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The primary impediments impeding the implementation of high-order methods in simulating viscous flow over complex
configurations are robustness and convergence. These challenges impose significant constraints on computational efficiency,
particularly in the domain of engineering applications. To address these concerns, this paper proposes a robust implicit high-
order discontinuous Galerkin (DG) method for solving compressible Navier-Stokes (NS) equations on arbitrary grids. The
method achieves a favorable equilibrium between computational stability and efficiency. To solve the linear system, an exact
Jacobian matrix solving strategy is employed for preconditioning and matrix-vector generation in the generalized minimal
residual (GMRES) method. This approach mitigates numerical errors in Jacobian solution during implicit calculations and
facilitates the implementation of an adaptive Courant-Friedrichs-Lewy (CFL) number increasing strategy, with the aim of
improving convergence and robustness. To further enhance the applicability of the proposed method for intricate grid
distortions, all simulations are performed in the reference domain. This practice significantly improves the reversibility of the
mass matrix in implicit calculations. A comprehensive analysis of various parameters influencing computational stability and
efficiency is conducted, including CFL number, Krylov subspace size, and GMRES convergence criteria. The computed
results from a series of numerical test cases demonstrate the promising results achieved by combining the DG method,
GMRES solver, exact Jacobian matrix, adaptive CFL number, and reference domain calculations in terms of robustness,
convergence, and accuracy. These analysis results can serve as a reference for implicit computation in high-order calcula-
tions.
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1. Introduction

Discontinuous Galerkin (DG) methods have gained wide-
spread utilization in computational fluid dynamics (CFD),
computational acoustics, and computational magnetohy-
drodynamics [1-5]. They offer appealing characteristics
such as robustness and accuracy in high-order calculations,
surpassing finite element (FE) and finite volume (FV)
methods.

In CFD, DG methods have proven successful and effec-
tive in handling compressible Euler equations at high-order
accuracy [6-8]. However, when extending these methods to
calculations involving diffusion problems, such as solving
compressible Navier-Stokes (NS) equations and Reynolds-
averaged Navier-Stokes (RANS) equations, the robustness
and efficiency of DG methods still pose a challenge.
Nonetheless, several different ways of handling the diffu-
sion terms in DG methods have been proposed, including
the symmetric interior penalty (SIP) [9], local discontinuous
Galerkin (LDG) [10], compact discontinuous Galerkin
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(CDG) [11], recovery-based discontinuous Galerkin (RDG)
[12], reconstructed discontinuous Galerkin (rDG) [13], and
the second Bassi-Rebay (BR2) [14] schemes. Besides, a
direct discontinuous Galerkin (DDG) method introduced by
Liu and Yan [15,16] shows its promising as an alternative
choice in handling viscous terms. The primary characteristic
of the DDG method lies in the incorporation of a numerical
flux, which effectively approximates the gradient of the
solution across the edges of the elements. Later, Cheng et al.
[17,18] extended the DDG method for solving the NS
equations and RANS equations on arbitrary grids, with the
consideration of spatial discretization up to order p = 2. Our
goal here is to present NS and RANS solutions using DDG
method with higher-order polynomial approximations in the
range p = 3-5.
To attain our objective, it is imperative to mitigate the

impact of the grid on the calculations. It is widely ac-
knowledged that turbulent simulation boundary layer grids
exhibit a substantial aspect ratio, and unstructured grids are
susceptible to large distortion. This characteristic is mani-
fested in the DG method, resulting in increased rigidity of
the mass matrix, particularly in higher-order DG methods.
As the order increases, the size of the mass matrix expands,
magnifying the impact of the grid on the reversibility of the
mass matrix. The poor grid quality will directly lead to
the irreversibility of the mass matrix, consequently im-
pacting the stability of the calculation. Two approaches
can be employed to address this predicament. The first ap-
proach involves increasing the number of grids, ensuring
grid quality but incurring higher computational costs. The
second approach involves transforming the calculation do-
main into the reference domain [19,20], thereby reducing
the grid quality dependence. This technique holds great
potential for solving RANS equations utilizing high-order
method.
The robustness and stability of implicit schemes also play

a very important role in high-order calculations. The gen-
eralized minimal residual (GMRES) method with pre-
conditioner [21-24] emerges as an efficient implicit scheme
for solving large sparse linear systems [25]. It exhibits su-
perior stability and convergence, rendering it the most
commonly employed method in DG solution [26-28].
However, most existing studies merely employ approximate
Jacobian matrices for implicit schemes [29-31], derived
purely from inviscid flux or inviscid flux combined with the
viscous spectral radius. This approach fails to account for
the exact behavior of laminar and turbulent flows, introdu-
cing errors that lead to significant declines in computational
efficiency and stability during high-order calculations.
Fortunately, the Jacobian matrix of DG discretization can be
derived exactly using the chain rule. The adoption of this
exact Jacobian matrix solving strategy [32,33] has demon-
strated excellent performance in practical applications.

Moreover, the robustness and efficiency of the GMRES
method for high-order solutions are heavily influenced by
various parameters [27,34-36], such as the value of the
Courant-Friedrichs-Lewy (CFL) number, preconditioner
selection, accuracy of preconditioning and matrix-vector
generation, Krylov subspace settings, and convergence cri-
teria of GMRES. Properly combining these factors further
enhances the computational efficiency and stability of the
GMRES method. While little work has been done to explore
the effects of these parameters on higher-order DG calcu-
lations.
Considering the aforementioned discussions, this paper

presents a robust implicit high-order DG method designed to
solve compressible NS and RANS equations on arbitrary
grids. The DDG scheme is employed to discretize the vis-
cous flux, while the Roe scheme is utilized for discretizing
the inviscid flux. Turbulent flows are solved using the ne-
gative SA turbulence model coupled with RANS equations.
The current implicit method incorporates three key strate-
gies to enhance the robustness and convergence of calcu-
lations. Firstly, solutions are transformed into a reference
domain, reducing dependency on computational grids.
Secondly, an exact Jacobian matrix is employed without
any approximation or simplification when solving the
linear system of equations using the GMRES method, uti-
lizing the lower-upper symmetric Gauss-Seidel (LU-SGS)
preconditioner. Finally, an adaptive CFL number increasing
strategy is implemented to achieve a better balance between
stability and efficiency as this strategy is able to dynami-
cally adjust the CFL number in response to changes in the
flow field. These strategies facilitate the extension of the
method for higher-order calculations. Numerous benchmark
test cases, including both laminar and turbulent flows, are
selected to evaluate the performance of this method. In
addition, a comprehensive analysis of various parameters
that affect computational stability and efficiency is con-
ducted. The computed results serve as a reference for im-
plicit computation in high-order DG calculations and
highlight the promising features and potential of the pro-
posed method, particularly regarding its robustness and ef-
ficiency.

