s10409-024-23548-x
https://doi.org/10.1007/s10409-024-23548-x
https://doi.org/10.1007/s10409-024-23548-x
https://doi.org/10.1007/s10409-024-23548-x
http://www.springer.com/locate/gpb
http://crossmark.crossref.org/dialog/?doi=10.1007/s10409-024-23548-x&domain=pdf&date_stamp=2024-05-23


micropolar theory and discussed the influence of the char-
acteristic size on micro- and nanoscale structures. Grbčić et
al. [13] developed quadrilateral finite elements using linked
interpolation within the framework of micropolar continuum
theory. Berkache et al. [14] studied the effective elastic
properties and mode I elastic fracture based on the micro-
polar continuum and found that micropolar effects are evi-
dent in the bending structure.
Despite the development of the micropolar theory, only a

few papers have published analytical solutions for micro-
polar elastic materials. Grigor’ev and Gavrilieva [15] de-
rived analytical solutions for a plane static problem within
the framework of the micropolar theory when the normal
stresses, tangential components of displacements, and cou-
ple stresses are specified on a boundary. Levin et al. [16]
obtained exact analytical solutions for the problem of biaxial
loading by considering micropolar and nonlinear effects.
Matrosov [17] obtained an exact analytical solution for a
freely supported micropolar rectangle based on the method of
initial functions for a micropolar medium under plane strain
conditions. Carrera and Zozulya [18] developed an analytical
form Navier solution for micropolar cylindrical shell based
on the Carrera unified formulation approach. Dehbani et al.
[19] presented an analytical solution for functionally graded
materials hollow cylinder which is micropolar magneto-
thermoelasticity by using the complex Fourier series and the
power-law functions. Rizzi et al. [20] derived the analytical
solutions for the uniaxial extension problem within the fra-
mework of the micromorphic continuum.
The general methods used to predict the structural re-

sponse of micropolar materials include numerical models
and solution methods, particularly the finite element method
(FEM) [17,21]. Sachio et al. [22] developed a displacement-
based finite element analysis method using the total poten-
tial energy for anisotropic micropolar linear elastic materials
and demonstrated the dependence of the stress concentration
factor on the micropolar material parameters based on this
method. Melaibari et al. [23] obtained the three-dimensional
(3D) homogeneous elastic properties of orthotropic materi-
als and analyzed the mechanical properties of orthotropic
laminated structures through experiments and FEM. Huang
et al. [24] proposed a new homogenization method for
homogeneous and conformal metamaterials with orthogonal
lattices based on FEM within the framework of the ortho-
gonal micropolar continuum. Yang and Liu [25] constructed
a finite element model for coupled stress microplates to
analyze the free vibration properties of composite laminated
microplates composed of orthotropic plies. Moreover, other
approaches, such as the expansion theorem [26,27],
asymptotic homogenization approach [28], and polynomial
approximation [29,30], have also been used to analyze mi-
crostructures based on the micropolar elasticity theory.
Inspired by the analogy relationship between computa-

tional structural mechanics and modern control theory
[31,32], Zhong [33,34] applied the symplectic approach to
elasticity. Based on the symplectic approach, Yao and Yang
[35] presented Saint-Venant solutions for multi-layered
problems. Xu et al. [36] obtained the analytical solution of
the vibration behavior of single-layer graphene sheets based
on a nonlocal continuum orthotropic plate model within the
Hamiltonian system. Qiu and Xia [37] solved the structural
dynamic response with damping based on the non-con-
servative linear Hamiltonian system. Xu et al. [38] presented
a symplectic method for analyzing fracture in two-dimen-
sional viscoelastic media. Su et al. [39,40] used symplectic
superposition and symplectic methods to derive analytical
solutions for the free vibration problem of orthotropic rec-
tangular thin plates on a two-parameter elastic foundation.
Xu et al. [41] conducted a buckling analysis of a partially or
internally cracked natural fiber-reinforced composite plate
using the symplectic elasticity method. Further research on
symplectic elasticity can be found in Ref. [42]. Recently, the
symplectic approach was applied to solve problems related
to size effects. Luo et al. [43] proposed a new state vector
formulation for a 3D couple stress problem based on the
symplectic approach. Shaw [44] analyzed the dynamics of
rectangular micropolar beams in the high-frequency domain
using the symplectic approach. Xu et al. [45] used the
symplectic approach to investigate the influence of the size
and in-plane magnetic field on the free vibration of a dou-
ble-layered nanoplate system.
In this study, the analytical solutions for the orthotropic

micropolar plane stress problem were obtained, which is
difficult to derive using the classical approach by a semi-
inverse method due to the complexity of the material para-
meters and boundary conditions. First, the Hamiltonian ca-
nonical equation was derived using Legendre’s
transformation and the Hamiltonian mixed energy variational
principle. Subsequently, using the method of separation of
variables, the homogeneous Hamiltonian canonical equation
was transformed into an eigenproblem of the Hamiltonian
operator matrix. The corresponding eigensolutions for three
types of homogeneous boundary conditions at both side
edges were then determined. Finally, based on the adjoint
symplectic orthogonal relation of the eigensolutions, the
general solution to the original problem was expressed as a
series expansion of the eigensolutions. Additionally, the re-
lationship between the size-dependent behaviour and mate-
rial parameters for the orthotropic microplate plane stress
problem was investigated, and the proposed method was
applied to analyze lattice structures under an equivalent
micropolar continuum approximation.
The remainder of this paper is organized as follows. In

Sect. 2, the fundamental equations of the orthotropic mi-
cropolar plane stress problem are briefly reviewed. Then,
the derivation of the Hamiltonian canonical equation based
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on Legendre’s transformation and the Hamiltonian mixed
energy variational principle is detailed in Sect. 3. In Sect. 4,
the derivation of the corresponding eigensolutions for the
three types of homogeneous boundary conditions at both
side edges are described. Section 5 obtained the solutions of
the orthotropic micropolar plane stress problem according to
the symplectic eigen expansion. In Sect. 6, the numerical
results are presented to demonstrate the validity and accu-
racy of the proposed approach.

