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The cohesive zone model (CZM) has been used widely and successfully in fracture propagation, but some basic problems are
still to be solved. In this paper, artificial compliance and discontinuous force in CZM are investigated. First, theories about the
cohesive element (local coordinate system, stiffness matrix, and internal nodal force) are presented. The local coordinate
system is defined to obtain local separation; the stiffness matrix for an eight-node cohesive element is derived from the
calculation of strain energy; internal nodal force between the cohesive element and bulk element is obtained from the principle
of virtual work. Second, the reason for artificial compliance is explained by the effective stiffnesses of zero-thickness and
finite-thickness cohesive elements. Based on the effective stiffness, artificial compliance can be completely removed by
adjusting the stiffness of the finite-thickness cohesive element. This conclusion is verified from 1D and 3D simulations. Third,
three damage evolution methods (monotonically increasing effective separation, damage factor, and both effective separation
and damage factor) are analyzed. Under constant unloading and reloading conditions, the monotonically increasing damage
factor method without discontinuous force and healing effect is a better choice than the other two methods. The proposed
improvements are coded in LS-DYNA user-defined material, and a drop weight tear test verifies the improvements.
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1. Introduction

In the past few decades, the cohesive zone model (CZM) has
been used extensively in studying fracture propagation,
where the cohesive element is used for modeling cohesive
interface between edges of shell elements, faces of shell
elements, and faces of solid elements, typically for treating
delamination. CZM is based on the cohesive zone concept
proposed by Barenblatt [1] and Dugdale [2]. It is assumed
that at the ahead of the crack tip, there is a thin layer se-
parating two solids in which damage mechanisms leading to
the crack are localized, and the behavior of this crack pro-
cess zone is characterized by traction-separation law called
cohesive law. Commonly used cohesive laws include bi-
linear cohesive law [3], trapezoidal cohesive law [4], poly-

nomial cohesive law [5], and exponential cohesive law [6].
For all these cohesive laws, bilinear cohesive law has be-
come a big part of them. The major advantage of bilinear
cohesive law is that a very simple traction-separation law
provides results good enough to model with accuracy de-
lamination and cracking [7]. In this paper, bilinear cohesive
law is used to investigate artificial compliance and dis-
continuous force, but the proposed methods can be applied
to other displacement-based cohesive laws as well. For a
comprehensive understanding of this topic, it is worth
mentioning that the piecewise-linear generalizable cohesive
element (not assuming a specific cohesive law shape) [8]
and some other potential-based or energy-based CZM are
also under active investigation [9].
Instead of dealing with stress-strain relation, cohesive law

deals with traction-separation or stress-separation relation.
The theories about CZM have been studied by many re-
searchers. Yamaguchi et al. [10] used quadratic separation
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criterion to define a damage factor that is used in con-
stitutive matrix and stiffness matrix. Kumar et al. [11] ela-
borated the quadratic stress criterion for the initiation of
damage and the Benzeggagh-Kenane law for the failure of
damage evolution in bilinear cohesive law. Sarrado et al.
[12] decoupled stiffness into a zero-thickness cohesive ele-
ment and a linear elastic bulk element to model the
strengthening, softening, and failure of finite-thickness ad-
hesive. Trawiński et al. [13,14] investigated 2D and 3D si-
mulations of concrete fracture, and diagonal matrices with
only two and three stiffness parameters are regarded as
stiffness matrix, which should only be constitutive matrix.
Park and Paulino [15] derived a stiffness matrix for a po-
tential-based CZM. Rahul-Kumar et al. [16] derived rate-
independent and rate-dependent cohesive laws, and a Jaco-
bian matrix is obtained for the relation between incremental
traction and incremental separation. Bak et al. [17] elabo-
rated local coordinate system used in cohesive element, and
the tangent constitutive matrix is derived for the incremental
traction and incremental separation. Before the initiation of
damage or in the linear elastic range, the derivation of the
stiffness matrix is straightforward, but because of the non-
linearity of constitutive law after the initiation of damage, a
tangent stiffness matrix is needed.
Artificial compliance is a common numerical problem

inherent in intrinsic cohesive law, and many methods have
been proposed to try to solve it. Tabiei and Meng [18] found
that zero-thickness cohesive element with finite stiffness
introduces artificial compliance in a PMMA plate tensile
test, which would affect the velocity of fracture propagation.
Song et al. [19] used a potential-based exponential cohesive
law to simulate the fracture of asphalt concrete, and an in-
itial linear-elastic range with an adjustable initial slope is
used to reduce artificial compliance. Similarly, Blal et al.
[20] summarized some semi-empirical criteria to solve ar-
tificial compliance, and the main idea is that the ratio be-
tween cohesive element stiffness and bulk element stiffness
should be larger than a specific number. Even though much
research has been done in this direction, artificial com-
pliance can only be reduced for bilinear cohesive law in
many publications, not completely removed, and the delay
of stress wave response would be worse if a simulation is
time-sensitive. In this paper, we will show that a finite-
thickness cohesive element could be an option to solve this
problem. On the other hand, there are some other ways to
solve this problem. By using the discontinuous Galerkin
method, Nguyen [21] proposed a hybrid discontinuous Ga-
lerkin/CZM method, where the cohesive element is placed at
element faces and artificial compliance is removed by dis-
continuous Galerkin formulation.
The damage factor for bilinear cohesive law has been well

defined, but there is still one thing that can make the damage
evolution process different. It is whether current effective

separation is its maximum history value or not, and, with it,
it leads to two common damage evolution methods, the
monotonically increasing effective separation method and
the monotonically increasing damage factor method. These
two methods are widely and interchangeably used in current
research, probably because their difference is not well re-
cognized in publications. Tabiei and Zhang [22,23] in-
vestigated monotonically increasing effective separation
method on exponential cohesive law, and discontinuous
force is found when constant unloading and reloading is
used with this effective separation method. To solve this
discontinuous force, linear interpolation is used to get
traction at each time step based on the current mixed mode
ratio. Because this discontinuous force is related to the
change of mixed mode ratio, which is hard to control in a
simulation, this discontinuous force will be only explained
in detail from the traction response analysis of a single co-
hesive element. But it is important to point this out, and
more investigation of this discontinuous force is needed.
Instead of using the common damage factor, Tomar et al.
[24] used quadratic separation law to get a state variable in
the derivation of potential-based bilinear cohesive law. Si-
milarly, Kozinov et al. [25] used normalized effective trac-
tion and separation in monotonic mechanical traction-
separation law, and the mixed mode ratio is not explicitly
shown in the damage factor, so it could avoid the dis-
continuous force when the mixed mode ratio changes. Park
and Paulino [26] presented a comprehensive review of
traction-separation law, including potential-based models
and displacement-based models.
Another problem with the monotonically increasing ef-

