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Research on the flow and heat transfer characteristics of viscoelastic fluids has been an issue of considerable interest. However,
it is gradually found that the behaviors of some viscoelastic fluids deviate from the classical flow and heat transfer phenomena,
which are represented by integer order governing equations. Thus, it is necessary to construct a new constitutive relationship to
study complex viscoelastic fluids. In this paper, we investigate the rotating magnetohydrodynamics (MHD) flow and heat transfer
of generalized Maxwell fluid with distributed order characteristics over an infinite plate, and the Hall effect is considered. In
view of the multi-scale characteristics and nonlocality of generalized Maxwell fluid flow and heat transfer, fractional calculus is
introduced to accurately depict the flow and heat transfer mechanism. Fractional governing equations consisting of the distributed
order time fractional momentum equations and time fractional energy equation are derived. To calculate the numerical solutions
of velocities and temperature governing equations, the Crank-Nicolson finite difference schemes are proposed based on the L1
approximation formula. Then, the effectiveness and feasibility of the numerical method are verified, and the effects of relevant
parameters on fluid velocities and temperature are discussed, graphically. Finally, some conclusions are summarized.

Generalized Maxwell fluid, Magnetohydrodynamics flow, Hall effect, Fractional calculus, Finite difference method

Citation: Y. Qiao, H. Xu, and H. Qi, Rotating MHD flow and heat transfer of generalized Maxwell fluid through an infinite plate with Hall effect, Acta
Mech. Sin. 40, 223274 (2024), https:// doi.org/10.1007/s10409-023-23274-x

1. Introduction

Viscoelastic fluids play an important role in the development
of social production. Research on the essential properties of
viscoelastic fluids makes the application of fluids more ex-
tensive. Therefore, to further promote the practical applica-
tion of viscoelastic fluids, flow and heat transfer processes of
the fluid under the action of electric field, magnetic field and
pressure gradient are concerned and studied [1-5]. Moreover,
due to the extensive existence of magnetic field in modern
technology and human life, such as magnetohydrodynamic
generators, magnetohydrodynamic accelerators, even some
tissues and organs in the human body, it is found that the ef-
fects of magnetic field on the flow of viscoelastic fluids are
worth studying. Thus, magnetohydrodynamic has developed

*Corresponding author. E-mail address: htqi@sdu.edu.cn (Haitao Qi)
Executive Editor: Mingjiu Ni

rapidly [6-9]. And the influence of Hall current on magne-
tohydrodynamics (MHD) flow is also received attention and
relevant research has been carried out. Hayat et al. [10] con-
structed the Oldroyd-B fluid model to describe the behavior
of non-Newtonian fluids and discussed the effect of Hall cur-
rent on the rotational flow of non-Newtonian fluid in porous
media. Veerakrishna et al. [11] discussed the effects of ra-
diation and Hall current on the unsteady MHD free convec-
tive flow in a vertical channel filled with a porous medium.
Rasheed et al. [12] investigated the two-dimensional MHD
free convection of Casson fluid on the vertical surface with
transverse magnetic field, viscous dissipation, and Hall cur-
rent.

Recently, fractional calculus theory is introduced to de-
scribe the flow and heat transfer of viscoelastic fluids show-
ing non-Newtonian fluid characteristics, which is unable to
be described by integral calculus theory. And it is proven
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that the fractional differential operators with nonlocality and
memory can be used to characterize some complex motion
processes of the fluids. Yin and Zhu [13] analyzed the uni-
directional oscillating flow of the fractional Maxwell fluid
through an infinite straight pipe driven by a periodic pressure
gradient. Zhao et al. [14] developed the fractional bound-
ary layer governing equations with mixed space-time deriva-
tives. Chen et al. [15] investigated the boundary layer flow
of viscoelastic magnetic fluid on a stretched thin plate by us-
ing a double fractional Maxwell model. Moosavi et al. [16]
applied the Maxwell fractional order model to study the un-
steady flow and natural convection heat transfer of viscoelas-
tic non-Newtonian fluid on vertical forward step. They ver-
ified that the fractional derivative can be used to describe
the fluid properties more accurately. And then, complex
viscoelastic fluids has been developed rapidly based on the
fractional derivative and more information can be referred to
Refs. [17-20].