2. Fundamental equations of an orthotropic
micropolar plane stress problem

An orthotropic rectangular microplate with length L, width
h2 , and thickness is shown in Fig. 1, where the x-axis is the
longitudinal coordinate in a Cartesian coordinate system.
According to the linear theory of micropolar elasticity, the
geometric equations of the microplate are as follows [46]:

u
x

v
y

v
x

u
y x y

= , = , = ,

= + , = , = ,
(1)

xx yy xy

yx xz yz

where xx, yy, xy, and yx are the strains; xz and yz are the
curvatures; u and v are the in-plane displacements; and is
the out-of-plane microrotation. For orthotropic micropolar
continuous materials, the constitutive equations for the plane
stress condition are [22]
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where xx, yy, xy, and yx are the stresses; m xz and m yz are
the couple stresses; N is the coupling factor; lx and ly are the
characteristic lengths; G is the shear modulus; E1 and E2 are
the Young’s moduli along the x and y directions, respec-
tively; 12 is the Poisson’s ratio describing the constriction in
the y direction due to stretching in the x direction; 21 has an
analogous meaning except that y and x are interchanged; and
the Young’s modulus and Poisson’s ratio obey the following
property: E E=1 21 2 12. The equilibrium equations for this
problem are as follows:

x y f y x f

m
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m
y m

+ + = 0, + + = 0,

+ + + = 0,
(3)

xx yx
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yy xy
y
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where fx and f y are the body forces and m z is the body
couple. The boundary conditions can be expressed as follows:

n n u u
n n v v

m n m n m

+ =     or    = ,

+ =       or    = ,

+ =     or    = ,

(4)
xx x yy y

xy x yx y

xz x yz y

where nx and ny denote the direction cosine of the unit
normal vector with respect to the x- and y-axes on the
boundary, respectively; , , and m are the specified forces
and couple force, respectively; and u, v , and are the ap-
plied displacements and microrotation, respectively.

3. Hamiltonian canonical equations for an or-
thotropic micropolar plane stress problem

To solve the orthotropic micropolar plane stress problem in
a Hamiltonian system, the Lagrange density function is first
defined as [47]
L U uf vf m= , (5)x y z

where the strain energy U is

( )U m m= 1
2 + + + + + . (6)xx xx yy yy xy xy yx yx xz xz yz yz

Substituting Eqs. (1) and (2) into Eq. (5) yields
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2 , (7)T
22
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in which the dot represents differentiation with respect to x,
and
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Figure 1 Schematic illustration of the micropolar plate and coordinate system.
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where K22 is a diagonal matrix; K21 is an operator matrix;
and K11 is a symmetric operator matrix.
Applying Legendre’s transformation [35] to Eq. (7) yields

the dual vector p of the displacement vector q, that is
Lp q q

q K q K q= ( , ) = + . (10)22 21

It can be proved that

mp = . (11)xx xy xz
T

Eq. (10) can be rewritten as

q K K q K p= + . (12)22
1

21 22
1

Subsequently, the Hamiltonian density function is in-
troduced as

H Lq p p q q q( , ) = ( , ). (13)T

Substituting Eqs. (7) and (12) into Eq. (13) yields

H q p p Aq q Bq p Dp f q( , ) = 1
2 + 1

2 + , (14)T T T T

in which

A K K B K K K K D K= ,    = ,    = . (15)22
1

21 11 21
T

22
1

21 22
1

Here, the transpose of an operator matrix is an adjoint
operator matrix rather than a simple transposition. Because
K11 is a symmetric operator matrix; K21 is an operator ma-
trix; K22 is a diagonal matrix; A is an operator matrix; B is a
symmetric operator matrix; and D is a diagonal matrix.
Through the above derivation, the displacements u, v, and
as well as stresses xx, xy, and m xz are defined as mutual dual
vectors q and p in the symplectic space, respectively. To
facilitate the following derivation, the stresses yy, yx, and
m yz are expressed by the mutual dual vectors q and p, that is

b L q L p= + , (16)1 2

in which

mb = , (17)yx yy yz
T
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Next, the Hamiltonian mixed energy variational principle
is applied to derive the Hamiltonian dual equation and
corresponding boundary conditions. For the micropolar
planar plate, different boundary conditions exist at each
edge, and the derivations under different boundary condi-
tions are similar. Thus, the boundary condition in which the
specified stresses are applied on edges y h= ± and x = 0 and
the specified displacements are applied on edge x L= , is
taken as an example to show the derivation.
Using the Hamiltonian density function defined in Eq.

(14), the Hamiltonian mixed energy variational principle can
be expressed as

{
}

( ) ( )p H y x x

y y

q q p b q b q

p q q p q

[ ( , )]d d d

[ ( )] d ( ) d = 0,
(19)
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T
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T
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T
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in which p are the prescribed stresses at edge x = 0, q are the
specified displacements at edge x L= , b1 are the prescribed
stresses at edge y h= , and b2 are the prescribed stresses at
edge y h= . Implementing the variation in Eq. (19) yields
the following dual equation:
v Hv h= + , (20)
in which the full state vector v is

v q p= [ ] , (21)T

and

H A D
B A

h 0 f= ,    = [ ] . (22)T
T

After applying the variation in Eq. (19), the boundary
conditions at edges y h= ± can be obtained as

y h y hL q L p b L q L p b+ = , = , + = , = ,     (23)1 2 1 1 2 2

and the boundary conditions at both ends x L= 0,  can be
expressed as

x x Lp p q q= ,      = 0 ,    =  ,    = . (24)

According to Yao and Yang [35], if the boundary condi-
tions at edges y h= ± are homogeneous and the state vector v
satisfies these homogeneous boundary conditions, H is a
Hamiltonian operator matrix. Hence, three types of homo-
geneous boundary conditions at edges y h= ± are considered
in this study: free boundary, clamped boundary, and boundary
conditions in which one edge is free and the other is clamped.
These boundary conditions are expressed as follows:
(a) free boundary conditions

y hL q L p 0+ = ,      = ± ; (25)1 2

(b) clamped boundary conditions

y hq 0= ,     = ± ; (26)
(c) boundary conditions where the edge at y h= is free
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and that at y h= is clamped

y h y hL q L p 0 q 0+ = ,      = ,      = ,      = . (27)1 2

4. Eigensolutions for homogeneous Hamilto-
nian canonical equation

4.1 Method of separation of variables

To solve the Hamiltonian dual equation in Eq. (20), the
corresponding homogeneous linear differential equation