fective separation method is that unreasonable failure can
happen if the maximum separation in Mode I and Mode II is
different. When the load of the cohesive element moves to a
mixed mode ratio that has an allowable effective separation
less than the maximum history effective separation, the
cohesive element would just fail. This means that cohesive
elements could fail only because of a change of mixed mode
ratio, especially in mixed mode situations. Even in the last
several years, monotonically increasing effective separation
method is still often used in papers. Gao et al. [27] used
intrinsic bilinear cohesive law with a monotonically in-
creasing effective separation method to simulate the impact
failure of laminated glass. Hirsch and Kästner [28] used a
monotonically increasing effective separation method to
simulate adhesive and cohesive failure under microscale
conditions. The good thing is that there is no discontinuous
force during this unreasonable failure process, which might
be the reason why it is used interchangeably with the
monotonically increasing damage factor method. Turon et
al. [29-31] proposed a relation between the interlaminar
strengths to ensure that the predictions obtained using co-
hesive finite elements are correct for mixed-mode loading
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conditions. de Oliveira and Donadon [32] showed that a
constant fraction between the damage onset and damage
failure would not introduce errors in displacement and en-
ergy response. Considering the possible problems with the
damage evolution method mentioned above, it should be
selected with great caution.
In this paper, improvements of CZM on artificial com-

pliance and discontinuous force are proposed. This paper is
constructed as follows. In Sect. 2.1, the local coordinate
system is defined to obtain local separation. In Sect. 2.2,
stiffness matrix for an eight-node cohesive element is de-
rived from the calculation of strain energy. In Sect. 2.3, the
internal nodal force between the cohesive element and bulk
element is obtained from the principle of virtual work. In
Sect. 3, the reason for artificial compliance is explained by
the effective stiffnesses of zero-thickness and finite-thick-
ness cohesive elements. Based on effective stiffness, artifi-
cial compliance can be completely removed by adjusting the
stiffness of finite-thickness cohesive elements. This con-
clusion is verified from 1D and 3D simulations. In Sect. 4,
three damage evolution methods (monotonically increasing
effective separation, damage factor, and both effective se-
paration and damage factor) are analyzed. Under constant
unloading and reloading conditions, the monotonically in-
creasing damage factor method without discontinuous force
and healing effect is a better choice than the other two
methods. In Sect. 5, the proposed improvements are coded in
LS-DYNA user-defined material, and a drop weight tear test
verifies the improvements. In Sect. 6, conclusions are made.

2. Theories of cohesive element

2.1 Local coordinate system

The cohesive element between the faces of eight-node solid
elements is investigated here, as shown in Fig. 1(a). Instead
of the stress-strain relation in bulk element, cohesive law
deals with traction-separation or stress-separation relation.

To get the local stress in the cohesive element, the local
separation sl between the top and bottom faces of the co-
hesive element is obtained from global displacement u t and
ub, as shown in Eq. (1), where Q is the coordinate system
transformation matrix from global to local coordinate sys-
tem; s l

0 is the initial local separation (or thickness of cohe-
sive element) in case of finite-thickness cohesive element is
used. u t and ub can be expressed as shape function Ni

(i = 1, 2, 3, 4) and node displacement u ti and ubi on top and
bottom faces. Because local separation is only related to the
top and bottom faces, the shape function used here is a
function of two local isoparametric element variables and
. This can be obtained by setting the third variable = ±1
for the shape function of a common eight-node solid ele-
ment, as shown in Eqs. (2) and (3). Note that if a subscript
appears twice in the same term, then summation over that
subscript is implied in this paper.

s Q u u s= ( ) , (1)l t b l
0

N i
N i

u u
u u

= ( , ) , = 1, 2, 3, 4,
= ( , ) , = 1, 2, 3, 4,

(2)t i ti

b i bi

( )( )N i( , ) = 1
4 1 + 1 + , = 1, 2, 3, 4,

= [1, 1, 1, 1],
= [ 1, 1, 1, 1].

(3)
i i i* *

*

*

To get the Q in Eq. (1), middle nodes between the top and
bottom faces are calculated first, as shown in Eq. (4). Unit
vectors, e1 and e 2, are obtained from middle nodes x m3, x m1

and x m4, x m2, respectively, as shown in Eq. (5) and Fig. 1(b).
The direction of x axis (q1) in the local coordinate system is
the opposite of the sum of e1 and e 2; the direction of y axis
(q2) in the local coordinate system is the same as the dif-
ference between e1 and e 2; the direction of z axis (q3) in the
local coordinate system is the cross product of q1 and q2, as
shown in Eq. (6) and Fig. 1(c). Since e1 and e 2 are unit

Figure 1 Schematic of the cohesive element. (a) Cohesive element between faces of eight-node solid elements; (b) unit vectors obtained from middle nodes;
(c) local coordinate system q q q{ , , }1 2 3 .
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vectors, q1 and q2 are perpendicular to each other (diagonals
of a rhombus are perpendicular to each other).

ix x x= +
2 ,  = 1, 2, 3, 4, (4)mi

ti bi

e x x
x x

e x x
x x

= ,

= ,
(5)

m m
m m
m m
m m

1
3 1

3 1

2
4 2

4 2

q e e
e e

q e e
e e

q q q

= +
+ ,

= ,

= × .

(6)
1

1 2
1 2

2
1 2

1 2

3 1 2

After the local coordinate system is defined (or theQ), the
separation in the local coordinate system can be calculated
from Eq. (1). Different traction can be constructed with the
increase of separation, like bilinear cohesive law [3], tra-
pezoidal cohesive law [4], polynomial cohesive law [5], and
exponential cohesive law [6]. Bilinear cohesive law is used
to investigate artificial compliance and discontinuous force
in this paper, but the proposed methods can be applied to
other cohesive laws as well.