Furthermore, more complex systems are concerned with
the advancement of research. A new fractional calculus op-
erator, known as the distributed order fractional derivative,
is introduced to describe the physical phenomena, such as
mechanical behavior of viscoelastic materials with spatially
varying properties [21], memory effects in composite ma-
terials [22], multi-scale effects [23]. For the flow and heat
transfer behaviors of viscoelastic fluids with multi-scale char-
acteristics, the distributed order fractional derivative is ap-
plied to accurately describe the complex interaction and su-
perposition process of nonlocal effects and memory effects.
Atanackovic [24] presented the constitutive model of vis-
coelastic body with distributed order fractional derivative dis-
sipation under the linear stress state. We observed that the
construction of the model took into account all derivatives of
stress and strain between zero and one with the weight func-
tion. Duan and Qiu [25] studied the steady periodic flow of
Stokes’ second problem for viscoelastic fluid based on the
constitutive equation with distributed order derivative. Yang
et al. [26] firstly established a distributed space fractional
constitutive equation to study the flow and heat transfer of
viscoelastic fluid in the boundary layer. Then, Yang et al.
[27] proposed a new distributed time fractional constitutive
model for the unsteady natural convection boundary layer
flow and heat transfer under the influence of magnetic field.
And taken into account the viscous dissipation and Joule
heating, the effect of alternating field on the electroosmotic
flow and heat transfer of generalized Maxwell fluid with dis-
tributed order time fractional characteristics was investigated
in Refs. [28, 29].

In addition, it is worth noting that the flow and heat trans-
fer models of viscoelastic fluids with fractional derivative and
distributed order fractional derivative often consist of mul-

tiple fractional operators. So it is difficult to quantitatively
study the behaviors of complex viscoelastic fluids. This is
because the analytical solutions of the fractional models are
hard to be given directly. Thus, the emergence of numeri-
cal solutions provides a new idea for the study of fractional
models [30, 31] and the construction of numerical methods
has become a hot issue. For instance, Wu [32] studied the
Stokes’ first problem of a heated generalized second-order
fluid with fractional derivative by using the implicit numeri-
cal approximation scheme and proved the stability and con-
vergence of the numerical scheme. Yang et al. [33] presented
the electroosmotic flow of fractional Maxwell fluid through
the rectangular microchannel and proposed a fully discrete
spectral method based on time difference method and spatial
Legendre spectral method. Zhao [34] presented a new frac-
tional finite volume method for the mixed convection bound-
ary layer flow and heat transfer of viscoelastic fluid on a flat
plate by combining the shifted Grünwald-Letnikov formula.
Meng et al. [35] showed the finite difference scheme of the
flow, heat and mass transfer equations of viscoelastic fluid
in porous media based on the fractional constitutive model.
And we also carried out some numerical analysis for the flow
and heat transfer of viscoelastic fluids. The finite difference
algorithms were also developed to calculate the numerical
solutions of the nonlinear coupled governing equations of
velocity and temperature for the generalized Maxwell fluids
[36, 37].

However, we find that the relevant research for complex
viscoelastic fluids is still relatively rare and Hall effect, de-
fined as the ratio between the electron-cyclotron frequency
and the electron-atom collision frequency, can not be ignored
when the fluid density is low or the applied magnetic field is
strong [10]. Thus, we investigate the MHD flow and heat
transfer of generalized Maxwell fluid with distributed order
characteristics in the rotating framework, in which a strong
magnetic field is considered. The paper is organized as fol-
lows. In Sect. 2, some preliminaries are given and the cor-
responding distributed order time fractional governing equa-
tions of the fluid flow and heat transfer are constructed. The
numerical method for solving the governing equations is es-
tablished in Sect. 3. The validity of the numerical method
is verified and the effects of related model parameters on the
fluid velocities and temperature are discussed in Sect. 4. Fi-
nally, some conclusions are given in Sect. 5.