Hv v= (28)
should be solved in advance. Applying the method of se-
paration of variables to the full state vector v yields

x y r x yv( , ) = ( ) ( ), (29)
where

y u v m( ) = . (30)xx xy xz* * * * * * T

Substituting Eq. (29) into Eq. (28) results in

r x µx( ) = exp( ), (31)
and the eigenvalue equation is

y µ yH ( ) = ( ), (32)
where µ is the eigenvalue and y( ) is the eigenvector. Be-
cause the zero eigenvalue is a special eigenvalue in the
Hamiltonian eigenproblem, and the eigensolutions of this
eigenvalue contain a specific physical meaning in elasticity
[34], the eigenvalues are categorized into two groups,
namely zero eigenvalues and nonzero eigenvalues, which
are presented in Sect. 4.

4.2 Eigensolutions for the free boundary conditions at
y h= ±

4.2.1 Zero eigenvalue solutions
In the Hamiltonian eigenvalue problem, when the boundary
conditions at edges y h= ± are free, repeated zero eigenva-

lues and the corresponding various orders of Jordan form
eigenvectors exist [33]. Substituting µ = 0 into Eq. (32)
yields

yH ( ) = 0. (33)
By solving Eq. (33) using Eq. (25), the fundamental ei-

genvectors are determined as follows:

= [1 0 0 0 0 0] , (34)01
(0) T

= [0 1 0 0 0 0] , (35)02
(0) T

where the superscript 0 denotes the 0-th order Jordan form
(basic) eigenvector, and the subscript 0 represents the ei-
genvectors of zero eigenvalue. There are two chains denoted
by subscripts 1 and 2.
The governing equation of the i-th Jordan form eigen-

vector of zero eigenvalue can be written as

i n jH =     ( = 1, 2, , ;   = 1, 2). (36)j
i

j
i

0
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0
( 1)

Solving H =01
(1)

01
(0) and H =02

(1)
02
(0) using the free

boundary conditions in Eq. (25) yields the first-order Jordan
form eigenvectors of chains 1 and 2 as

v y E= 0 0 0 0 , (37)01
(1)

12 1
T

y= 0 1 0 0 0 . (38)02
(1) T

However, there is no solution satisfying H =01
(2)

01
(1) and

the boundary conditions, indicating that the Jordan form
eigenvector of chain 1 is terminated. Solving H =02

(2)
02
(1)

using Eq. (25) provides the second-order Jordan form ei-
genvector of chain 2

y c E y Gl= 0 1
2 + 0 0 4 , (39)x02

(2)
12

2
1

2
T

where the unknown constant c can be obtained using the
symplectic orthogonal relation of eigenvectors. Similarly,
solving H =02

(3)
02
(2) using Eq. (25) yields the third-order

Jordan form eigenvector of chain 2 as
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sinh /

sinh /
( )

6
2

2 2 + 2 +

0
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(4 2 )
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0

. (40)
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There is no solution when solving H =02
(4)

02
(3) using Eq.

(25); thus, the Jordan form eigenvector of chain 2 is terminated.
Finally, the unknown constant c in Eqs. (39) and (40) can

be obtained using the symplectic orthogonal relation of 02
(2)

and 02
(3) as follows:

( ) yJ, = d = 0. (41)
h

h
02
(2)

02
(3)

02
(2) T

02
(3)

Substituting Eqs. (39) and (40) into Eq. (41) results in
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4.2.2 Nonzero eigenvalue solutions
The zero eigenvalue solutions are obviously incomplete in
the entire solution space, and nonzero eigenvalue solutions
exist, which are presented in the following derivation.
Eq. (32) can be rewritten as

µ yH I 0( ) ( ) = . (43)

This is a system of ordinary differential equations with
respect to y, which can be solved by precomputing the ei-
genvalue . The corresponding equation is

( )
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From Eq. (44), the characteristic equation is
= 0, (45)1

6
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4
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Solving Eq. (45) yields the characteristic roots as

= ± i,  = ± i,   = ± i, (47)1,2 1 3,4 2 5,6 3

where the multiplicator i= 1 is an imaginary unit that
enables the expression of a general solution in the form of a
trigonometric function.
Similar to the classical elasticity [33], the general solution

can be categorized into two groups: solutions of symmetric
and antisymmetric deformations with respect to the x-axis.
For the convenience of distinguishing these solutions, the
components of the vector y( ) in Eq. (30) are rearranged,
and the general solution is expressed as

y M N
S W g( ) = , (48)

where

( ) ( ) ( ) ( ) ( ) ( )

y u v m

y y y y y yg

( ) = ,

= sin sin sin cos cos cos .
(49)

xx xy xz* * * * * * T

1 2 3 1 2 3
T
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Here, M and N are 2 × 3 matrices, whereas S and W are 4
× 3 matrices. The constants in matrices M, N, S, and W are
not all independent. To facilitate the expression of these
relationships, we choose M j2 and N j2 j( = 1, 2, 3) as in-
dependent constants. Substituting Eq. (48) into Eq. (43)
leads to the following relationship between these constants:

M
W U M N

S U N= ,    = , (50)1
2

2
2
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M

M
M

N
N

N
M N=
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21

22

23

2
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U1 and U2 are 6 × 3 matrices, whose components in the
first column are expressed as
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2 2
12 21 2

12 2

61
1 2

1

1 1
2

2

U U U U U

U U U U U U

= ,  = 1,  = , 

= ,  = ,  = ,
(53)11

2
11
1

21
2

31
2

31
1

41
2

41
1

51
2

51
1

61
2

61
1

in which

( )µ N G G E N

E E N E Gµ E G

G E Gµ

= 4 ( 1) 2 (2 1)

+ ( 1) + + ,

= (2 ) + 2 .