2.2 Stiffness matrix

The strain energy of a cohesive element is expressed in the
local coordinate system first, as shown in Eqs. (71) and (72).
This strain energy is further expressed in a global coordinate
system to obtain the stiffness matrix. After the transforma-
tion to a global coordinate system, the strain energy is
shown in Eq. (73). The relation between local traction and
local separation is shown in Eqs. (8) and (9), where n, t1,
and t2 mean Mode I (opening mode, normal direction),
Mode II (sliding mode, tangential direction), and Mode III
(tearing mode, tangential direction), respectively. Before the
initiation of damage, the damage factor d is 0, and the
constitutive matrix C is a constant matrix.

U A

A

A

s

s Cs

u u Q CQ u u

= 1
2 ( ) d

   = 1
2 ( ) d

   = 1
2 ( ) ( )d ,

(7)

A
l l

A
l l

A
t b t b

T

T

T T

Cs= , (8)l l

d E

d E

d E

s

s

s

=
(1 ) 0 0

0 (1 ) 0

0 0 (1 )

. (9)
l
n

l
t

l
t

n

t

t

l
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l
t

l
t

1

2

0

1
0

2
0

1
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Follow Eqs. (2) and (3), global displacement u t and ub

can be expressed in terms of global displacement of nodes
on top and bottom faces, as shown in Eq. (10). The sum-
mation form of global separation can be expressed into
matrix form, as shown in Eq. (11). N is shape function
matrix, H is the matrix mapping node displacement to
global separation between top and bottom nodes, d is node
displacement in global coordinate system, as shown in Eqs.
(12)-(14), respectively. H is a 12 × 24 matrix. Only the first
row of H is shown in Eq. (13) because of the size of H, but
the rest can be obtained in the same way by checking
u u( )t b and d.

U N N N N Au u Q CQ u u= 1
2 ( ) ( )d , (10)

A
i ti i bi i ti i bi

T T

N Nu u NHd= , (11)i ti i bi

N N N N

N N N N

N N N N

N =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

, (12)

1 2 3 4

1 2 3 4

1 2 3 4

H(1, :) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

(13)

u v w u v w u v w u v w
u v w u v w u v w u v w

d = [ , , , , , , , , , , , ,
, , , , , , , , , , , ].

(14)

t t t t t t t t t t t t

b b b b b b b b b b b b

1 1 1 2 2 2 3 3 3 4 4 4

1 1 1 2 2 2 3 3 3 4 4 4

Put Eq. (11) into Eq. (10), strain energy is expressed as
matrix form in the global coordinate system, as shown in Eq.
(15), and stiffness matrix can be obtained as Eq. (161). Note
that if the shape function matrix is expressed as N NH= ,
where N is a 3 × 24 matrix, the stiffness matrix can be
shown as Eq. (162). For the isoparametric element used in
finite element method (FEM), Ad is mapped into the natural
coordinate system as J| |d d , where J| | is the determinant of
the Jacobean matrix, as shown in Eq. (17). And numerical
integration can be used to calculate the stiffness matrix.

U A

A

d H N Q CQNHd

d H N Q CQNH d

= 1
2 d

   = 1
2 d ,

(15)A

A

T T T T

T T T T

K A

A

H N Q CQNH

N Q CQN

= d

   = d ,
(16)A

A

T T T

T T
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K H N Q CQNH J

N Q CQN J

= | |d d

   = | |d d .
(17)A

A

T T T

T T

The stiffness matrix presented above can be applied to a
linear elastic range, but the problem becomes nonlinear after
the initiation of damage when the damage factor is larger
than 0 and becomes a variable. A general nonlinear equation
can be solved by using the Newton-Raphson iterative
method through a sequence of linearization, and an incre-
mental procedure with a tangent stiffness matrix is needed.
The general strain energy is shown in Eq. (18), where u is
displacement, u is virtual displacement, is virtual strain.
Linearization of this strain energy is shown in Eq. (19).
Considering that incremental stress can be expressed as
tangent stiffness and incremental strain, the linearization of
strain energy can be further expressed as the tangent con-
stitutive matrix, as shown in Eqs. (20) and (21). The first
integrand in Eq. (21) is similar to the stiffness term in a
linear system, and it is called tangent stiffness. The second
integrand only happens in geometric nonlinear problems,
and it is called initial stress stiffness, see Ref. [33] for de-
tailed information.

U u u u u u( , ) = ( ) : ( , )d , (18)
0

L U u u[ ( , )] = ( : + : )d , (19)
0

C= : = : , (20)tan

L U u u C[ ( , )] = ( : : + : )d . (21)
tan

0

Geometric nonlinearity of cohesive elements is not con-
sidered in this paper, and this is also taken by other papers
[17,34,35]. Incremental traction is related to incremental
separation through a tangent constitutive matrix as

C sd = dl tan l, as shown in Eq. (22). To get a partial deri-
vative of traction with respect to separation, the damage
factor for bilinear cohesive law should be defined. This
damage factor could be a really complicated function of
local separation sl

n, sl
t1, and sl

t2, see Eqs. (38)-(40) later.

What is more, different failure criteria can have different m
0

and m
f , so the detailed expression of the damage factor is

not shown here. The element in the first row and first col-
umn in Ctan is shown in Eq. (23), and the others can be done
in the same manner. After the tangent constitutive matrix is
obtained, the tangent stiffness matrix can be obtained si-
milarly, see Eq. (24).

s s s
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/ / /
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l
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l
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l
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l
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l
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l
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s d E d
s E s= (1 ) + 1 , (23)l

n

l
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l
n n l

n0 0

K A

A

H N Q C QNH

N Q C QN

= d

      = d .
(24)A

A

tan T T T tan

T T tan

2.3 Internal nodal force

To get the interaction between the cohesive element and
bulk element, internal nodal forces should be calculated.
The principle of virtual power states that the internal power
equals the external power. External power can be from
concentrated load, surface load, and body load, as shown in
Eq. (25). However, surface force and body force are not
considered in the derivation because the cohesive element
used in this paper has no mass and is surrounded by solid
bulk elements. The time derivative of local separation can be
obtained directly from Eqs. (1) and (2), as shown in Eq.
(26).