2. Mathematical formulation

The rotating MHD flow and heat transfer of the generalized
Maxwell fluid with Hall effect through an infinite straight
plate are considered. As shown in Fig. 1, a Cartesian
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Figure 1 Physical sketch of the model.

coordinate system (x, y, z) is established by taking a vertex of
the plate as the origin O. xOy plane is parallel to the plate
and z-axis is perpendicular to the plate. The strong magnetic
field with intensity B0 is applied along the z-axis direction.
Here, we assume that the fluid and the plate are at rest at the
temperature T∞ initially, and then the whole system rotates
around the z-axis at the angular velocity Ω= (0, 0, Ω).

Considering that the generalized Maxwell fluid rotates
around the z-axis together with the infinite plate and the fluid
has no vertical movement, we assume that the flow param-
eters depend only on z and t, thus the velocity field can be
defined as V= (u(z, t), v(z, t), 0). For the incompressible vis-
coelastic fluid, the continuity equation,

∇ · V = 0, (1)

is satisfied, and the momentum equation is

ρ

[
dV
dt
+ 2Ω × V +Ω × (Ω × r)

]
= −∇p + ∇ · S + J × B + ρgβT (T − T∞),

(2)

where ρ, p, βT , S, J, and g are the fluid density, fluid pres-
sure, coefficient of thermal expansion, shear stress tensor,
current density and acceleration of the gravity, respectively.
B = (0, 0, B0) is the total magnetic field and r= (x, y, z) is the
radial coordinate. The generalized Ohm’s law for a strong
magnetic field is derived, shown as [38, 39]

J +
ωeτe

B0
(J × B) = σ

(
E + V × B +

1
ene
∇pe

)
, (3)

in which E is the electric field, ωe is the cyclotron frequency
of electron, τe is the electron collision time, σ is the electri-
cal conductivity, e is the electron charge, 1/(ene) is the Hall
factor, ne is the number density of the electrons, and pe is the
electron pressure.

Assuming the electric field E = 0, and neglecting the elec-
tron pressure gradient, the ion-slip and thermo-electric ef-

fects in Eq. (3), we have

J × B =
σB2

0

1 + m2 (mv − u)i −
σB2

0

1 + m2 (v + mu)j, (4)

where m = ωeτe is the Hall parameter.
For the generalized Maxwell fluid with time distributed or-

der characteristics, the modified constitutive relationship is
presented to depict flow behavior of the fluid,

S +
∫ 1

0
ϖ(α)λα 0Dα

t Sdα = µA, (5)

in which A = L + LT is the first Rivlin-Ericksen tensor, L
is the velocity gradient, λ is the relaxation time and µ is the
viscosity coefficient of the fluid. 0Dα

t is the Caputo fractional
derivative operator of order α, defined as

0Dα
t f (z, t) =

1
Γ(1 − α)

∫ t

0
(t − τ)−α

∂ f (z, τ)
∂τ

dτ, (6)

and the distributed order time fractional derivatives is

Dϖ
t f (x, t) =

∫ 1

0
ϖ(α) 0Dα

t f (x, t)dα, (7)

where f (z, t) is a function of z and t, ϖ(α) is the weight func-
tion satisfing ϖ(α) ≥ 0 and

∫ 1
0 ϖ(α)dα = 1. Then, the dis-

tributed order time fractional constitutive model of general-
ized Maxwell fluid can be rewritten as

S xz +

∫ 1

0
ϖ(α)λα 0Dα

t S xzdα = µ
∂u
∂z
,

S yz +

∫ 1

0
ϖ(α)λα 0Dα

t S yzdα = µ
∂v
∂z
,

(8)

and S xx = S yy = S xy = S zz = 0.
Substituting Eqs. (4) and (8) into Eq. (2), we obtain the

governing equations of the velocity distribution for viscoelas-
tic fluid,

ρ

[
∂u
∂t
+

∫ 1

0
ϖ(α)λα 0D1+α

t udα
]

− 2ρΩ
[
v +

∫ 1

0
ϖ(α)λα 0Dα

t vdα
]

(9)

= µ
∂2u
∂z2 −

[
∂p′

∂x
+

∫ 1

0
ϖ(α)λα 0Dα

t

(
∂p′

∂x

)
dα

]
+

σB2
0

1 + m2

[
(mv − u) +

∫ 1

0
ϖ(α)λα 0Dα

t (mv − u)dα
]

+ ρgβT

[
(T − T∞) +

∫ 1

0
ϖ(α)λα 0Dα

t (T − T∞)dα
]
,

ρ

[
∂v
∂t
+

∫ 1

0
ϖ(α)λα 0D1+α

t udα
]