(54)
1 1

2 2
12 21

2
12 2

2

2 1
2

1
4

2 1
4

2 21 2 1
2 2

The expressions of the components in the other two col-
umns of matrices U1 and U2 are analogous to those in the
first column, except that 1 is replaced with 2 and 3,
respectively.
Because the free boundary conditions at y h= ± are

symmetric with respect to the x-axis, according to Eq. (48),
the general solution for the symmetric deformation is

y 0 N
S 0 g( ) = , (55)s

and that for the antisymmetric deformation is

y M 0
0 W g( ) = . (56)a

For the symmetric deformation, substituting Eqs. (55) and
(50) into Eq. (25) yields

V C 0= , (57)f
s

in which

N N NC = . (58)s 21 22 23
T

Here, the components of the coefficient matrix Vf are
expressed as

( )V
µ G E G

h

V h µ V
l h

E N µ

=
(2 ) + 2

cos ,

= sin( ) ,   =
2 cos( )

.
(59)

y

11
f

2
12 21 2 21 1

2

12 2 1

21
f 1

1
31
f

2
1 1

1
2

2

The expressions for Vm2
f and Vm3

f m( = 1,  2,  3) are analo-

gous to those for Vm1
f , with the only difference being the

substitution of 1 with 2 and 3, respectively.
For the antisymmetric deformation, substituting Eqs. (56)

and (50) into Eq. (25) yields

R C 0= , (60)f
a

in which

M M MC = . (61)a 21 22 23
T

Here, the components of the coefficient matrix Rf are
expressed as

( )R
µ G E G

h

R h µ R
l h
E N µ

=
(2 ) + 2

sin ,

= cos( ) ,   =
2 sin( )

.
(62)

y

11
f

2
12 21 2 21 1

2

12 2 1

21
f 1

1
31
f

2
1 1

1
2

2

The expressions for Rm2
f and Rm3

f m( = 1,  2,  3) are ana-

logous to those for Rm1
f , except that 1 is replaced with 2

and 3, respectively.
To obtain the nontrivial solutions to Eqs. (57) and (60), the

determinants of coefficient matrices Vf and Rf in Eqs. (57)
and (60) must vanish:

V R= 0,    = 0. (63)f f

Because it is difficult to analytically obtain the roots of the
transcendental equations with respect to the eigenvalue in
Eq. (63), the argument principle and bisection method are
applied to obtain the roots [48]. The corresponding unknown
constants Cs and Ca can then be obtained by substituting the
eigenvalues µi into Eqs. (57) and (60). Subsequently, all
constants can be determined using Eq. (50). Finally, sub-
stituting these constants into Eq. (48) yields the corre-
sponding eigenvectors i.

4.3 Eigensolutions for the clamped boundary condi-
tions at y h= ±

Different from the eigensolutions for the free boundary
conditions, there is no zero eigenvalue for the clamped
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boundary conditions. For the nonzero eigenvalues, be-
cause the clamped boundary conditions are symmetric
with respect to the x-axis, the general solutions can be
categorized into symmetric and antisymmetric deforma-
tion solutions, which are given by Eqs. (55) and (56),
respectively.
For the symmetric deformation, substituting Eqs. (55) and

(50) into Eq. (26) leads to

V C 0= , (64)c
s

in which the components of the coefficient matrix Vc are
expressed as

( )

( ) ( )
( )

( )

( )

V
Gµ E µ

E µ h

V
G µ E µ

E h

V N µG E h

=
2 (1 ) +

cos ,

=
2 + +

sin ,

= 2 sin .

(65)

11
c

2
12 21 2

2
12 1

2

1 2 1

21
c 12

2
1
2

12 2 2
2

1 1 2
1

31
c 1

2
1 1 2

1

The expressions for Vm2
c and Vm3

c m( = 1,  2,  3) are similar
to those for Vm1

c , with the only difference being the sub-
stitution of 1 with 2 and 3, respectively.
For the antisymmetric deformation, substituting Eqs. (56)

and (50) into Eq. (26) yields

R C 0= , (66)c
a

where the components of the coefficient matrix Rc are ex-
pressed as

( )

( ) ( )
( )

( )

( )

R
Gµ E µ

E µ h

R
E µ G µ

E h

R N µG E h

=
2 (1 ) +

sin ,

=
+ 2 +

cos ,

= 2 cos ,

(67)

11
c

2
12 21 2

2
12 1

2

2 1 1

21
c 12 2 2

2
12

2
1
2

1 1 2
1

31
c 1

2
1 1 2

1

and the expressions for Rm2
c and Rm3

c m( = 1,  2,  3) are si-
milar to those for Rm1

c , except that 1 is replaced with 2 and

3, respectively.
Subsequently, the symmetric and antisymmetric eigenva-

lues for the clamped boundary conditions can be determined
by equating the determinants of coefficient matrices Vc and
Rc in Eqs. (64) and (66) with zero

V R= 0,    = 0. (68)c c

Applying the argument principle and bisection method to
solve the transcendental equations in Eq. (68) yields the
nonzero eigenvalues µi, which can be used to determine the
corresponding unknown constants Cs and Ca. Subsequently,
by substituting these constants into Eq. (50), all constants
can be obtained. Finally, the corresponding eigenvectors i
can be determined using Eq. (48).

4.4 Eigensolutions for the free boundary conditions at
y h= and clamped boundary conditions at y h=

Similar to the eigensolutions for the clamped boundary
conditions, there is no zero eigenvalue for the boundary
conditions in which the edge at y h= is free and the edge at
y h= is clamped. For the nonzero eigenvalues, because the
boundary conditions are not symmetric with respect to the x-
axis, the general solutions are expressed in Eq. (48). Sub-
stituting Eqs. (48) and (50) into Eq. (27) yields

V R
V R

C
C 0= , (69)

f f

m m
s

a

in which the matrices Vf and Rf are given by Eqs. (59) and
(62), respectively. The expressions of matrices V m and Rm

are similar to those of Vc and Rc in Eqs. (65) and (67),
except that h is replaced with h. The existence condition of
the solution to Eq. (69) is that the determinants of the
coefficient matrix vanish, which yields a transcendental
equation with respect to the eigenvalues. Applying the ar-
gument principle and bisection method to solve the trans-
cendental equation yields the eigenvalues µi. Then, by
substituting the nonzero eigenvalues into Eq. (69), the cor-
responding constants Cs and Ca are solved. Subsequently,
using Eq. (50), all constants can be obtained. Finally, the
corresponding eigenvectors i can be determined based on
Eq. (48).