( ) ( ) ( )A A

V

i

s x f x f x f

x f

d = + + ( ) d

+ ( ) d ,

= 1, 2, 3, 4,

(25)
A

l l ti ti bi bi
A

S

V
B

T T T T

T

( ) ( ) ( )N N

i

s x x Q= ( , ) ( , ) ,

= 1, 2, 3, 4.
(26)l ti i bi i

T T T T

Substitute Eq. (26) back into Eq. (25) to get Eq. (27), and
by comparing the left and right sides, internal nodal forces
on the top and bottom faces can be obtained, as shown in Eq.
(28).

( )

( ) ( )

A

N A N A

i

s

x Q x Q

d

= ( , ) d ( , ) d ,

= 1, 2, 3, 4,

(27)
A

l l
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A

i l bi
A
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T
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f Q

f Q

= ( , ) d , = 1, 2, 3, 4,

= ( , ) d , = 1, 2, 3, 4.
(28)
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T
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3. Artificial compliance of CZM

3.1 Analysis of artificial compliance

The first problem is artificial compliance, which increases
compliance and reduces stress wave speed in dynamic
problems. Stress wave speeds in 1D, 2D, and 3D solids are
shown in Eq. (29). As shown in the equations, Young’s
modulus E, density , and Poisson’s ratio v are the three
parameters that can alter the speed. The zero-thickness co-
hesive element can handle FEM modeling well, but the
overall effective stiffness is implicitly decreased. To show
the change caused by cohesive elements, three different
types of FEM modeling are shown in Fig. 2, where blue
lines and strips mean zero-thickness cohesive elements and
finite-thickness cohesive elements, respectively.

V E

V E v

V E v v v

= / ,

= /[(1 ) ] ,

= (1 )/[(1 + )(1 2 ) ] .

(29)
1D

2D
2

3D

A 1D model of springs in series corresponding to Fig. 2 is
used to explain the reason for artificial compliance, see
Fig. 3. lb and lc are the length of bulk element and cohesive

element, respectively; kb and kc are the stiffness of bulk
element and cohesive element, respectively. The difference
of finite-thickness cohesive element is that a thin layer of
solid is replaced by the cohesive element, and then the de-
formation of the cohesive element is based on the initial
material, not like zero-thickness cohesive element where its
deformation is from nothing, which does not happen in
reality. Parameter selection is investigated in Refs. [20,22]
on stress wave speed, but cannot totally solve this problem,
because zero-thickness cohesive element means extra stiff-
ness and extra deformation.
Theoretically, the time needed for a stress wave to pass

through zero-thickness cohesive elements is 0 since its
length is 0, but cohesive elements would have small de-
formation when it is loaded, and some time is needed to pass
through these deformed cohesive elements. This is the deep
reason why zero-thickness cohesive elements can decrease
the stress wave speed. Klein et al. [36] used a 1D example to
illustrate the relation between effective stiffness and stiff-
ness of zero-thickness cohesive element. Here, the de-
formation and effective stiffness corresponding to the three
cases in Fig. 3 are shown in Fig. 4 and Eq. (30). For a
general case with n bulk elements, the effective stiffness is
shown in Eq. (31).

E E

E E l k
E

E E

l
l

E
k l
E

k l

= , bulk elements only,

= 1 1

1 + 2 , zero-thickness,

= 1 +
2 +

, finite-thickness,

(30)
b c

c

b c b

c b

eff

eff
zero

eff
finite

Figure 2 Different FEM modeling methods. (a) Bulk elements only; (b)
bulk elements with zero-thickness cohesive elements; (c) bulk elements
with finite-thickness cohesive elements.

Figure 4 Deformation after load applied and illustration of artificial compliance in 1D case. (a) Bulk elements only; (b) bulk elements with zero-thickness
cohesive elements; (c) bulk elements with finite-thickness cohesive elements.

Figure 3 Different spring models. (a) Bulk elements only; (b) bulk elements with zero-thickness cohesive elements; (c) bulk elements with finite-thickness
cohesive elements.
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E E

E E nl k
n E

E E
n l

l n E
k l

n n E
k l

= , bulk elements only,

= 1 1

1 +
( 1)

, zero-thickness,

= 1 +
( 1) ( 1)

+ ( 1) , finite-thickness .

(31)
b c

c

b c b

c b

eff

eff
zero

eff
finite

For zero-thickness cohesive element, since the coefficient
after Young’s modulus E in Eqs. (30) and (31) is always less
than 1, and its effective stiffness is always less than the
stiffness of the bulk element. And this artificial compliance
would be worse if a smaller bulk element (lb) is used in the
FEM model. However, a smaller element is usually required
in simulations to get spatial (or grid) convergence. For a
finite-thickness cohesive element, if the cohesive element
stiffness kc equals E l/ c, its effective stiffness should be equal
to the stiffness of the bulk element, which means no artifi-
cial compliance. It is worth mentioning that, the expressions
of stiffness for these two kinds of cohesive elements are
different. For zero-thickness cohesive element, its stiffness
is Young’s modulus E over bulk element size lb, while it is
Young’s modulus E over cohesive element size lc (not bulk
element size lb) for finite-thickness cohesive element. After
the reason for artificial compliance is explained, the finite-
thickness cohesive element is proposed as an easy and ef-
fective way to solve this problem.
Artificial compliance is not only shown on stress wave

speed but also on static deformation. In the rest of this Sect.
3, 1D and 3D simulations about static deformation, dynamic
normal stress, and dynamic shear stress are used to explain
and verify artificial compliance, and this problem is com-
pletely solved if finite-thickness cohesive element is used
with proper stiffness.

3.2 Deformation in quasi-static simulation

The deformation of a bar in quasi-static conditions is in-
vestigated through MATLAB. The bar has a square cross-
section, and the length of the side is 20 mm, and the total
length in axial direction is 200 mm. The left end of the bar is
fixed, and load is applied at the right end. The geometry,
boundary condition, and load are shown in Fig. 5. The
material parameters used are Young’s modulus E 210 GPa,
density 0.00785 g/mm3. The total number of bulk ele-
ments is 100, so the length of the bulk element lb is 2 mm.
However, for the finite-thickness cohesive elements case,
the length of the bulk element lb is 1.9 mm, and the length of
the cohesive element lc is 0.1 mm. The dynamic equation of
motion is shown in Eq. (32), and the mass matrix (Mb and

M c) and stiffness matrix (Kb and K c) for the three cases in
Fig. 4 are shown in Eqs. (33)-(35), respectively. Note that
the mass matrix for zero-thickness cohesive element is set to
0 here. r in Eqs. (34) and (35) is used to adjust the stiffness
of cohesive elements.