+ 2ρΩ
[
u +

∫ 1

0
ϖ(α)λα 0Dα

t udα
]

(10)
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= µ
∂2v
∂z2 −

[
∂p

′

∂y
+

∫ 1

0
ϖ(α)λα 0Dα

t

(
∂p

′

∂y

)
dα

]
−

σB2
0

1 + m2

[
(v + mu) +

∫ 1

0
ϖ(α)λα 0Dα

t (v + mu)dα
]
,

where p′ refers to the modified pressure defined as p′ =
p−ρΩ2(x2 + y2)/2. Distributed order fractional operators are
used to characterize the flow process of complex fluids with
time multi-scale effects. When the weight function ϖ(α) is
Dirac delta function, Eqs. (9) and (10) will degenerate into
a general time fractional order equations, which can describe
the memory and heredity of the flow process.

The following initial and boundary conditions are consid-
ered:

t = 0 :

u(z, 0) = 0, v(z, 0) = 0,
∂u(z,0)
∂t = 0, ∂v(z,0)

∂t = 0,

t > 0 :

u(0, t) = U0e−at, v(0, t) = 0, z = 0,

u(z, t)→ 0, v(z, t)→ 0, z→ ∞,

(11)

where U0 is the characteristic velocity.
Furthermore, the temperature distribution of the general-

ized Maxwell fluid is investigated. Taken into account the
flow characteristics and thermal memory of the fluid, the Ca-
puto time fractional derivative is introduced to depict the heat
transfer effect of the fluid. The time fractional SPL heat con-
duction equation are developed by using the fractional Tay-
lor’s series expansion based on the single-phase-lag model
[40, 41],(
1 + τγq 0Dγ

t

)
q(z, t) = −κ∇T (z, t), 0 < γ < 1, (12)

where q is the heat flux, κ is the thermal conductivity, τq is
the relaxation time of heat flux, and γ is the order of Caputo
fractional derivative.

The energy equation with viscous dissipation, Joule heat
and thermal radiation is presented,

ρc
(
∂T
∂t
+ V · ∇T

)
= −∇ · q + J · J

σ
− ∂qr

∂z
+ µϕ, (13)

where c is the specific heat, ϕ is the viscous dissipation, and
qr is the radiative heat flux. On the basis of the Rosseland
approximation for radiation [42], qr is defined as

qr = −
4σ∗

3k∗
∂T 4

∂z
, (14)

in which σ∗ and k∗ are the Stefan-Boltzman constant and the
absorption coefficient, respectively. Assuming that the tem-
perature difference of fluid flow on the infinite plate is very
small, which makes T 4 be expressed by the Taylor series ex-
pansion about T∞ neglecting the higher-order term [39, 43],
we have

T 4 = 4T∞T − 3T 4
∞. (15)

Combined Eqs. (12)-(15), the time fractional governing
equation of the fluid temperature distribution with the Hall
effect is obtained:

ρc
(
∂T
∂t
+ τ

γ
q 0D1+γ

t T
)

= κ
∂2T
∂z2 +

16σ∗T 3
∞

3k∗
(
1 + τγq 0Dγ

t

) ∂2T
∂z2

+
σB2

0

1 + m2

(
1 + τγq 0Dγ

t

) (
u2 + v2

)
+ µ

(
1 + τγq 0Dγ

t

) (∂u
∂z

)2

+

(
∂v
∂z

)2 .
(16)

The initial and boundary conditions of the fluid heat transfer
are

t = 0 : T (z, 0) = T∞,
∂T (z, 0)
∂t

= 0,

t > 0 :

T (0, t) = Tw, z = 0,

T (z, t) = T∞, z→ ∞.