2. Governing equations

The conservative formulation of the compressible RANS
equations, coupled with the one-equation negative SA tur-
bulence model, can be expressed as follows:

t x x
U F G S+ = . (1)i

i
i

i

In Eq. (1), the conservative variables U, convective flux
Fi, diffusive flux Gi, and source term S are defined by
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where u1, u2, x1, x2 are noted as u, v, x, y. The pressure p is
determined by the equation of state of ideal gas law,

p e u v h e p= ( 1) 2( + ) ,   = + , (3)2 2

with γ equals to 1.4, δij represents the Kronecker delta and k
is the thermal conductivity of the fluid. The components of
the stress tensor are given by
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The turbulence production and destruction terms, P andD are
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where µt denotes the turbulence eddy viscosity
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here, ( )u x u x= 0.5 / /ij i j i j pertains to the rotation
tensor and d denotes the distance to the closest wall. The
specific values for the constants can be found in Ref. [37].
The no-slip boundary conditions are imposed on the sur-
faces in contact with the wall. For all test cases, the free-
stream turbulent working variable is uniformly set as

= 4 .

3. DG formulation on arbitrary grid

3.1 DG formulation for RANS-SA equations

To discretize the governing equation stated in Eq. (1), a DG
formulation is employed. Firstly, we introduce the sub-
sequent weak form by multiplying the conservation law
above with a test function W [1], followed by integration by
parts over the entire domain.

t W W
W
x

W
W
x

W

U F n F

G n G S

d
d d + d d

= d d + d , (9)

h h k k h k
h

k

k k h k
h

k
h

where denotes the boundary of the cell and nk denotes
the unit outward normal vector to the boundary, We assume
that the domain is subdivided into a collection of non-
overlapping elements e. We introduce the following bro-
ken Sobolev space Vh

p,

{ }[ ]LV V= ( ) : | , (10)h
p

h
m

h e p
m

e2

which consists of discontinuous vector-values polynomial
functions of degree p, where m is the dimension of the
unknown vector and

{ }x p i dV = span : 0 ,  0 , (11)p
m

i
i

where denotes a multi-index and d is the dimension of
space. Then, it can obtain the following semi-discrete form
by applying weak formulation on each element Ωe, find
U Vh h

p, such as

( ) ( )

( )
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where Uh, Wh represent the FE approximations to the
analytical solution U and the test function W respectively.
They are approximated by a piecewise polynomial
function of degree p and are discontinuous at the cell in-
terfaces.
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3.2 DG formulation in global domain for RANS-SA
system

In global domain, assume that B is the basis of polynomial
function of degree p, this is then equivalent to the following
system of N equations

( )

( )
( )
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where N represents the dimension of the polynomial space,
while the conservative state vectors at the left and right
interfaces of the element are denoted by Uh

L and Uh
R, re-

spectively. The DG method of degree p, also termed as DG
(P) method, closely resembles FV schemes in its utilization
of numerical fluxes. It should be emphasized that the clas-
sical first-order cell-centered FV scheme is an exact corre-
spondence to the DG(P0) method, which utilizes piecewise
constant polynomials. Consequently, DG(Pk) methods with
k > 0 can be considered as a natural extension of FV
methods to higher-order approaches. By increasing the de-
gree p of the polynomials, the corresponding DG methods of
higher order can be obtained.
In the global domain DG methods, the numerical poly-

nomial solutions Uh within each element are represented
using either a standard Lagrange basis or a hierarchical
node-based basis, as depicted below

t B xU U= ( ) ( ), (14)h
i

N

i i
=1

where B x( )i are the basis functions. Generally, the numerical
polynomial solutions are represented using a Taylor series
expansion at the centroid of the cell, which is introduced by
Luo et al. [1]. As an example, Uh of P2 is given below
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where U is the cell-averaged values. x x x= 0.5( )max min ,
y y y= 0.5( )max min , and xmin, xmax, ymin, ymax are the

minimum and maximum coordinates in the cell e in x and y
directions, respectively.
Considering that the control volume remains constant in

time, the remaining term in Eq. (13) can be shifted to the
right-hand side of the equation, resulting in the semi-discrete
form of Eq. (13).

tM U Rd
d = , (17)

where M denotes the mass matrix, U is the solution vector,
and R is the residual including inviscid flux, viscous flux
and their corresponding domain integral term, also the
source term. The specific formulas of M are written as

B x B xM = ( ) ( )d . (18)i j
e

According to the expression in Eq. (18), the size of the
mass matrix increases as higher-order basis functions with
more degrees are employed, leading to increased stiffness.
This, in turn, reduces reversibility and directly impacts the
computational stability of the calculations. Furthermore, the
mass matrix in the global domain is directly influenced by
grid coordinates and cell volumes, indicating that the quality
of the computational grid significantly affects the calcula-
tion stability. Inadequate grid quality, especially anisotropic
grids with greater skewness in boundary layers, can cause
inaccurate inversion of the mass matrix and result in un-
stable calculations or even crashes.
Considering these aforementioned challenges, traditional

DG methods encounter difficulties in achieving higher-order
accuracy when simulating laminar and turbulent flows. Most
simulations in global domains are typically limited to P2
(third-order), while P3 (fourth-order) accuracy can be
achieved on simple grids such as equal-straight grids.
In this paper, a favorable aspect is the transformation of

simulations into a reference domain, which effectively mi-
tigates the influence of the grid on calculations and enhances
the calculation accuracy to P3 or even P5, while ensuring
computational robustness.

3.3 DG formulation in reference domain for RANS-SA
equations

3.3.1 DG formulation in reference domain
In this work, calculations are conducted within the reference
domain, which presents notable advantages over conven-
tional global domain calculations in terms of stability and
robustness when achieving high-order accuracy. Equation
(13), when transformed into the reference domain, can be
expressed as follows:
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In the basis functions b ( )i , , and represent the co-
ordinates in the reference domain. The basis functions for
calculating accuracy up to the 5th order are defined by Eq.
(21), where the degrees of freedom of the basis functions
increase with higher order accuracy calculations. Specifi-
cally, the degrees of freedom are 3, 6, 10, 15, and 21 for P1
to P5 accuracy, respectively.