M Ü C U K U F[ ]{ } + [ ]{ } + [ ]{ } = { }, (32)ext

Al EA
lM K= 6

2 1
1 2 ,   = 1 1

1 1 , (33)b
b

b
b

rEA
lM K= 0 0

0 0 ,   = 1 1
1 1 , (34)c c

b

zero zero

Al rEA
lM K= 6

2 1
1 2 ,   = 1 1

1 1 . (35)c
c

c
c

finite finite

Rayleigh damping is used to construct a damping matrix to
reduce oscillation and reach a steady state more quickly, as
shown in Eq. (36). 1 and 2 are two coefficients to be
determined from the frequency range of interest and mode
damping ratio. In this paper, the interested frequency range is
the frequency component that has a period equal to the time
that the stress wave passes through the whole bar 1 and one
bulk element 2. The two-mode damping ratios are the same
and chosen as 0.1 in this paper, i.e., = = 0.11 2 in Eq. (37).
Central difference method is used to solve the equation.

C M K[ ] = 1[ ] + 2[ ], (36)

0.5

1

1
1
2 = . (37)1

1

2
2

1

2

Figure 6(a) shows the displacement at the right end of the

Figure 5 (a) Geometry, boundary condition, and load of the 1D bar, unit
(mm); (b) detailed load at right end for the quasi-static condition.
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bar obtained for different FEM models. With the increase of
r for zero-thickness cohesive element, displacement gets
closer and closer to the bulk elements only case, but there is
still a discrepancy between E l100 / b the case and bulk ele-
ments only case. However, a finite-thickness cohesive ele-
ment can have displacement totally the same as the bulk
elements only case. The displacement percent error in Fig.
6(b) can show this clearly. Figure 6(c) shows the time step

size scale factor needed for a successful simulation, and this
scale factor decreases fast with the increase of cohesive
element stiffness. We found that as long as it is less than the
critical time step size, the simulation results are the same in
our example. Even though the finite-thickness case has al-
most the same scale factor as the zero-thickness E l100 / b

case, the finite-thickness case can remove artificial com-
pliance completely.

3.3 Normal stress in dynamic simulation

Normal stress in dynamic simulation is also investigated,
and 1D case in MATLAB and 3D case in LS-DYNA are
presented. For the 1D case, it is almost the same as Sect. 3.1,
except that load is an impact load, as shown in Fig. 7(a). The
stress wave at the right end of the bar is plotted in Fig. 8. For
the zero-thickness cohesive element, the stress wave is de-
layed even in E l100 / b case, but this delay is not found for the
finite-thickness cohesive element.
In the 1D case, from Eqs. (33)-(35), the zero-thickness

cohesive element has similar stiffness as the bulk element,
and the finite-thickness cohesive element has totally the
same stiffness as the bulk element. However, in 3D case,
their stiffnesses are different. In general, the bulk element
has 6 stress components, but a cohesive element only deals
with 3 stress components, so it is still necessary to in-
vestigate this artificial compliance in 3D case. To make a
better comparison between these two types of cohesive

Figure 6 (a) Displacement at the right end of the bar; (b) displacement
percent error; (c) time step size scale factor needed for a successful si-
mulation.

Figure 7 (a) Detailed load at right end for the dynamic condition in 1D
case; (b) the bar in LS-DYNA in 3D case.
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elements, the stiffnesses are both used as E l/ c in 3D case.
The length of the bulk element lb is 1 mm, and the length of
the cohesive element lc is 0.01 mm in the simulation, a very
thin layer. For 3D case, one more parameter needed is
Poisson’s ratio v 0.3. The FEM model is shown in Fig. 7(b),
and the load is the same as Fig. 7(a). As shown in Fig. 9(a),
the zero-thickness cohesive element cannot avoid stress
wave delay even with high stiffness, but stress wave delay is
removed in Fig. 9(b) with lower stiffness. The reason why
stiffness in 3D case should be a little larger than the stiffness
E l/ c is that Poisson’s ratio v 0.3 for bulk elements, and from
V3D in Eq. (29), the speed wave is faster than E / if v 0.3 is

considered. Note that this stiffness is selected by trial and
error. Even though the stiffness for a single bulk element
and a single cohesive element can be obtained, the overall
stiffness for a bar with many bulk elements and cohesive
elements can be challenging and there might not be an
analytical relation available. Stress wave speed can even be
faster when a larger stiffness is used in finite-thickness co-
hesive element, see Fig. 9(b).

3.4 Shear stress in dynamic simulation

Shear stress in dynamic simulation in 3D case is also in-
vestigated. The top and bottom sides of a plate with 1 mm
thickness are fixed. One layer of element is used to mesh the
plate, and the cube element size is 1 mm. Concentrated load
is applied to the 10 nodes at the center of the left side of the
plate, and the load on each node is shown in Fig. 10(b). This
load is small enough that the maximum stress in the simu-
lation is still in the elastic range. Material parameters are the
same as that in Sect. 3.2. The shear stress at A randomly
selected point 24.5 mm × 24.5 mm from the left bottom
corner is extracted, but the same conclusion can be obtained
from other positions.
The stress wave of the point is shown in Fig. 11, and

Figure 8 Stress wave at the right end of the bar in 1D case.

Figure 9 Stress wave at the right end of the bar for 3D case. (a) Zero-
thickness cohesive element; (b) finite-thickness cohesive element.

Figure 10 (a) Schematic of the plate, unit (mm); (b) concentrated load on
the left side of the plate.
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similar results as normal stress cases can be found. The
zero-thickness cohesive element cannot avoid stress wave
delay even with high stiffness, but stress wave delay is re-
moved in Fig. 11(b) with a lower stiffness. And stress wave
speed can be even higher than bulk elements only case when
a larger stiffness E l1.75 / c is used. It is also found that stress
wave is not correct for the zero-thickness cohesive element
case when a low stiffness E l0.01 / c is used in Fig. 11(a), so
great caution should be taken on stiffness selection.

4. Discontinuous force of CZM

The second problem is discontinuous force. According to
the authors’ investigation, this discontinuous force is related
to damage evolution methods. The commonly used damage
evolution methods include the monotonically increasing
effective separation method [27,28] and the monotonically
increasing damage factor method [3,37], but both methods
define the failure of the cohesive element based on whether
a damage factor is larger than 1, not effective separation. For
the bilinear cohesive law using quadratic stress criterion and
power law, Eqs. (38) and (39) show the separations at the
initiation of damage and at the failure of damage evolution,
respectively.