5. Solutions for the orthotropic micropolar
plane stress problem

After the eigenvalues and eigenvectors are obtained, ac-
cording to Eqs. (29) and (31), the solution to Eq. (28) cor-
responding to the nonzero and zero eigenvalues can be
expressed respectively as

µ x uv = exp( )    ( 0), (70)i i i i

x

x

x x

x x x

v v

v v

v

v

= ,     = + ,

= ,     = + ,

= + + 2 ,

= + + 2 + 6 .

(71)

01
(0)

01
(0)

01
(1)

01
(1)

01
(0)

02
(0)

02
(0)

02
(1)

02
(1)

02
(0)

02
(2)

02
(2)

02
(1) 2

02
(0)

02
(3)

02
(3)

02
(2) 2

02
(1) 3

02
(0)

According to the property of symplectic orthogonality of
eigenvectors and expansion theorems [33], the general so-
lution to the orthotropic micropolar plane stress problem can
be expressed as follows:

c i nv v=   ( = 1,  2,  ,  ), (72)
i

n

i i
=1

where n denotes the number of eigenvalues considered, v i* is
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one of the solutions in Eqs. (70) and (71), and ci is an
unknown constant to be determined by the boundary con-
ditions at both ends x L( = 0,  ). Subsequently, according to
the Hamiltonian variation of Eq. (19) in Sect. 3, the varia-
tional equation corresponding to the body force and
boundary conditions at both ends can be obtained. Then,
substituting Eq. (72) into the variational equation yields a
system of linear algebraic equations that provide the un-
known constants ci. The detailed derivation is presented in
the following.
The Hamiltonian density function in Eq. (14) is rewritten

as

H Hq p q p q f( , ) = ( , ) + , (73)* T

where f is expressed by Eq. (8). Substituting Eq. (73) into
Eq. (19) and implementing the variation, the variational
equation corresponding to the body force f and boundary
conditions at both ends can be expressed as

( ) ( )y y

y x

p q q q p p

q f

( )d + ( )d

+ ( ) d d = 0. (74)

h

h
L L h

h

L

h

h

T
0
T

0

0
T

The general solution in Eq. (72) can be rewritten as

cv
q
p

q
p

= = . (75)
i

n

i

i

i
=1

Substituting Eq. (75) into Eq. (74) yields

}
( ) ( )

( ) ( )

c c y

y y x

p q q p

p q q p q f

+ d

+ d + ( ) d d = 0.

(76)i

n

i
j

n

j h

h
L
i

L
j i j

h

h
L
i i L

h

h i

=1 =1

T
0

T
0

T
0

T

0

T

Because ci i n( = 1,  2,  ,  ) is arbitrary, a set of algebraic
equations for solving the unknown constants can be estab-
lished as

a a a
a a a

a a a

c
c

c

d
d

d

= , (77)

n

n

n n nn n n

11 12 1

21 22 2

1 2

1

2

1

2

where

( ) ( )

( ) ( )

a y

i j n

d y y x

i n

p q q p

p q q p q f

= + d ,

( , = 1,  2,  ,  ),

= + d ( ) d d ,

( = 1,  2,  ,  ).

(78)

ij h

h
L
i

L
j i j

i h

h
L
i i L

h

h i

T
0

T
0

T
0

T

0

T

The unknown constants ci can be determined by solving
Eq. (77); then, the solution to the original problem is ob-
tained.

6. Numerical examples

In this section, three examples are presented to illustrate the
accuracy and validity of the proposed method. In Sect. 6.1,
the results of the proposed approach are compared with
those obtained from FEM to validate its convergence and
accuracy. In Sect. 6.2, the relationships between the size-
dependent behaviour and material parameters of the ortho-
tropic micropolar plane stress problem are investigated
using the proposed approach. In Sect. 6.3, the mechanical
behaviour of the lattice structures is analyzed using the
proposed method, and the results are compared with those of
FEM.

6.1 Convergence and accuracy analysis

In this subsection, an orthotropic micropolar plane stress
problem with three types of homogeneous boundary con-
ditions at the edges y h= ± is first presented as follows: (1)
the two edges at y h= ± are free, the edge at x = 0 is
clamped, and a shear traction F is applied along edge x L= ,
as shown in Fig. 2(a); (2) the edges at y h= ± are fixed, the
edge at x = 0 is free, and a uniformly distributed pressure F
is applied along the edge at x L= , as depicted in Fig. 2(b);
and (3) the edge at y h= is fixed, the edges at y h= and
x = 0 are free, and a uniformly distributed pressure F is
applied along the edge at x L= , as displayed in Fig. 2(c).
The length and width of the microplate are 3 mm and 2 mm,
respectively. In addition, the values of the material para-
meters and the load F are listed in Table 1.
According to the properties of the Hamiltonian eigenvalue

problem, six different complex domains are used to calcu-
late the eigenvalues of the proposed approach for three types
of homogeneous boundary conditions: µRe( ) (0, 40],
(0, 80], (0, 140], (0, 190], (0, 230], (0, 250], and

µIm( ) (0, 20]. The results at point (1.5, 0.5) obtained
from the proposed approach corresponding to the six dif-
ferent complex domains of the eigenvalues are compared
with the convergent results computed using FEM with 1500
× 1500 elements, as listed in Tables 2-4. Evidently, an in-
creasing number of eigenvalues leads to gradually conver-
ging results, and the convergent results align with those
obtained by FEM for the first three or four significant digits.
These results indicate the accuracy of the proposed approach
in solving the micropolar plane stress problem with three
types of homogeneous boundary conditions.
The results obtained from the micropolar elasticity theory

should be reduced to those from the classical elasticity
theory when the parameters N , lx, and ly are small [49].
Therefore, to further verify the accuracy of the proposed
approach, its results using the parameters N = 0.003,
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l = 0.0025 mmx and l = 0.005 mmy are compared with those
of ANSYS based on the classical elastic theory for the three
types of homogeneous boundary conditions. Because the
classical elasticity theory cannot consider microrotation, the
displacements u, v and stresses xx, xy at point (1.5, 0.5) are

presented in Table 5. It can be seen that when the values of
parameters N , lx, and ly are all small, the results obtained
from the proposed approach are consistent with those of the
classical elasticity theory for the first three to four significant
digits, indicating the accuracy of the proposed approach.