3.3.2 Mass matrix in reference domain
In the reference domain, the semi-discrete form of Eq. (19)
corresponds to Eq. (17). However, it should be noted that the
form of the mass matrix differs across various computa-
tional domains. In the reference domain, the mass matrix
can be denoted as follows:

b bM = ( ) ( )d . (22)i j
e

The distinction between the mass matrices in Eqs. (18)
and (22) lie in their respective basis functions. As indicated
by the expression in Eq. (22), the mass matrix within the
reference domain relies on the volume of the reference
element, which presents a significant advantage by elim-
inating any complications associated with inverting the mass
matrix due to the fixed shape and volume of the reference
element. Therefore, transforming DG simulations into the
reference domain can overcome the issue discussed in Sect.
3.2, where the stability of global domain calculations dete-

riorates due to the irreversibility of the mass matrix. This
unique characteristic of our study enhances computational
stability while achieving high-order accuracy.

3.3.3 Roe scheme for the inviscid flux
The convective flux of the Roe scheme [38] at DG frame-
work in reference domain is defined as follows:
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The Roe flux is defined by
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where the related formulas of A can be seen in Ref. [38].

3.3.4 DDG method for the viscous flux
The direct DG method, introduced by Liu and Yan [15], is
based on the direct weak formulation for solving diffusion
equations, and the viscous flux of DDG method is defined as
follows:
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where U and U are the cell-averaged values at the cell
interface between the left and right element, which are de-
fined as follows:
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and the derivatives in reference domain are written as
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where 0 and 1 are coefficients, and is computed by Ref.
[33],

= + , (28)L R

where L and R denote the distances of the centroid to the
common face from the left and right elements, respectively.
For the DDGP1 and DDGP2 schemes, the coefficients 0

range from 2.0 to 6.0 [39], while 1 is equal to 1/12. For
higher order accuracy calculations, it is recommended to use
a larger value of 0. Test cases presented in this paper de-
monstrate that setting 0 equals to 8.0-20.0 yields satisfac-
tory results for higher order accuracy calculations within the
reference domain.

4. Implementation of implicit robust DG solver

The spatial discretization of the RANS-SA system, as de-
scribed in Eq. (17), can be linearized over time and ex-
pressed as follows:

tA U R A MI R
U,   = + , (29)n

n

Where R U/n represents the Jacobian matrix, t denotes
the time increment, and U U U= n n+1 refers to the so-
lution difference between time levels n and n + 1. It should
be noted that the robustness of the solver for the system
described in Eq. (29), particularly in the case of high-order
accuracy solutions, is heavily influenced by the accuracy
and stiffness of matrix A. The accuracy of matrix A, in terms
of its structure, is primarily determined by the mass matrix
M and Jacobian matrix R U/n , which serve as crucial
factors significantly impacting computational stability.

4.1 GMRES method

The GMRES method has emerged as a fundamental tech-
nique in the field of numerical analysis, particularly in the
context of resolving nonsymmetric linear systems stemming
from partial differential equations. One of the pivotal merits
attributed to the GMRES method lies in its optimality
characteristic, guaranteeing convergence towards a solution
within the minimal number of iterations conceivable.
Moreover, it exhibits exceptional performance in practical
scenarios, yielding accurate results even amidst the presence
of highly nonlinear or ill-conditioned systems. Due to its
efficiency and dependability, the GMRES method has at-
tained widespread adoption in CFD.
In this paper, GMRES method with a preconditioner is

chosen to solve the linear system of Eq. (29). The pre-
conditioning technique stands as a typical strategy employed
to enhance the convergence behavior of the GMRES
method. Equation (29), featuring a left preconditioning

matrix denoted as P, can be formulated as follows:

P A U P R= . (30)n1 1

The pseudo-code for the solution procedure is presented
as Algorithm 1.

In the pseudocode, kxgmres represents the initial Krylov
subspace, kygmres denotes the increment of the Krylov
subspace at each subsequent GMRES sub-iteration, ngmres
specifies the maximum number of sub-iterations, and con-
trols the upper limit on the size of the Krylov subspace.
GMRES_res refers to the convergence criterion for GMRES.
Appropriately configuring these parameters can enhance the
convergence and stability of the calculations, whereas im-
proper settings may lead to over-solutions [34,35] or di-
vergence. In Sect. 5, the impact of these parameters on the
calculations will be comprehensively analyzed through test
cases, with a particular emphasis on their effects on high-
order DG calculations.
References [27,36] have demonstrated that the perfor-

mance of GMRES is significantly influenced by the accu-
racy of preconditioning and matrix-vector generation in line
8 of the pseudocode, which are closely tied to the Jacobian
matrix. These factors play a critical role in determining the
robustness and efficiency of the computations. Generally,
preconditioning can be approximated using an approximate
Jacobian matrix, while an exact calculation of matrix A is
required for matrix-vector generation. The conventional
treatment approach typically employs an inviscid flux Ja-
cobian with a spectral radius instead of a viscous flux Ja-
cobian matrix for preconditioning, and finite difference

Algorithm 1 GMRES method with preconditioner
1: n U 0= 0,   Itermax = kxgmres,   =
2: for n < ngmres do
3: r r v rR A U= ,  = ,  = /n

0 0 1 0
4: if n = 0 then
5: =0
6: end if
7: for j = 1, 2, ..., Itermax do
8: w v z wA P= ,   =j j j j

1

9: for i j= 1, 2, ..., do
10: h z v z z h v= ( . ),   =i j j i j j i j i, ,
11: end for
12: h z v z h= ,  = /j j j j j j j+1, +1 +1,

13: end for
14: Using QR decomposition method to get the new U

15: r rR A U= ,   = .n

16: res = / 0
17: if res < GMRES_res then
18: exit GMRES sub iteration
19: else
20: n n= + 1
21: nItermax = Itermax + kygmres
22: end if
23: end for

J. Yan, et al. Acta Mech. Sin., Vol. 40, 323429 (2024) 323429-6



calculation is utilized for matrix-vector generation. Evi-
dently, this necessitates computing the Jacobian matrix twice.
In this paper, the LU-SGS method is employed for pre-

conditioning, and the L, U, and D matrices are computed
using a strategy that solves for an exact Jacobian matrix.
The advantage of employing this approach is that the re-
sulting L, U, and D matrices can be directly used for matrix-
vector generation, thereby obviating the need for finite
difference calculations and eliminating any additional
computational or storage requirements. Moreover, the LU-
SGS preconditioner utilizing the exact Jacobian matrix re-
duces the stiffness of the system and significantly improves
both the stability and convergence of the GMRES method
[40,41].