(17)

Define the following dimensionless variables:

u∗ =
u

U0
, v∗ =

v
U0

, z∗ =
z
H
, t∗ =

µ

ρH2 t,

λ∗ =
µ

ρH2 λ, a∗ =
ρH2

µ
a, Ω∗ =

ρH2

µ
Ω,

θ =
T − T∞
Tw − T∞

, Ha = HB0

√
σ

µ
, (18)

Gr =
ρgβT H2(Tw − T∞)

µU0
, Pr =

µc
κ
,

Br =
µU2

0

κ(Tw − T∞)
, R =

16σ∗T 3
∞

3k∗κ
,

where H is the characteristic length. Then, neglected the
modified pressure gradient term in Eqs. (9) and (10), the
dimensionless governing equations of the velocity field are
established by using Eq. (18) (for brevity, the dimensionless
mark “*” is omitted below),

∂u
∂t
+

∫ 1

0
ϖ(α)λα 0D1+α

t udα

+
Ha2

1 + m2

[
u +

∫ 1

0
ϖ(α)λα 0Dα

t udα
]

−
(
2Ω +

mHa2

1 + m2

) [
v +

∫ 1

0
ϖ(α)λα 0Dα

t vdα
]

=
∂2u
∂z2 +Gr

[
θ +

∫ 1

0
ϖ(α)λα 0Dα

t θdα
]
,

(19)
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∂v
∂t
+

∫ 1

0
ϖ(α)λα 0D1+α

t vdα

+
Ha2

1 + m2

[
v +

∫ 1

0
ϖ(α)λα 0Dα

t vdα
]

+

(
2Ω +

mHa2

1 + m2

) [
u +

∫ 1

0
ϖ(α)λα 0Dα

t udα
]

=
∂2v
∂z2 .

(20)

If ϖ(α) = δ(α − α0), Eqs. (19) and (20) will be reduced to
the flow system of fractional Maxwell fluid with the order
α0 [44]. And then, substituted Eq. (18) into Eq. (16), the
dimensionless heat transfer equation is rearranged as

∂θ

∂t
+ τ

γ
q 0D1+γ

t θ

=
1
Pr

[
1 + R(1 + τγq 0Dγ

t )
] ∂2θ

∂z2

+
Ha2

1 + m2

Br
Pr

(
1 + τγq 0Dγ

t

) (
u2 + v2

)
+

Br
Pr

(
1 + τγq 0Dγ

t

) (∂u
∂z

)2

+

(
∂v
∂z

)2 .
(21)

The corresponding dimensionless initial and boundary con-
ditions of velocity and temperature fields are

t = 0 :


u(z, 0) = 0,

∂u(z, 0)
∂t

= 0,

v(z, 0) = 0,
∂v(z, 0)
∂t

= 0,

θ(z, 0) = 0,
∂θ(z, 0)
∂t

= 0,

t > 0 :


u(0, t) = e−at, v(0, t) = 0, z = 0,

u(z, t)→ 0, v(z, t)→ 0, z→ ∞,
θ(0, t) = 1, z = 0,

θ(z, t) = 0, z→ ∞.

(22)

3. Numerical solutions of the flow and heat
transfer models

In order to study the MHD flow and heat transfer of general-
ized Maxwell fluid on a rotating infinite plate, the numerical
solutions of the time fractional governing equations of veloc-
ity and temperature distributions are developed by the finite
difference method. Firstly, we approximate the integral terms
of the distributed order time fractional models Eqs. (19) and
(20) based on the midpoint quadrature formula [45, 46],∫ 1

0
ϖ(α)λα 0Dα

t ϕ(z, t)dα

=

q∑
s=1

ϖ(αs)λαs
0Dαs

t ϕ(z, t)∆ξs,

(23)

∫ 1

0
ϖ(α)λα 0D1+α

t ψ(z, t)dα

=

q∑
s=1

ϖ(αs)λαs
0D1+αs

t ψ(z, t)∆ξs,

(24)

where ϕ = u, v, θ, ψ = u, v. Then Eqs. (19) and (20) can be
arranged as

∂u(z, t)
∂t

+

q∑
s=1

ds 0D1+αs
t u(z, t)

+
Ha2

1 + m2

1 + q∑
s=1

ds 0Dαs
t

 u(z, t) (25)

−
(
2Ω +

mHa2

1 + m2

) 1 + q∑
s=1

ds 0Dαs
t

 v(z, t)

=
∂2u(z, t)
∂z2 +Gr

1 + q∑
s=1

ds 0Dαs
t

 θ(z, t) + O(ε2),

∂v(z, t)
∂t

+

q∑
s=1

ds 0D1+αs
t v(z, t)