( ) ( )
= 1 +

+
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0 0 0 2
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where, N
0 and T

0 are separation at the initiation of damage
in Mode I and Mode II, respectively; is mixed mode ratio,

( ) ( )s s s+ /l
t

l
t

l
n1 2 2 2
; EN

0 and ET
0 are stiffness in Mode I and

Mode II, respectively; G CI
0 and G CII

0 are critical energy re-

lease rate in Mode I and Mode II, respectively; m
0 and m

f

are separations at the initiation of damage and at the failure
of damage evolution for a mixed mode case, respectively;
subscript m means mixed mode ratio. For each mixed mode
ratio, there is a set of m

0 and m
f . The general way to cal-

culate the damage factor is shown in Eq. (40); the reduction
of stiffness because of the damage factor is shown in Eq.
(41).
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where, d is damage factor; m is effective separation; EN

and ET are the current stiffness in normal and tangential
directions, respectively. Monotonically increasing effective
separation and monotonically increasing damage factors are
shown in Eqs. (42) and (43), respectively, but then, damage
factor and effective separation can vary freely in Eqs. (42)
and (43), respectively.  m i,

true and dm i,
true are the true effective

separation and true damage factor at ith time step.
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Another thing to mention is the definition of loading,
unloading, and reloading in the damage evolution process.
For a loading process that has maximum history effective

Figure 11 Stress wave of the point. (a) Zero-thickness cohesive element;
(b) finite-thickness cohesive element.
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separation m i, [1, 1]
max , maximum history damage factor

dm i, [1, 1]
max , current effective separation m i, , and current da-

mage factor dm i, , the unloading and reloading for these two
methods at ith step are shown in Eqs. (44) and (45), re-
spectively. Otherwise, it is in loading.

, (44)m i m i, , [1, 1]
max

d d . (45)m i m i, , [1, 1]
max

Since effective separation is an independent variable and
damage factor is a dependent variable in Eq. (40), theore-
tically, another possible damage evolution method could be
monotonically increasing both effective separation and da-
mage factor method, as shown in Eq. (46). To the best of
authors’ knowledge, this damage evolution method has not
been mentioned in other papers. In the rest of this Sect. 4,
these three methods are analyzed and compared.
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4.1 Monotonically increasing effective separation, with
discontinuous force

Constant unloading and reloading are an easy and straight-
forward method to deal with unloading and reloading, which
means stiffness is a constant during the unloading and re-
loading process. Here, this stiffness is the same as the
stiffness that happens at the maximum history effective se-
paration or maximum history damage factor, depending on
the damage evolution method used. For a monotonically
increasing effective separation method, constant unloading
and reloading works well for a single mixed mode ratio
case, but discontinuous force can happen at the end of re-
loading when the mixed mode ratio changes. A single co-
hesive element is used to verify this, and the material
parameters used are shown in Table 1.
First, two load cycles with the same mixed mode ratio are

investigated, and the number of total time steps is 800.
Displacement load data and mixed mode ratio range are
shown in Fig. 12, where the mixed mode ratio is a constant.
For the monotonically increasing effective separation
method, the maximum history effective separation is shown

in Fig. 13(a), and this value keeps increasing. The damage
factor is shown in Fig. 13(b). Figure 13(c) and (d) show the
tangential traction response in 2D and 3D plots, respec-
tively. As shown in these figures, discontinuous force is not
found in these two cycles, and the stiffness in the unloading
and reloading is constant. So, constant unloading and re-
loading work well for monotonically increasing effective
separation methods when the mixed mode ratio does not
change.
Second, two load cycles with different mixed mode ratios

are investigated. Displacement load data and mixed mode
ratio range are shown in Fig. 14, where the mixed mode
ratio changes. For the monotonically increasing effective
separation method, the maximum history effective separa-
tion is shown in Fig. 15(a), and its value is still increasing.
The damage factor is shown in Fig. 15(b). Figure 15(c) and
(d) show the tangential traction response in 2D and 3D plots,
respectively. Discontinuous force is found in the second
cycle at the end of reloading if constant unloading and re-
loading are used. This discontinuous force can also be seen
from the damage factor in Fig. 15(b). The displacement load
is continuous, but the damage factor at the end of reloading
is not continuous. Or from Eqs. (38) and (39), when the
mixed mode ratio changes, m

0 and m
f also change, but for

Table 1 Material parameters of the cohesive element
Stiffness
(MPa/mm)

Fracture strength
(MPa)

Critical energy release rate
(N/mm)

Mode I 100000 30 0.25
Mode II 100000 60 1.00

Figure 12 (a) Displacement load data; (b) mixed mode ratio range.
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monotonically increasing effective separation method,
maximum history effective separation is kept same at the
end of reloading. From the damage factor equation in Eq.
(40), it is easy to see that the stiffness of unloading in the
first cycle and the stiffness of reloading in the second cycle
should be different. The correct stiffness of reloading in the
second cycle is shown in Fig. 15(c) and (d) with a dotted
line.
A general loading process is shown in Fig. 16(a), and it

has a wider range of mixed mode ratio, which changes in the
whole loading process. Effective separation and damage
factor are shown in Fig. 17(a) and (b), respectively. Figure
17(c) and (d) show the tangential traction response in 2D
and 3D plots, respectively. As shown in these figures, dis-
continuous force is found in each cycle at the end of re-
loading, which agrees with what was found in previous
simulations. The traction during loading should be exactly
on the 3D cohesive law, but some tractions are above the 3D

Figure 13 (a) Effective separation and maximum history effective separation; (b) damage factor; (c) tangential traction versus tangential separation; (d)
tangential traction versus normal and tangential separation.

Figure 14 (a) Displacement load data; (b) mixed mode ratio range.
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cohesive law in Fig. 17(d) during reloading.

4.2 Monotonically increasing effective separation,
without discontinuous force

For the monotonically increasing effective separation
method, a different mixed mode ratio at the same maximum
history effective separation means different stiffness, and it

is better to get this stiffness based on the current mixed
mode ratio, not a fixed stiffness that happens at the last
maximum history effective separation. Without considering
plastic strain, the unloading and reloading should be on the
line that connects the point on bilinear cohesive law and
the origin, and then the slope (or stiffness) of this line can
be calculated. Under the current mixed mode ratio, the
point with maximum history effective separation is

Figure 15 (a) Effective separation and maximum history effective separation; (b) damage factor; (c) tangential traction versus tangential separation; (d)
tangential traction versus normal and tangential separation.