4.2 Exact Jacobian matrix

For RANS equations coupled with the negative-SA turbu-
lence model, the Jacobian of DG discretization comprises
three components [33]: the inviscid flux Jacobian, the vis-
cous flux Jacobian, and the source term Jacobian. These
components can be derived as follows:
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where nf represents the total number of faces in triangle or
quadrilateral elements, and the larger value between I and J
denotes the right (R) state of the element interface while the
other represents its left (L) state. Although both the inviscid
and viscous flux formulations are intricate, the DG method’s
compactness enables expressing the derivatives of these
fluxes as functions of the test function. Therefore, the de-
rivatives can be computed using the chain rule.
References [32,33] have demonstrated the advantages of

employing an exact Jacobian matrix in low-order calcula-
tions. It should be noted that different schemes yield dif-
ferent forms of Jacobians. In this paper, we utilize Roe’s
approximated Riemann solver for the inviscid flux and the
DDG scheme for the viscous flux. The viscous flux Jacobian

of the DDG scheme and the source term Jacobian of the
negative SA turbulence model have been detailed in Ref.
[33], while we will provide a comprehensive derivation of
the inviscid Jacobian in Appendix A.

4.3 Adaptive CFL number

The CFL number plays a significant role in determining the
computational efficiency [42-44], with higher values gen-
erally leading to greater efficiency. However, it is important
to note that if the CFL number becomes excessively large, it
can cause instability and divergence. Therefore, striking the
right balance between stability and efficiency when working
with implicit schemes can be quite challenging. To overcome
this issue, the concept of an adaptive CFL number emerges
as a potential solution. By employing an adaptive approach
that dynamically adjusts the CFL number in response to
changes in the flow field, a better trade-off between stability
and efficiency can be achieved during the simulation.
The adaptive CFL number used in this paper is given as

follows:

( )
CFL

CFL CFL CFL FCFL
CFL FCFL

= ( ) , if  0.1,
, if  > 0.1,

(33)

n

n CFL

n

+1

max init
1/ 1step

where CFLn+1 and CFLn denote the CFL number between
time level n and n + 1. In ideal state, the solution process is
steady and the condition FCFL > 0.1 will not be triggered,
then, the CFL number will increase from CFLinit to CFLmax
within CFLstep steps. FCFL is a quantity related to the
change of flow field variables, and computed from

FCFL U
U= | | , (34)

where U represents the L2 norm of the increment of
conservative variables vector, and U denotes the L2 norm of
the conservative variables vector in the time level n. In
physical terms, this ratio describes changes in physical
quantities within a flow field. The purpose of imposing a
limiter on the FCFL is to mitigate excessive variations in
physical quantities resulting from abrupt increases in the
CFL number. When the aforementioned ratio exceeds a
value significantly greater than 10, the computations are
susceptible to collapse, necessitating a reduction in the
growth rate of the CFL number during iterations. The
aforementioned CFL increasing model exhibits a time delay,
although our test cases demonstrate satisfactory perfor-
mance when a limiter of FCFL is set to 0.1. Furthermore,
reducing the FCFL limiter or increasing the CFLstep can
decelerate the growth rate of the CFL number for complex
flow simulations.
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5. Numerical results

To evaluate the proposed method in this paper, several re-
presentative cases have been selected. These cases aim to
showcase the performance of implicit high-order calcula-
tions and analyze the influential parameters. The selected
cases include one case of laminar steady flow, three cases of
turbulent steady flow.

5.1 Laminar flow past a circular cylinder

In this test case, the laminar flow past a circular cylinder is
considered. The initial condition is a uniform flow where the
Mach number equals to 0.2 and the Reynolds number equals
to 40 based on the diameter of the cylinder. The computa-
tional domain employs a hybrid mesh comprising 8406 tri-
angular elements, 4568 quadrilateral elements, and 100
points on the cylinder’s surface, as depicted in Fig. 1. The
domain boundaries span from −25.0 to 60.0 in the x-di-
rection and −25.0 to 25.0 in the y-direction, with the cy-
linder centered at (0,0). The cell size at the cylinder is
0.0337d, where d represents the diameter of the cylinder.
Firstly, a comparison is conducted between the computa-

tional efficiency of LU-SGS and GMRES. Figure 2 presents

the convergence histories of both methods under an equal
number of CFL iterations. It is evident that due to sub-
iterations within GMRES, its single-step CPU time sur-
passes that of LU-SGS. However, the computational results
demonstrate that regardless of whether the DDGP1 or
DDGP2 scheme is utilized, LU-SGS requires more iteration
steps and CPU time than GMRES to achieve convergence.
For instance, considering DDGP2, the number of iteration
steps (12813) and iteration CPU time (15690.60 s) for LU-
SGS are 15.5 times (824) and 3.45 times (4541.26 s) that of
GMRES, respectively. Thus, the calculation efficiency of
GMRES surpasses that of LU-SGS.
Secondly, the influence of adaptive CFL numbers on the

computational efficiency of GMRES is discussed. The cal-
culations are performed using a fixed CFL number of 100,
as well as increasing CFL numbers ranging from 100 to
10000 and 1000000 within 100 iterations. Convergence
histories for the DDGP1 and DDGP2 schemes under vary-

Figure 1 Hybrid mesh for a laminar flow past a cylinder: a computational
domain; b zoom view.