+
Ha2

1 + m2

1 + q∑
s=1

ds 0Dαs
t

 v(z, t)

+

(
2Ω +

mHa2

1 + m2

) 1 + q∑
s=1

ds 0Dαs
t

 u(z, t)

=
∂2v(z, t)
∂z2 + O(ε2),

(26)

where ds = ϖ(αs)λαs∆ξs, ∆ξs =
1
q = ε, and αs =

(s−1)∆ξs+s∆ξs
2 = 2s−1

2q , s = 0, 1, 2, · · · , q.
For temporal and spatial variables, the intervals [0, Tm] and

[0, L] are discretized into N and M equal subintervals, re-
spectively. Take tn = nτ, 0 ≤ n ≤ N and zi = ih, 0 ≤ i ≤ M,
where τ = Tm/N is the time step and h = L/M is the space
step. The grid functions un

i , vn
i and θn

i are defined as the nu-
merical solutions of u(z, t), v(z, t) and θ(z, t) at the mesh point
(zi, tn), and the following notations are introduced:

un− 1
2

i =
un

i + un−1
i

2
, vn− 1

2
i =

vn
i + vn−1

i

2
,

θ
n− 1

2
i =

θn
i + θ

n−1
i

2
, δtu

n− 1
2

i =
un

i − un−1
i

τ
,

δtv
n− 1

2
i =

vn
i − vn−1

i

τ
, δtθ

n− 1
2

i =
θn

i − θn−1
i

τ
.

(27)

For the Caputo fractional derivetive of u(zi, tn) with order
αs (0 < αs < 1), the L1 formula is presented as [47, 48]

0Dαs
t ψ(zi, tn) =

τ−αs

Γ(2 − αs)

a(αs)
0 ψn

i −
n−1∑
k=1

(
a(αs)

n−k−1

−a(αs)
n−k

)
ψk

i − a(αs)
n−1ψ

0
i

]
+ O(τ2−αs ).

(28)
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Then, on the basis of Eq. (28), the approximational for-
mula of the Caputo fractional derivative with order 1 + αs,
(1 < 1 + αs < 2) at the mesh points (zi, tn) and (zi, tn−1) are
derived:

1
2

[
0D1+αs

t ψ(zi, tn) + 0D1+αs
t ψ(zi, tn−1)

]
= 0D1+αs

t ψ
n− 1

2
i

=
τ−αs

Γ(2 − αs)

a(αs)
0 δtψ

n− 1
2

i −
n−1∑
k=1

(
a(αs)

n−k−1

−a(αs)
n−k

)
δtψ

k− 1
2

i − a(αs)
n−1

∂ψ(xi, t0)
∂t

]
+ O(τ2−αs ),

(29)

in which

a(αs)
l = (l + 1)1−αs − l1−αs , k = 0, 1, 2, · · · . (30)

Similarly, the same discrete forms for the Caputo fractional
derivative of θ(zi, tn) are given:

0Dγ
t θ(zi, tn)

=
τ−γ

Γ(2 − γ)

a(γ)
0 θn

i −
n−1∑
k=1

(
a(γ)

n−k−1

−a(γ)
n−k

)
θk

i − a(γ)
n−1θ

0
i

]
+ O(τ2−γ), 0 < γ < 1,

(31)

and

1
2

[
0D1+γ

t θ(zi, tn) + 0D1+γ
t θ(zi, tn−1)

]
= 0D1+αs

t θ
n− 1

2
i

=
τ−γ

Γ(2 − γ)

a(γ)
0 δtθ

n− 1
2

i −
n−1∑
k=1

(
a(γ)

n−k−1

−a(γ)
n−k

)
δtθ

k− 1
2

i − a(γ)
n−1

∂θ(xi, t0)
∂t

]
+ O(τ2−γ).