Figure 16 (a) Displacement load data; (b) mixed mode ratio range.
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X Y Z T T T( , , , , , )n t t1 2 , and the point in unloading and reload-
ing is x y z t t t( , , , , , )n t t1 2 , where X Y Z x y z( , , , , , ) are separa-
tions and T T T t t t( , , , , , )n t t n t t1 2 1 2 are tractions in three
directions. t t t( , , )n t t1 2 is to be determined. Then linear in-
terpolation can be used to get traction at each time step
based on the current mixed mode ratio, as shown in Eq. (47).
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From Fig. 18(c) and (d), discontinuous force is not found
in each cycle at the end of reloading, and the stiffness of the
unloading and reloading are not the same and not constant in
Fig. 18(c). However, the damage factor in Fig. 18(b) is not
monotonically increasing now, which means a healing effect
can happen in this method after using linear interpolation.
From Sects. 4.1 and 4.2, it is easy to see that constant un-
loading and reloading do not work for the monotonically
increasing effective separation method. The envelope of

m
max after the first cycle is shown in Fig. 18(d), and the

point with the maximum history effective separation after
the first cycle is shown in the figure. Looking downward
from the top, this envelope curve is just a quarter circle with
the maximum history effective separation.

4.3 Monotonically increasing damage factor, without
discontinuous force

The monotonically increasing damage factor method is ap-
plied to the same displacement load. Effective separation
and damage factor are shown in Fig. 19(a) and (b), re-
spectively. Instead of the monotonically increasing effective
separation, the maximum history damage factor is kept in-
creasing, and effective separation can increase and decrease.
Similarly, the point with maximum history damage factor is
X Y Z T T T D( , , , , , , )n t t1 2 , and the point in unloading and re-
loading is ( )x y z t t t d, , , , , ,n t t1 2 , where t t t( , , )n t t1 2 is to be de-
termined, as shown in Eq. (48). Here, effective separation at
X Y Z T T T D( , , , , , , )n t t1 2 is not required to be the maximum
history effective separation. This damage evolution metho-

Figure 17 (a) Effective separation and maximum history effective separation; (b) damage factor; (c) tangential traction versus tangential separation; (d)
tangential traction versus normal and tangential separation.

A. Tabiei, et al. Acta Mech. Sin., Vol. 40, 423345 (2024) 423345-14



Figure 18 (a) Effective separation and maximum history effective separation; (b) damage factor; (c) tangential traction versus tangential separation; (d)
tangential traction versus normal and tangential separation.

Figure 19 (a) Effective separation; (b) damage factor and maximum history damage factor; (c) tangential traction versus tangential separation; (d)
tangential traction versus normal and tangential separation.
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dis also used in MAT 240 in Ref. [37].
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Figure 19(c) and (d) show the tangential traction response
in 2D and 3D plots, respectively. As shown in these figures,
discontinuous force is not found in each cycle at the end of
reloading. The big difference with the monotonically in-
creasing effective separation method is that the stiffness of
the unloading and reloading in Fig. 19(c) are the same and
constant, which is because the damage evolution process is
controlled by the damage factor. Before the damage factor
increases, it is kept the same. In this case, constant un-
loading and reloading works well for the monotonically
increasing damage factor method. The envelope of dm

max

after the first cycle is shown in Fig. 19(d), and the point with
the maximum history damage factor after the first cycle is
shown in the figure. Looking downward from the top, this
envelope curve is a power law boundary with the maximum

history damage factor.

4.4 Monotonically increasing both effective separation
and damage factor, without discontinuous force

As a possible damage evolution method, monotonically in-
creasing both effective separation and damage factor method
is investigated and compared with the previous methods.
From the name of this method, it has both monotonically
increasing effective separation and damage factor, as shown
in Eq. (49) and Fig. 20(a) and (b). Figure 20(c) and (d) show
the tangential traction response in 2D and 3D plots, re-
spectively. As shown in these figures, discontinuous force is
not found in each cycle at the end of reloading. Because it
has the property of monotonically increasing effective se-
paration, the stiffnesses in unloading and reloading are not
the same now. From Fig. 20(b), the damage factor is closer
to 1 compared with the methods shown above. For some
simulations, the damage factor could increase much faster
because effective separation and damage factor are both
monotonically increasing now, and caution should be taken
with this method. More researches are needed to under-

Figure 20 (a) Effective separation and maximum history effective separation; (b) damage factor and maximum history damage factor; (c) tangential traction
versus tangential separation; (d) tangential traction versus normal and tangential separation.
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standthe scope of its application.
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Even though the three methods work for the presented
displacement load, there is still a problem with the mono-
tonically increasing effective separation method under some
special load situations, where the mixed mode ratio moves
in a direction the maximum allowable separation is de-
creasing. For a cohesive law with N

f 0.015 mm and T
f

0.040 mm, different maximum history effective separation
has an intersection with the power law boundary. Take the

m 0.020 mm as an example, the quarter circle has an in-
tersection with the power law boundary, and unreasonable
failure would happen whenever the mixed mode ratio is at
the left side of the line drawn through the origin and this
intersection, because the maximum history effective se-
paration is larger than the maximum allowable separation in
that range. However, this does not happen in the mono-
tonically increasing damage factor method where the da-

mage evolution process is controlled by the damage factor,
so there is no intersection with the power law boundary for
each maximum damage factor, as shown in Fig. 21(b). In
this case, no sudden failure happens just because of a change
in the mixed mode ratio.

5. Numerical verifications

5.1 Artificial compliance

A drop weight tear test is used to verify the artificial com-
pliance. A 3D rectangular pipeline steel plate has a sharp V-
notch with an angle of 45° and a depth of 5 mm, as shown in
Fig. 22(a). Two rigid anvils are used to support the speci-
men, and a rigid hammer with a mass of 40 kg and an initial
velocity of 14 m/s is designed to impact the top middle of
the specimen. Detailed information is shown in Ref. [38].
The pipeline steel has Young’s modulus E 203 GPa, density
0.00785 g/mm3, Poisson’s ratio v 0.3. Bulk element size is

0.99 mm, and finite-thickness cohesive element size is
0.01 mm. Material parameters of the cohesive element are
shown in Table 2.
Fracture crack (failed cohesive elements are deleted dur-

ing simulation) and damage factor are shown in Fig. 22(b).
Reaction force from the impactor and its displacement are

Figure 21 (a) Monotonically increasing effective separation method; (b) monotonically increasing damage factor method.