Figure 2 Convergence histories of LU-SGS and GMRES: a residual-
iteration; b residual-CPU time (s).
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ing strategies of CFL number increase are presented in
Figs. 3 and 4. It becomes evident that the adaptive CFL
number accelerates the convergence rate while ensuring
computational stability, in comparison to a fixed CFL
number.
Finally, the GMRES method, in conjunction with an

adaptive CFL number, is employed for higher-order calcu-
lations. The GMRES method is initialized with a Krylov
subspace consisting of 10 vectors, and the subspace size is
increased by 10 at each sub-iteration until convergence is
achieved at 0.01 or a maximum subspace size of 100 is
reached. Figure 5 presents the convergence histories of the
DDGP3-P5 schemes, illustrating that the proposed method
facilitates stable and rapid convergence to the specified
convergence standard. The computational time required for
the convergence of DDGP1-P5 calculations is presented in
Table 1. It can be observed that as the accuracy improves,
the computational time increases. Under the same CFL
number growth strategy, the DDGP5 scheme necessitates

approximately 107.2 times more computational time com-
pared to the DDGP1 scheme. This discrepancy can be at-
tributed not only to the significantly higher degrees of
freedom in the DDGP5 scheme but also to GMRES’s ten-
dency towards over-solving.
Figure 6 showcases the computed density contours and

streamlines over the cylinder obtained using DDGP1 to
DDGP5 schemes. A notable characteristic of this test case is
the occurrence of flow separation after the cylinder. Figure 7
illustrates the convergence history of the total drag coeffi-
cient as the order of DDG schemes increases. It clearly
shows that as the order increases, the total drag coefficient
converges to a stable value, and the error between the cal-
culated value and the reference value diminishes. Table 2
provides numerical values for the form drag, skin friction
drag, total drag coefficients, and the length of the re-
circulation bubble. A comparison with the reference value
[45] reveals that the solutions obtained using DDG schemes
are acceptable, with all drag coefficient errors remaining

Figure 3 Influence of CFL number to the convergence of GMRES
(DDGP1 scheme): a residual-iteration; b residual-CPU time (s).

Figure 4 Influence of CFL number to the convergence of GMRES
(DDGP2 scheme): a residual-iteration; b residual-CPU time (s).
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below 1.0%. Moreover, DDGP3 to DDGP5 schemes yield
nearly identical results. The numerical results indicate that
the proposed method can achieve satisfactory calculation
accuracy for separation flow.

5.2 Turbulent flow past a NACA0012 airfoil

In this particular test case, a turbulent flow past a
NACA0012 airfoil is considered. This test case is a standard
validation case. The flow parameters include a Mach num-
ber of 0.15, Reynolds number of 6.0 × 106, and an attack
angle of 10°. The test grid employed consists of a hybrid
mesh comprising 4637 triangular elements and 6702 quad-
rilateral elements, as illustrated in Fig. 8. The approximate
average y+ value is approximately 3.0, with the first layers
of the mesh around the wall boundary having an average
spacing of 1.0 × 10−5. The far-field boundary in the provided
mesh is located approximately 200 chord lengths away from
the airfoil.
This calculation studies the impact of Krylov subspace

growth mode on the computation. Table 3 presents the set-
tings for each Krylov subspace growth mode. Initially, cal-
culations based on DDGP1 and DDGP2 schemes are
performed using a fixed Krylov subspace (F_Krylov sub-
space) and an incremental Krylov subspace (I_Krylov sub-

space). The convergence histories of these two calculations
are illustrated in Fig. 9 . It is evident that while the F_Krylov
subspace calculation requires less computational time, its
sub-iteration within GMRES fails to meet the convergence
criteria, leading to significant instability during computa-
tion. In contrast, it can be observed from the convergence
history that utilizing an I_Krylov subspace results in a more
stable computational process with fewer iterations required
for convergence. The instability of the convergence process
in F_Krylov subspaces may lead to divergence or non-
convergence of higher-order calculations, as confirmed by
subsequent computations. Figures 10-12 depict the compu-
tational convergence from the DDGP3 to the DDGP5
scheme. In F_Krylov subspace calculations, the residuals
fail to decrease, whereas I_Krylov subspace calculations
exhibit better convergence.
Figure 13 gives the convergence history of lift and drag

coefficients with the order of DDG schemes and Table 4
summarizes the specific value of total drag coefficients, total
lift coefficients, form drag, and skin friction using the
I_Krylov subspace. The results demonstrate that the total lift
and drag coefficients obtained using DDG schemes are all
acceptable and closely approximate the numerical results
calculated by CFL3D [46] using a finer grid (229376 ele-
ments). As the accuracy order increases, the calculated re-

Table 1 CPU times of DDGP1-P5 schemes under different CFL number increasing strategy

Scheme
CPU time (s)

Fixed CFL number Adaptive CFL number
CFL = 100 CFL = 100-104 CFL = 100-106

DDGP1 1868.96 692.68 599.90
DDGP2 4541.26 1822.23 1516.12
DDGP3 – – 5148.07
DDGP4 – – 16489.20
DDGP5 – – 64337.71

Figure 5 Convergence histories of DDGP3-P5 schemes: a residual-iteration; b residual-CPU time (s).
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sults approach the reference value, with minimum drag
coefficient and lift coefficient errors of 0.39% and 1.62%,
respectively. It is worth noting that the grid density in Ref.
[46] is approximately 11.7 times greater than that employed
in this test case. The enhancement in order accuracy of DDG
schemes compensates for the loss of calculation precision
arising from insufficient mesh density. Figure 14 gives the
Mach contours and streamline obtained by DDGP5 scheme.

5.3 Turbulent flow past a NACA4412 airfoil

In this test case, a turbulent flow past a NACA4412 airfoil is
considered. The relevant flow parameters include a Mach
number of 0.09, a Reynolds number of 1.52 × 106 based on
the free-stream velocity and the chord length of the airfoil,
and an angle of attack (AOA) of 13.87°. The computational
analysis is carried out employing a hybrid mesh configura-
tion, as illustrated in Fig. 15, comprising 4964 triangular
elements and 6383 quadrilateral elements. The mesh design
ensures an approximate average y+ value below 1.0, with

Figure 7 Convergence history of total drag coefficient with the order of
DDG schemes.

Figure 6 Density contours and streamlines of DDG schemes: a DDGP1; b DDGP2; c DDGP3; d DDGP4; e DDGP5.
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the first layers around the wall boundary exhibiting an
average spacing of 1.0 × 10−5. It is worth noting that the far

field boundary within the provided mesh is situated nearly
100 chord lengths away from the airfoil.

Table 2 Drag coefficients and the recirculation length obtained by DDG schemes
Scheme Form drag Skin friction Total drag Recirculation length
DDGP1 1.01372 0.52562 1.53934 2.14
DDGP2 1.01249 0.52396 1.53645 2.29
DDGP3 1.01255 0.52383 1.53638 2.28
DDGP4 1.01255 0.52383 1.53638 2.28
DDGP5 1.01255 0.52383 1.53638 2.28
Ref. [45] 1.0260 0.4993 1.5256 2.27

Figure 8 Hybrid mesh for turbulent flow over a NACA0012 airfoil at attack angle of 10°: a computational domain; b zoom view.