(32)

For the discretization of nonlinear terms of Eq. (21), the
corresponding approximation formulas are considered,

0Dγ
t
[
ψ(zi, tn)

]2

=
τ−γ

Γ(2 − γ)

a(γ)
0

(
ϕn

i
)2 −

n−1∑
k=1

(
a(γ)

n−k−1

−a(γ)
n−k

) (
ϕk

i

)2 − a(γ)
n−1

(
ϕ0

i

)2
]
+ O(τ2−γ),

(33)

and

0Dγ
t

[
∂ψ(zi, tn)

∂z

]2

=
τ−γ

Γ(2 − γ)

a(γ)
0

(
∂ψ(zi, tn)

∂z

)2

−
n−1∑
k=1

(
a(γ)

n−k−1 − a(γ)
n−k

) (∂ψ(zi, tk)
∂z

)2

−a(γ)
n−1

(
∂ψ(zi, t0)

∂z

)2 + O(τ2−γ).

(34)

For the integer order terms, the following difference for-
mats are obtained by using the central differences:

1
2

[
∂ϕ(zi, tn)

∂t
+
∂ϕ(zi, tn−1)

∂t

]
=
ϕn

i − ϕn−1
i

τ
+ O(τ2), (35)

and
∂2ϕ(zi, tn)

∂z2 =
ϕn

i+1 − 2ϕn
i + ϕ

n
i−1

h2 + O(h2),

∂ψ(zi, tn)
∂z

=
ψn

i+1 − ψn
i−1

2h
+ O(h2).

(36)

Then, define I = mHa2

1+m2 , and J = 2Ω+ mHa2

1+m2 . The governing
equations of the velocity distributions by averaging Eqs. (25)
and (26) at grid points (zi, tn) and (zi, tn−1) are shown as

1
2

[
∂u(zi, tn)

∂t
+
∂u(zi, tn−1)

∂t

]
+

1
2

q∑
s=1

ds 0D1+αs
t [u(zi, tn) + u(zi, tn−1)]

+
1
2

I

1 + q∑
s=1

ds 0Dαs
t

 [u(zi, tn) + u(zi, tn−1)]

− 1
2

J

1 + q∑
s=1

ds 0Dαs
t

 [v(zi, tn) + v(zi, tn−1)]

=
1
2

[
∂2u(zi, tn−1)

∂z2 +
∂2u(zi, tn−1)

∂z2

]
(37)

+
1
2

Gr

1 + q∑
s=1

ds 0Dαs
t

 [θ(zi, tn) + θ(zi, tn−1)] + O(ε2),

1
2

[
∂v(zi, tn)

∂t
+
∂v(zi, tn−1)

∂t

]
+

1
2

q∑
s=1

ds 0D1+αs
t [v(zi, tn) + v(zi, tn−1)]

+
1
2

I

1 + q∑
s=1

ds 0Dαs
t

 [v(zi, tn) + v(zi, tn−1)]

+
1
2

J

1 + q∑
s=1

ds 0Dαs
t

 [u(zi, tn) + u(zi, tn−1)]

=
1
2

[
∂2v(zi, tn−1)

∂z2 +
∂2v(zi, tn−1)

∂z2

]
+ O(ε2).

(38)
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Moreover, the nonlinear terms of Eq. (21) at the mesh
point (zi, tn) are explicitly treated as

∂θ(zi, tn)
∂t

+ τ
γ
q 0D1+γ

t θ(zi, tn)

=
1
Pr

[
1 + R(1 + τγq 0Dγ

t )
] ∂2θ(zi, tn)

∂z2

+ I
Br
Pr

(1 + τγq 0Dγ
t ) [u(zi, tn−1)]2 (39)

+ I
Br
Pr

(1 + τγq 0Dγ
t ) [v(zi, tn−1)]2

+
Br
Pr

(1 + τγq 0Dγ
t )

[
∂u(zi, tn−1)

∂z

]2

+
Br
Pr

(1 + τγq 0Dγ
t )

[
∂v(zi, tn−1)

∂z

]2

,

but the nonlinear terms at the mesh point (zi, tn−1) are handled
implicitly and followed as

∂θ(zi, tn−1)
∂t

+ τ
γ
q 0D1+γ

t θ(zi, tn−1)

=
1
Pr

[
1 + R(1 + τγq 0Dγ

t )
] ∂2θ(zi, tn−1)

∂z2

+ I
Br
Pr

(1 + τγq 0Dγ
t )

{
[u(zi, tn−1)]2 + [v(zi, tn−1)]2

}
+ I

Br
Pr

(1 + τγq 0Dγ
t ) [v(zi, tn−1)]2 (40)

+
Br
Pr

(1 + τγq 0Dγ
t )

[
∂u(zi, tn−1)

∂z

]2

+
Br
Pr

(1 + τγq 0Dγ
t ) +

[
∂v(zi, tn−1)

∂z

]2

.