Figure 22 (a) Schematic of the plate, unit (mm); (b) fracture crack and damage factor.
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compared. From Fig. 23(a), the curve obtained in this paper
agrees with [35] well, especially in the initial part. However,
the simulation is not very close to the experiment in the
initial part, and the possible reason could be the difference in
boundary conditions between the experiment and the si-
mulation. In Fig. 23(b), finite-thickness cohesive element is
compared with zero-thickness cohesive element. Even
though the zero-thickness cohesive element also agrees with
Ref. [38], the delay of response can be seen clearly, and the
delay gets bigger when time increases.

5.2 Unreasonable failure

A single cohesive element like Sect. 4 is presented here to
show the unreasonable failure because of the monotonically
increasing effective separation method. The material para-
meters of the cohesive element are shown in Table 3. From
the material parameters, it can be seen that the maximum
separation parameter in Mode I (0.017 mm) is less than that
in Mode II (0.033 mm).

The displacement load is made that effective separation is
decreasing, and the mixed mode ratio goes to the ratio that
has a smaller allowable effective separation, which is closer
to pure normal load in this case, as shown in Fig. 24(a) and
(b). The maximum history effective separation and the
change of damage factor are shown in Fig. 24(c) and (d),
respectively. The same thing, the healing effect is found in
Fig. 24(d) in this method, which is not what we want.
From the damage factor, it can be seen that at the end of

the 7th cycle, the damage factor is 0.9942, but just at the
start of the 8th cycle, the damage factor becomes 1 even
though the displacement load at the start of the 8th cycle is
just 0. This can also be explained from the top view of
cohesive law. The maximum history effective separation in
Fig. 25(a) has an intersection with the power law boundary,
and if the displacement load goes above the purple line, the
cohesive element would fail immediately, which could be
unreasonable for some situations. Another special loading
condition is a tangential load followed by a normal load,
where the change of mixed mode ratio is maximum, but this
failure because of the only change of load direction may not
agree with the experiment.

6. Conclusions

In this paper, artificial compliance and discontinuous force
in CZM are investigated. Different FEM modeling methods
and different damage evolution methods are analyzed to
solve the two problems. Several 1D and 3D simulations
have been conducted to verify the improvements proposed.
The conclusions obtained are shown as follows:
(1) Zero-thickness cohesive element and finite-thickness

cohesive element are compared.
(a) The reason for artificial compliance in zero-thickness

cohesive element is its extra stiffness and extra deformation.
The zero-thickness cohesive element cannot remove artifi-
cial compliance by just using higher stiffness. Effective
stiffness for zero-thickness cohesive elements and finite-
thickness cohesive elements are different. For the zero-
thickness cohesive element, it is bulk modulus E over the
size of a bulk element lb, whereas, for a finite-thickness
cohesive element, it is bulk modulus E over the size of the
cohesive element lc.
(b) For those time-sensitive simulations with long simu-

lation time, the finite-thickness cohesive element could be

Table 2 Material parameters of the cohesive element for artificial com-
pliance analysis [38]

Stiffness
(MPa/mm)

Fracture strength
(MPa)

Critical energy release rate
(N/mm)

Mode I 27405000 1800 101

Figure 23 (a) Comparison between finite-thickness cohesive element and
publications; (b) comparison between finite-thickness cohesive element and
zero-thickness cohesive element.

Table 3 Material parameters of the cohesive element of unreasonable
failure analysis

Stiffness
(MPa/mm)

Fracture strength
(MPa)

Critical energy release rate
(N/mm)

Mode I 10000 30 0.25
Mode II 10000 60 1.00
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an easy and numerically efficient way to remove artificial
compliance by using proper stiffness parameters.
(2) Three damage evolution methods (monotonically in-

creasing effective separation, damage factor, and both ef-
fective separation and damage factor) are analyzed and
compared.
(a) Discontinuous force happens when the monotonically

increasing effective separation method is used with constant
unloading and reloading. Linear interpellation based on the
current mixed mode ratio can be used to solve this dis-
continuous force. Monotonically increasing effective se-
paration method can lead to unreasonable failure when
maximum separation parameters in Mode I and Mode II are
different.

Figure 24 (a) Displacement load data; (b) mixed mode ratio range; (c) effective separation and maximum history effective separation; (d) damage factor.

Figure 25 (a) Explanation of the unreasonable failure in monotonically increasing effective separation method; (b) unreasonable failure in a special loading
condition.
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(b) The monotonically increasing damage factor method
has the inherent property to enable constant unloading and
reloading in the damage evolution process, and no un-
reasonable failure, which is a better choice compared with
the other two methods.
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黏结区模型在人工柔度和不连续力方面的改进

Ala Tabiei, 孟礼

摘要 黏结区模型在断裂扩展方面被广泛而成功的应用,但仍然存在一些基本问题被忽视需要解决.本文研究了黏结区模型中的人工

柔度和不连续力. 首先, 介绍了关于黏结单元(局部坐标系、刚度矩阵和内部节点力)的理论. 局部坐标系被定义用于获得局部分离. 八
节点黏结单元的刚度矩阵是从应变能的计算中导出的. 黏结单元与体积单元之间的内部节点力是根据虚功原理得出的. 其次, 从零厚

度和有限厚度的黏结单元的有效刚度角度解释了人工柔度的原因. 基于有限厚度黏结单元的有效刚度, 可以通过调整黏结单元的刚度

来完全消除人工柔度. 1D和3D模拟验证了这一结论. 第三, 分析了三种损伤演化方法(单调增加的有效分离、损伤因子以及有效分离和

损伤因子的结合). 在恒定卸载和重新加载条件下, 没有不连续力和愈合效应的单调增加的损伤因子方法显示出比其他两种方法更好的

选择. 所提出的改进方法已经编码到LS-DYNA用户定义材料中, 并且通过落锤撕裂试验获得的模拟结果验证了这些改进.
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