Table 3 Settings for Krylov subspace growth mode
Krylov subspace growth mode Kxgmres Kygmres Ngmres GMRES_res

F_Krylov subspace 30 0 0 –
I_Krylov subspace 30 10 7 0.01

Figure 9 Influence of Krylov subspace to the convergence of GMRES: a DDGP1; b DDGP2.
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Figure 10 Influence of Krylov subspace to the convergence of GMRES (DDGP3): a residual-iteration; b residual-CPU time (s).

Figure 11 Influence of Krylov subspace to the convergence of GMRES (DDGP4): a residual-iteration; b residual-CPU time (s).

Figure 12 Influence of Krylov subspace to the convergence of GMRES (DDGP5): a residual-iteration; b residual-CPU time (s).
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It is widely acknowledged that achieving convergence for
turbulent flow past an airfoil at high angles of attack pre-
sents considerable challenges due to the occurrence of flow
separation near the trailing edge, which leads to the for-
mation of a large recirculation bubble in the wake region.
Nevertheless, employing the methodology expounded in this
study, it becomes feasible to attain rapid convergence of

DDGP1 to DDGP4 by increasing the CFL number from 1 to
1.0 × 106 within 500 steps, setting the residual convergence
criteria of GMRES to 0.001, and employing the I_Krylov
subspace mode. As portrayed in Fig. 16, the computation
residuals swiftly converge to 11 orders of magnitude, de-
spite the presence of a notable recirculation bubble near the
trailing edge, which is distinctly observable in Fig. 17.
Another adverse result of flow separation lies in the intricate
prediction of lift and drag coefficients, with the latter
proving particularly challenging. Figure 18 gives the con-
vergence history of total lift and drag coefficient with the
order of DDG schemes and the specific value of these
coefficients, form drag, and skin friction are succinctly
summarized in Table 5. A comparison between the com-
puted values and those obtained from CFL3D [46] reveals
that, as the calculation order improves, the computational
error reduces. This case highlights the benefits of order
enhancement in computational accuracy, and it should be
noted that the grid density in the literature is approximately
23.5 times greater than that employed in this test case. More
specifically, the lift and drag coefficients calculated using
the DDGP4 scheme exhibit errors of 0.87% and 4.50%,
respectively. Specifically, the pressure coefficients acquired
through the DDGP4 scheme demonstrate satisfactory com-
putational accuracy, as illustrated in Fig. 19.
In addition, this test case also explores the impact of

Figure 13 Convergence history of total lift and drag coefficients with the
order of DDG schemes.

Figure 14 Mach contours and streamline obtained by DDGP5 scheme: a mach contours; b streamline.

Table 4 Comparison of lift and drag coefficients of DDG schemes
AOA = 10° Cl Cd Cdp Cdv
DDGP1 1.03398 0.02159 0.01645 0.00514
DDGP2 1.08453 0.01297 0.00707 0.00590
DDGP3 1.08566 0.01270 0.00665 0.00605
DDGP4 1.08634 0.01259 0.00647 0.00612
DDGP5 1.08667 0.01251 0.00638 0.00613

CFL3D [46] 1.0909 0.01231 � �
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GMRES convergence tolerance on calculation convergence.
All test cases involve an increase in the CFL number from 1

to 1.0 × 106 within 500 steps. Figure 20 presents the com-
putational convergence histories and CPU time of calcula-
tions based on different order DDG schemes. It is notable
from the computational results obtained through DDGP1
and DDGP2 schemes that excessively small GMRES con-
vergence tolerance during low-order calculations may result
in over-solution, leading to prolonged single-step GMRES
sub-iterations. Conversely, the computations demonstrate
that larger GMRES convergence tolerances are capable of
satisfying the convergence requirements of low-order cal-
culations. The calculation results derived from DDGP3 and
DDGP4 schemes indicate that for higher-order calculations,
the GMRES convergence tolerance should be reduced;
otherwise, the calculation may fail to converge or even di-
verge. Remarkably, the results obtained through the DDGP4
scheme reveal that, although a convergent solution can be

Figure 15 Hybrid mesh for turbulent flow over a NACA4412 airfoil at attack angle of 13.87°: a computational domain; b zoom view.

Figure 16 Comparison of convergence histories of DDGP1 to DDGP4 schemes: a residual-iteration; b residual-CPU time (s).

Figure 17 Streamlines for turbulent flow past a NACA4412 airfoil at
attack angle of 13.87°.
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obtained with higher GMRES convergence tolerance, the
convergence process is more volatile when compared to
utilizing lower GMRES convergence tolerance. Moreover, it
fails to fully capture the rapid convergence characteristic of
the GMRES method.

5.4 Turbulent flow past a 30P30N multi-element airfoil

In this test case, turbulent flow past a 30P30N multi-element
airfoil is also studied. The initial condition corresponds to a
uniform flow featuring a Mach number of 0.17, a Reynolds
number of 1.7 × 106 based on the free-stream velocity and
the chord length of the airfoil, and an AOA of 5.5°. The
simulations are conducted utilizing a hybrid mesh, as de-
picted in Fig. 21, which consists of 1033 triangular and
14139 quadrilateral elements. The first layers of the mesh in
proximity to the wall boundary are characterized by an
average spacing of 2.0 × 10−5, while the far field boundary is
situated at a distance of 200 chord lengths away from the
airfoil.
For the simulation of turbulent flow with complex geo-

metry, achieving convergence poses a formidable challenge.
In this particular scenario, the CFL number is incrementally
increased from 1 to 1.0 × 104 within 800, 1000, 2000, and
2000 iterations for DDGP1, DDGP2, DDGP3, and DDGP4
schemes, respectively. Figure 22 presents the convergence

histories of the aforementioned schemes, indicating an ac-
celerated convergence as the CFL number rises. Notwith-
standing a deceleration in the growth rate, the DDGP3
scheme encounters the CFL growth limit parameter multiple
times during the computational process, with the threshold
set at 0.1. For DDGP4, the calculation divergence after the
residual drops to 3.5 orders of magnitude. Our hypothesis
posits that minor unsteady flow features manifest or shock
wave appears during the solution process, owing to the high
resolution and low dissipation inherent in the high-order
solution. It is important to note that further investigation is
warranted to validate this assumption thoroughly. Figure 23
showcases the variation in the Krylov subspace during the
computation of DDGP2 and DDGP3. Evidently, due to the
gradual stabilization of the flow field, reducing the sub-
iterative residual in GMRES becomes a formidable task.
Even when the subspace reaches its maximum pre-
determined value, sub-iteration fails to meet the standards of
convergence, leading to an increase in both single-step and
total computation time. Owing to the intricate geometric
characteristics, three distinct regions of flow separation
occur within the flow field: one in the slat cove, another in
the main wing cove, and a less conspicuous one above the
flap. In addition, a velocity increase occurs on the leading
edge of the slat due to a reduction in the flow area. These
phenomena are evidently depicted in Fig. 24. Figure 25

Figure 18 Convergence history of total lift and drag coefficient with the
order of DDG schemes.