Figure 2 Micropolar plane stress problem with three types of homogeneous boundary conditions at edges y h= ± .

Table 1 Material parameters and load of the problem with homogeneous boundary conditions in Example 1

E1 (Mpa) E2 (Mpa) 12 21 G (Mpa) N lx (mm) l y (mm) F (Mpa)

150 100 0.375 0.25 40 0.5 0.25 0.4 0.05

Table 2 Results of the proposed approach for the case (1) at point (1.5, 0.5)
Present method with different numbers of eigenvalue FEM

76 152 262 356 432 466
mesh

1500 × 1500

u (nm) 1278.296 1278.150 1278.111 1278.100 1278.094 1278.093 1278.083
v (nm) 3982.440 3981.928 3981.786 3981.736 3981.723 3981.722 3981.678
 (nrad) 3231.535 3231.257 3231.184 3231.163 3231.152 3231.150 3231.129
 (kPa)xx 92.464 92.464 92.465 92.465 92.465 92.465 92.465

 (kPa)xy 53.161 53.161 53.161 53.162 53.162 53.162 53.159

m  (kPa)xz 12.943 12.943 12.944 12.944 12.944 12.944 12.944

Table 3 Results of the proposed approach for the case (2) at point (1.5, 0.5)
Present method with different numbers of eigenvalue FEM

70 146 256 350 426 462
mesh

1500 × 1500

u (nm) 93.217 93.256 93.266 93.269 93.270 93.270 93.272
v (nm) 8.516 8.517 8.518 8.518 8.518 8.518 8.518
 (nrad) −14.437 −14.443 −14.445 −14.445 −14.446 −14.446 −14.446
 (kPa)xx 11.798 11.803 11.804 11.804 11.804 11.804 11.807

 (kPa)xy 4.655 4.656 4.656 4.656 4.656 4.656 4.659

m  (kPa)xz −0.114 −0.114 −0.114 −0.114 −0.114 −0.114 −0.114

Table 4 Results of the proposed approach for the case (3) at point (1.5, 0.5)
Present method with different numbers of eigenvalue FEM

150 296 522 706 854 928
mesh

1500 × 1500

u (nm) 284.426 284.489 284.509 284.514 284.516 284.516 284.519
v (nm) 0.218 0.207 0.202 0.201 0.201 0.201 0.202
 (nrad) −173.718 −173.752 −173.763 −173.766 −173.767 −173.767 −173.768
 (kPa)xx 12.108 12.111 12.113 12.113 12.113 12.113 12.122

 (kPa)xy 17.496 17.497 17.498 17.498 17.499 17.499 17.502

m  (kPa)xz −0.331 −0.331 −0.332 −0.332 −0.332 −0.332 −0.333
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The aforedescribed analysis concerns the solutions of the
orthotropic micropolar plane stress problem with homo-
geneous boundary conditions at edges y h= ± . For common
nonhomogeneous boundary conditions on the two opposite
edges, analytical solutions can also be obtained using the
proposed method and superposition principle, which is de-
scribed as follows. Consider an orthotropic microplate with
distributed loads F F x L= 2 sin( / )1 and F F y h= 2 cos( / 2 )2

applied along edges y h= and x L= , respectively. The
edge at y h= is free, and that at x = 0 is clamped. The
parameters N , lx, and ly are 0.6, 0.25 mm, and 0.3 mm,
respectively, whereas the other material parameters and
geometric size are the same as those described above for the
microplate with homogeneous boundary conditions at edges
y h= ± . According to the superposition principle, this pro-
blem can be divided into two subproblems with homo-
geneous boundary conditions at edges y h= ± : (1) the two
opposite edges y h= ± are free, the edge x = 0 is clamped,
and the load F2 is imposed along edge x L= ; and (2) the
edges y h= and x L= are free, the edge x = 0 is fixed, and
the load F1 is imposed along edge y h= .
The results at points (1.5, 0.5), (1.5, 0), and (1.5, 0.5)

calculated from the proposed approach and FEM are pre-
sented in Table 6. To ensure convergence, the complex
domain of the eigenvalues is taken as µRe( ) (0, 200] and

µIm( ) (0, 20], and 1500 × 1500 elements are used in FEM.
Table 6 indicates that the results obtained from the proposed
approach align with those obtained from FEM for the first
three or four significant digits, which also shows that the
proposed method can be used for solving some problems
with non-homogeneous boundary conditions by super-
imposing some of the three types of homogeneous boundary

conditions. In addition, the nephograms of the displace-
ments and stresses are shown in Fig. 3.

6.2 Analysis of the size-dependent behaviour of the
orthotropic micropolar plane stress problem

In this subsection, to analyze the size-dependent behaviour
of the orthotropic micropolar plane stress problem, the di-
mensionless parameters are first defined as

l l
L l

l
h= ,    = 2 . (79)x

x
y

y

Consider a micropolar planar plate with various values of
nondimensional coupling factors and nondimensional ma-
terial characteristic lengths. The other material parameters,
geometric size, and boundary conditions are the same as
those of case (1) in Sect. 6.1.
For comparison, we consider a classical planar plate with

the same Young’s modulus, Poisson’s ratio, shear modulus,
geometric size, and boundary conditions as those of the
micropolar model. According to Hassanpour’s conclusion
[50], when simplifying the micropolar elasticity theory to
the classical elasticity theory, the displacements u, v and
stresses xx, xy obtained from the micropolar elasticity
theory are equal to those from the classical elasticity theory,
and the microrotation and couple stress m xz can be ex-
pressed as

v
x

u
y m= 1

2 ,    = 0. (80)xz

We first investigate the distributions of displacements and
stresses along line y h= / 2 with l l= = 1x y , 0.5, 0.25, 0.1,
0.05, and 0.005 when the value of N is 0.4, as shown in
Fig. 4. Evidently, the differences between the results ob-