Figure 19 Pressure coefficients of DDG methods for turbulent flow past a
NACA4412 airfoil.

Table 5 Comparisons of lift and drag coefficients of DDG schemes
AOA = 13.87° Cl Cd Cdp Cdv

DDGP1 1.63970 0.03521 0.03005 0.00516
DDGP2 1.67396 0.03234 0.02582 0.00652
DDGP3 1.68950 0.03109 0.02441 0.00668
DDGP4 1.70596 0.02990 0.02312 0.00678

CFL3D [46] 1.7210 0.02861 0.02156 0.00704
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gives the convergence history of the total lift coefficient
with the order of DDG schemes. Similar to other test cases,
as the calculation order increases, the computed value gra-

dually approaches the reference value. A comparison be-
tween the distribution of the pressure coefficient on the
airfoil surface, as calculated by the DDGP3 scheme, and the

Figure 21 Hybrid mesh for turbulent flow over a 30P30N multi-element airfoil at attack angle of 5.5°: a computational domain; b zoom view.

Figure 20 Influence of GMRES convergence tolerance to the convergence of calculations: a DDGP1; b DDGP2; c DDGP3; d DDGP4.
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Figure 22 Comparison of convergence histories of DDGP1 to DDGP3 schemes: a residual-iteration; b CFL number- iteration.

Figure 23 Krylov subspace in GMRES sub iteration: a DDGP2; b DDGP3.

Figure 24 Mach number contour lines and streamlines in separation
areas: a mach number contour lines; b streamlines.

Figure 25 Convergence history of total lift coefficient with the order of
DDG schemes.
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corresponding experimental values [47] as shown in Fig. 26,
expresses a high level of agreement.

6. Conclusions

This paper introduces a robust implicit high-order DG
method for the numerical solution of compressible NS
equations on arbitrary grids. The performance of this
method is assessed using several benchmark test cases.
Based on the obtained results, the following conclusions can
be drawn.
(1) The proposed implicit method demonstrates nearly

quadratic convergence in high-order calculations utilizing
polynomial approximations ranging from P1 to P5. To strike
a favorable balance between computational stability and
efficiency, three strategies are employed. Firstly, simulations
are mapped onto a reference domain, enhancing the rever-
sibility of the mass matrix in implicit calculations and re-
ducing the demand for high grid quality in high-order
calculations. Secondly, an exact Jacobian matrix is em-
ployed for preconditioning and matrix-vector generation in
the GMRES method, avoiding any approximations or sim-
plifications that may introduce additional errors. This ap-
proach helps minimize error propagation. Lastly, an
adaptive CFL number increasing strategy is implemented,
dynamically adjusting the CFL number based on changes in
the flow field. By adopting these strategies, the proposed
method achieves both robustness and efficiency in high-
order calculations.
(2) The efficiency of implicit calculations is influenced

by various parameters. In low-order DG calculations, dif-
ferences in these parameters do not significantly impact
stability and efficiency. However, in higher-order DG
methods, appropriate parameter settings are crucial to fully

exploit the performance potential of the GMRES method.
Numerical results indicate that the incremental Krylov
subspace mode exhibits superior stability compared to the
fixed Krylov subspace mode. Additionally, appropriate
convergence criteria for GMRES can prevent excessive
iterations during the iterative process. This study proposes a
convergence criterion of 0.01 for the GMRES method,
which is considered suitable for most cases. However, in
complex flow problems, it is recommended to further de-
crease the convergence criterion to ensure computational
stability.
(3) The combination of the DG method, GMRES solver,

exact Jacobian matrix, adaptive CFL number, and reference
domain demonstrates promising results in terms of robust-
ness, convergence, and accuracy. The comprehensive ana-
lysis conducted in this study provides valuable insights and
serves as a reference for implicit computations in high-order
calculations. The findings demonstrate the effectiveness of
the proposed method and underscore its potential for solving
complex problems in CFD.

Appendix A

The inviscid Jacobian consists of two parts. One is the in-
viscid flux Jacobian of Roe scheme, the other is the inviscid
domain Jacobian.

A.1 Inviscid flux Jacobian of Roe scheme

The inviscid flux F of Roe scheme is in the form of the
conserved variables, UL and UR. According to the chain
rule, the derivative of the inviscid flux of Roe scheme can be
divided into two parts, the derivative for the left state
F U/ L and the derivative for the right state F U/ R. The
process of computing Roe flux Jacobian is as follows, and
Nf, Ne is the interface number and element number in the
entire computational domain, L, R is the left and right ele-
ment of the interface. Nt = Nq × Nd , where Nq is the number
of the equations we solved and Nd is the degree of the high-
order polynomial approximations.
do m = 1, Nf
do n = 1, Nt
(a) The derivative F U/ L is calculated first.
The conserved variables’ derivatives, Ud

L and Ud
R for left

state are first computed from

bU U
U
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Figure 26 Pressure coefficient obtained by DDGP3 scheme.

J. Yan, et al. Acta Mech. Sin., Vol. 40, 323429 (2024) 323429-19



( ) ( )

( )

u u u v v v

p e u u v v u u v v

h e p h h h

q u n v n a p p

= ( ) / ,  = ( ) / ,

= ( 1) ( ) 0.5 + + / ,

( ) = ( ) + ,  = ( ) / ,

= ( ) / ,  = + , = 0.5 / / .

(A2)

x y

d
L

d
L L

d
L L

d
L

d
L L

d
L L

d
L

d
L

d
L L L L L L

d
L L

d
L L L

d
L

d
L

d
L

d
L

d
L L

d
L L

d
L

d
L L

d
L L

d
L

d
L

d
L

d
L

d
L L

d
L L L

( ) ( )

( )

u u u v v v

p e u u v v u u v v

h e p h h h

q u n v n a p p

= ( ) / ,  = ( ) / ,

= ( 1) ( ) 0.5 + + / ,

( ) = ( ) + ,  = ( ) / ,

= ( ) / ,  = + , = 0.5 / / .

(A3)

x y

d
R

d
R R

d
R R

d
R

d
R R

d
R R

d
R

d
R

d
R R R R R R

d
R R

d
R R R

d
R

d
R

d
R

d
R

d
R R

d
R R

d
R

d
R R

d
R R

d
R

d
R

d
R

d
R

d
R R

d
R R R

The derivatives of Roe average values u v h a, , , , , , and q are also required
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The derivatives of Roe’s dissipation, u v( ) , ( ) , ( ) ,d d d

p q( ) , ( ) , ( )d d d are computed from

u u u
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p p p q q q
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The derivatives of the eigenvalues of Jacobian
, ,1,d 2,d 3,d, and the derivatives of the entropy fix value
, ,1,d 2,d 3,d are written as

q q
q q

q c q c
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q c q c
q c q c

=
, if  0,
, if  < 0,

=
+ , if  + 0,

( + ), if  + < 0,

=
, if  0,

( ), if  < 0,

(A6)

1,d
d

d

2,d
d d

d d

3,d
d d

d d

( )
( )

( )
( )

q q q q

q q q q

q c q c q c q c

q c q c q c q c

q c q c q c q c

q c q c q c q c

=
, if  = ,

, if  = ,
0, if  = 0,

=

( + ) + , if  = ( + ) ( + ),

+ ( + ), if  = ( + ) ( + ),

0, if  = 0,

=

( ) , if  = ( ) ( ),

( ), if  = ( ) ( ),

0, if  = 0.

(A7)

1,d

d d
L

1
L

d
R

d 1
R

1

2,d

d d d
L

d
L

2
L L

d
R

d
R

d d 2
R R

2

3,d

d d d
L

d
L

3
L L

d
R

d
R

d d 3
R R

3

According to the relationship of the eigenvalues of Jaco-
bian and the entropy fix value, we get the final derivatives of
the eigenvalues of Jacobian , ,1,d 2,d 3,d

=
, if  ,
, if  > .

(A8)i
i i i

i i
,d

,d

,d

The derivatives of the parameters of Roe flux
a a a a a a a, , , , , ,1,d 2,d 3,d 4,d 5,d 6,d 7,d can be given by
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According to the above derivatives, we get
b b b b b, , , ,1,d 2,d 3,d 4,d 5,d for calculating F U/ L
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Finally, the derivative F U/ L is given as
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(b) After that, the derivative F U/ Rcan be obtained
easily.
The difference between the Roe flux derivatives for the

right state and the Roe flux derivatives for the left state is the
conserved variables derivatives. In this part, the conserved
variables derivatives of Uh

R and Uh
L for right state are written

as

bU U
U

I

U U
U

= = ,

= = 0.

(A13)
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R

d
L
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Then, we can use the same process from Eq. (A2) to Eq.
(A11) in step 1 to get the derivative F U/ R.
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(c) Combine F U/ L and F U/ R to get the inviscid flux
Jacobians.
In the last step, using Eqs. (A12) and (A14) to combine

the inviscid flux Jacobians, D, L, and U.
do j = 1, Nq
do k = 1, Nd
kj j N k =  ( 1) × +   d

kj n l kj n l b

kj n r kj n r b

kj n m kj n m b

kj n m kj n m b

D D F U

D D F U

L L F U

U U F U

( , , ) = ( , , ) + / ,

( , , ) = ( , , ) / ,

( , , ) = ( , , ) / ,

( , , ) = ( , , ) + / .

(A15)

k e
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k e

k e

inv inv
L L

inv inv
R R

inv inv
L R

inv inv
R L

end do
end do

end do
end do

A.2 Inviscid domain Jacobian

Compared with the inviscid flux Jacobian of Roe scheme,
the inviscid domain Jacobian can be got more easily because
the inviscid domain integral is only contributed to the di-
agonal matrix D. The process of these two parts is almost
the same, and the details are as follows:
do m = 1, Ne
do n = 1, Nt
(d) Get the conserved variables derivative Ud.

bU U
U I= = . (A16)h

k i

N

n k N i id
=1

,( 1)× +d

(e) Use chain rule to get the domain derivatives.
The form of related derivatives u v p h, , , , ( )d d d d d are

given as
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Then, the derivatives of flux at the x and y directions are
computed from
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(f) Combine the inviscid domain Jacobians to the matrix
D.
The same as the process of inviscid flux Jacobian, using

Eq. (A18) to combine the inviscid domain Jacobian
do j = 1, Nq
do k = 1, Nd
kj j N k= ( 1) × +d

kj n m kj n m
b

x
b

y

D D

F F

( , , ) = ( , , )

+ .
(A19)k k

inv inv

1d 2d

end do
end do

end do
end do
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求解任意网格上可压缩Navier-Stokes方程的鲁棒隐式
高阶间断伽辽金方法

严佳, 杨小权, 翁培奋

摘要 为了提高高阶方法在模拟复杂结构粘性流动时的鲁棒性和收敛性, 本文提出了一种隐式高阶间断伽辽金(DG)方法. 该种方法

在计算稳定性和效率之间实现了良好的平衡, 能够有效地处理复杂流动问题. 具体地, 为了求解线性系统, 发展了精确雅可比矩阵求解

方法, 并应用于广义最小残差(GMRES)方法进行预处理和矩阵向量生成. 该方法显著减少了隐式计算中雅可比矩阵的数值误差, 提高

了计算的准确性和稳定性. 同时,通过自适应CFL数增加策略, 进一步提高了隐式方法的计算效率.此外, 为了提高所提出方法对复杂网

格畸变的适应性, 所有的模拟都在参数域中进行. 这种方法显著提高了隐式计算中质量矩阵的可逆性, 从而提高了计算的稳定性. 本文

还对影响计算稳定性和效率的各种参数进行了全面分析, 包括CFL数、Krylov子空间大小和GMRES收敛标准. 通过一系列测试算例,
证明了将DG方法、GMRES方法、精确雅可比矩阵计算方法、自适应CFL数和参数域相结合, 能够显著提高计算的鲁棒性、收敛性和

计算精度. 这些分析结果为高阶计算中的隐式计算提供了重要的参考价值.

J. Yan, et al. Acta Mech. Sin., Vol. 40, 323429 (2024) 323429-24
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