Table 5 Results of the proposed approach and ANSYS at point (1.5, 0.5) for three cases of homogeneous boundary conditions
Case (1) Case (2) Case (3)

Present ANSYS Present ANSYS Present ANSYS
u (µm) 1.5638 1.5638 0.1398 0.1398 1.1667 1.1662
v (µm) 4.9207 4.9206 0.0118 0.0118 −0.0523 −0.0523

 (kPa)xx 111.8172 111.8157 14.3803 14.3858 25.0878 25.0860

 (kPa)xy 56.0847 56.0847 8.8855 8.8817 13.8692 13.8610

Table 6 Results of the proposed approach and FEM at points (1.5, 0.5), (1.5, 0) and (1.5, 0.5) for micropolar plane stress problem with the non-
homogeneous boundary conditions

(1.5, 0.5) (1.5, 0) (1.5, 0.5)
Present FEM Present FEM Present FEM

u (µm) −0.38844 −0.38835 0.53054 0.53053 1.42964 1.42912
v (µm) −4.41441 −4.41430 −4.19141 −4.19225 −4.16394 −4.16384
 (µrad) −2.50260 −2.50286 −2.43643 −2.43628 −2.48369 −2.48374
 (kPa)xx 18.41031 18.41017 62.77483 62.77615 106.52050 106.52469

 (kPa)xy −48.56614 −48.56461 −58.75368 −58.75534 −51.67939 −51.67707

m  (kPa)xz −0.87819 −0.87869 −2.20023 −2.20077 −2.20390 −2.20347
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tained by the micropolar theory and those by the classical
elasticity theory gradually increase with an increase in lx

and ly. This indicates that the size effect is more significant
when the coupling factor and characteristic lengths are large.
We then investigate the distributions of displacements and

stresses along line y h= / 2 with l l= = 1x y , 0.5, 0.25, 0.1,
0.05, and 0.005 when the value of N is 0.05, as depicted in
Fig. 5. Figure 5(a)-(d) indicate that the results obtained from
the micropolar elasticity theory are close to those from the
classical elasticity theory, regardless of the characteristic
lengths. However, Fig. 5(e) and (f) show that the differences
between the results obtained by the micropolar theory and
those by Eq. (80) gradually increase with increasing lx and
ly. This implies that when the coupling factor is small, no
size effect occurs for the displacements u, v and stresses xx,

xy, but the microrotation and couple stress m xz are still
affected by the size effect.
Subsequently, we investigate the distributions of dis-

placements and stresses along line y h= / 2 with N = 0.9,
0.6, 0.4, 0.2, 0.1, and 0.05 when lx and ly are both 0.5, as
displayed in Fig. 6. It can be seen from Fig. 6 that the
displacements u, v and stresses xx, xy, and m xz are gradu-
ally away from the results by the classical elasticity with
increasing coupling factor N, whereas the microrotation is
gradually away from the results by the classical elasticity
with decreasing coupling factor N. These results indicate
that when the characteristic lengths are large, for displace-
ments u, v and stresses xx, xy, and m xz, the size effect is
more significant when the coupling factor increases. How-
ever, for the microrotation , the size effect is more sig-
nificant when the coupling factor decreases.

Figure 3 Nephograms of the displacements and stresses for the orthotropic micropolar plane stress problem with nonhomogeneous boundary conditions. (a)
The displacement u (mm); (b) the displacement v (mm); (c) the microrotation  (mrad); (d) the normal stress  (MPa)xx ; (e) the shear stress  (MPa)xy ; (f) the
couple stress m  (MPa)xz .
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Next, we investigate the distributions of displacements
and stresses along line y h= / 2 with N = 0.9, 0.6, 0.4, 0.2,
0.1, and 0.05 when both lx and ly are 0.0005, as shown in
Fig. 7. Figure 7(a)-(e) indicate that the distributions of dis-

placements u, v, stresses xx, xy, and microrotation are
close to those from the classical elasticity theory, regardless
of the value of the coupling factor N. Based on Fig. 7(f), the
values of the couple stress m xz corresponding to different

Figure 4 Variations of displacements and stresses with different lx and ly along line y h= / 2 when N is 0.4.
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values of N are all very small. This implies that when the
characteristic lengths are small, the size effect can be ignored.
Because the characteristic lengths lx and ly are in-

dependent of each other for the orthotropic micropolar plane

stress problem, we investigate the distributions of dis-
placements and stresses along line y h= / 2 with l = 1x ,
0.5, 0.25, 0.1, 0.05, and 0.005 when N is 0.4 and ly is 0.5, as
depicted in Fig. 8. It can be seen from Fig. 8 that the dif-

Figure 5 Variations of displacements and stresses with different lx and ly along line y h= / 2 when N is 0.05.
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ferences between the results obtained from the micropolar
theory and those from the classical elasticity theory gradu-
ally decrease with the reduction in lx. However, in contrast

to the results with l l= = 0.005x y in Fig. 4, when lx is 0.005,

there are still differences between the results obtained by the
micropolar theory and those by the classical elasticity theory.
This suggests that the size effect cannot be ignored when one
of the characteristic lengths is small but the other is large.

Figure 6 Variations of displacements and stresses with different N along line y h= / 2 when lx and ly are both 0.5.
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6.3 Analysis of lattice structures based on the pro-
posed method

Lattice structures composed of periodic cellular topologies
are commonly used in weight-critical applications as novel

ultralight multifunctional materials [24]. One of the main
methods of analyzing their mechanical behaviour is the
equivalent continuum approximation, which homogenizes
the lattice structures to the micropolar continuum by treating
the lattice using beam mechanics [14,51]. The mechanical

Figure 7 Variations of displacements and stresses with different N along line y h= / 2 when lx and ly are both 0.0005.
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behaviour can then be analyzed by an analytical method or
FEM based on the micropolar theory. In this subsection, the
mechanical behaviour of lattice structures is analyzed using
the proposed method.

We consider three rectangular blocks composed of mixed
triangle A, mixed triangle B, and hexagonal lattice topolo-
gies, as illustrated in Fig. 9. There are 128 and 64 cells along
the x and y directions, respectively. The characteristic length

Figure 8 Variations of displacements and stresses with different lx along line y h= / 2 when N is 0.4 and ly is 0.5.
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L and thickness h for the three lattice topologies are all taken
as 0.2 mm and 0.02 mm, respectively, and the cell wall
material is assumed to be isotropic linear elastic with a
Young’s modulus E of 210 GPa and Poisson’s ratio of 0.3.
The bottoms of these blocks are fixed while both side
boundary surfaces are free, and there are three types of
boundary conditions on the top surfaces: (1) a concentrated
force F = 10 MPa1 is applied at the centre point of the top
surface of the rectangular block composed of mixed trian-
gular cell structure A, as displayed in Fig. 9(a); (2) a uni-

formly distributed shear force F = 1 MPa2 is applied on the
top surface of the rectangular block composed of mixed
triangular cell structure B, as illustrated in Fig. 9(b); and (3)
a uniformly distributed pressure F = 1 MPa3 is applied on
the top surface of the rectangular block composed of hex-
agonal cell structure, as shown in Fig. 9(c). The constitutive
relations of these three lattice topologies under the equiva-
lent continuum approximation can be written as [27,52]

D= , (81)
in which

m m= ,

= ,
(82)

xx yy xy yx xz yz

xx yy xy yx xz yz

T

T

and the non-zero components of the matrix D are listed in
Table 7.
For comparison, the lattice structures are also analyzed by

a detailed discrete computation based on FEM, in which the
cell walls are modelled using beam elements. The nepho-
grams of displacements u and v of the current method and
discrete simulation are plotted in Figs. 10-12 for the mixed
triangle A, mixed triangle B, and hexagonal lattice topolo-
gies, respectively. Figures 10-12 indicate that the results
using the proposed approach agree well with those of the
detailed discrete computation. To further verify the accuracy
of the proposed approach for analyzing lattice structures, we
calculate the errors of displacements u and v on lattice nodes
between the proposed method and detailed discrete com-
putation within a specified region x L L[20 ,  105 ] and
y L L[14 ,  50 ] for the three types of lattice structures. As
depicted in Fig. 13, the maximum errors of displacements u
and v for the three types of lattice structures are all less than
3.1%. Therefore, the proposed approach can be applied to

Figure 9 Structures made of lattice topologies with three types of
boundary conditions.

Table 7 Micropolar elastic constants for three lattice topologies under the equivalent continuum approximation
Mixed triangle A Mixed triangle B Hexagonal

D11 Eh
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L h1 + 2
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6 ( + )
2 2

2 2
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23
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Figure 10 Nephograms of displacements u and v of a structure composed of mixed triangular cell structure Awith the concentrated force F1 applied on the
top surface. (a) The displacement u (mm) computed by the proposed method; (b) the displacement u (mm) computed by ANSYS; (c) the displacement v (mm)
computed by the proposed method; (d) the displacement v (mm) computed by ANSYS.

Figure 11 Nephograms of displacements u and v of a structure composed of mixed triangular cell structure B with the shear force F2 applied on the top
surface. (a) The displacement u (mm) computed by the proposed method; (b) the displacement u (mm) computed by ANSYS; (c) the displacement v (mm)
computed by the proposed method; (d) the displacement v (mm) computed by ANSYS.
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the analysis of lattice structures using an equivalent micro-
polar continuum approximation.

7. Conclusions

The main objective of this study is to present analytical

solutions for the orthotropic microplate plane stress problem
using a symplectic approach. By applying Legendre’s
transformation and the Hamiltonian mixed energy varia-
tional principle, the Hamiltonian canonical equation for the
orthotropic microplate plane stress problem was obtained.
Subsequently, using the method of separation of variables,
the homogeneous Hamiltonian canonical equation was
transformed into an eigenproblem of the Hamiltonian op-
erator matrix. We derived the eigensolutions of the eigen-
problem for three types of homogeneous boundary
conditions. Based on the adjoint symplectic orthogonality of
the eigensolutions and expansion theorems, the solutions to
the orthotropic micropolar plane stress problem were ex-
pressed as a series expansion of the eigensolutions.
The numerical results verified the validity of the sym-

plectic method for the orthotropic micropolar plane stress
problem under various boundary conditions and showed the
relationships between the size effect and material para-
meters. The results indicate that the micropolar elasticity
theory can be simplified into the classical elasticity theory
for small characteristic lengths; when the characteristic
lengths and coupling factor are all large, the size effect is
significant; when the characteristic lengths are large and the
coupling factor is small, no size effect occurs for the dis-
placements and force stresses, but the microrotation and
couple stress are still affected by the size effect. Further-

Figure 12 Nephograms of displacements u and v of a structure composed of hexagonal cell structure with the uniformly distributed pressure F3 applied on
the top surface. (a) The displacement u (mm) computed by the proposed method; (b) the displacement u (mm) computed by ANSYS; (c) the displacement
v (mm) computed by the proposed method; (d) the displacement v (mm) computed by ANSYS.

Figure 13 Maximum relative errors of displacements u and v on lattice
nodes between the proposed method and the discrete analyses for three
types of lattice topologies.
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more, the proposed approach was applied to analyze lattice
structures under an equivalent micropolar continuum ap-
proximation.
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正交各向异性微极平面应力问题的辛求解方法

陈龙, 汤兆飞, 吴穹, 高强

摘要 本文采用辛弹性力学方法得到正交各向异性微极平面应力问题的解析解.首先, 应用勒让德变换和哈密顿混合能量变分原理得

到哈密顿正则方程. 然后, 利用分离变量法, 导出了相应的齐次哈密顿正则方程的本征问题. 最后, 推导了三种齐次边界条件下问题的

相应本征解. 根据本征解的共轭辛正交性和展开定理, 正交各向异性微极平面应力问题的解可以表示为这些本征解的级数展开. 本文

给出了各种边界条件下平面应力问题的数值结果, 并用有限元法证明了该方法的收敛性和准确性. 同时使用该方法研究了尺寸效应和

材料尺度参数之间的关系. 并且, 在等效微极连续介质近似下, 使用辛方法分析格子结构的力学行为.
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