Then, we obtain

1
2

[
∂θ(zi, tn)

∂t
+
∂θ(zi, tn−1)

∂t

]
+

1
2
τ
γ
q

[
0D1+γ

t θ(zi, tn) + 0D1+γ
t θ(zi, tn−1)

]
=

1
2

1
Pr

[
1 + R(1 + τγq 0Dγ

t )
] ∂2θ(zi, tn)

∂z2

+
1
2

1
Pr

[
1 + R(1 + τγq 0Dγ

t )
] ∂2θ(zi, tn−1)

∂z2 (41)

+
Ha2

1 + m2

Br
Pr

(
1 + τγq 0Dγ

t

)
[u(zi, tn−1)]2

+
Ha2

1 + m2

Br
Pr

(
1 + τγq 0Dγ

t

)
+ [v(zi, tn−1)]2

+
Br
Pr

(
1 + τγq 0Dγ

t

) [∂u(zi, tn−1)
∂z

]2

+
Br
Pr

(
1 + τγq 0Dγ

t

) [∂v(zi, tn−1)
∂z

]2

.

Finally, defining

Ps = ds
τ−αs

Γ(2 − αs)
, Rγ = τ

γ
q

τ−γ

Γ(2 − γ)
, (42)

and disregarding the error terms, the Crank-Nicolson finite
difference schemes of multinomial time fractional governing
Eqs. (37), (38) and (41) are presented based on Eqs. (27)-
(35) and (50),

un
i − un−1

i

τ
+

q∑
s=1

Ps

[
a(αs)

0 δtu
n− 1

2
i

−
n−1∑
k=1

(
a(αs)

n−k−1 − a(αs)
n−k

)
δtu

k− 1
2

i


+ I

1 + q∑
s=1

Psa
(αs)
0

 (un
i + un−1

i

)
− I

q∑
s=1

Ps

n−1∑
k=1

(
a(αs)

n−k−1 − a(αs)
n−k

) (
uk

i + uk−1
i

)
− 1

2
J

1 + q∑
s=1

Psa
(αs)
0

 (vn
i + vn−1

i

)
(43)

+
1
2

J
q∑

s=1

Ps

n−1∑
k=1

(
a(αs)

n−k−1 − a(αs)
n−k

) (
vk

i + vk−1
i

)
=

1
2

un
i+1 − 2un

i + un
i−1

h2 +
un−1

i+1 − 2un−1
i + un−1

i−1

h2


+

Gr
2

1 + q∑
s=1

Psa
(αs)
0

 (θn
i + θ

n−1
i

)
− Gr

2

q∑
s=1

Ps

n−1∑
k=1

(
a(αs)

n−k−1 − a(αs)
n−k

) (
θk

i + θ
k−1
i

)
,

1 ≤ n ≤ N, 1 ≤ i ≤ M − 1,

vn
i − vn−1

i

τ
+

q∑
s=1

Ps

a(αs)
0 δtv

n− 1
2

i −
n−1∑
k=1

(
a(αs)

n−k−1

−a(αs)
n−k

)
δtv

k− 1
2

i

]
+ I

1 + q∑
s=1

Psa
(αs)
0

 (vn
i + vn−1

i

)
− I

q∑
s=1

Ps

n−1∑
k=1

(
a(αs)

n−k−1 − a(αs)
n−k

) (
vk

i + vk−1
i

)
(44)

+
1
2

J

1 + q∑
s=1

Psa
(αs)
0

 (un
i + un−1

i

)
− 1

2
J

q∑
s=1

Ps

n−1∑
k=1

(
a(αs)

n−k−1 − a(αs)
n−k

) (
uk

i + uk−1
i

)
=

1
2

un
i+1 − 2un

i + un
i−1

h2 +
un−1

i+1 − 2un−1
i + un−1

i−1

h2

 ,
1 ≤ n ≤ N, 1 ≤ i ≤ M − 1,

θn
i − θn−1

i

τ

+ Rγ

a(γ)
0 δtθ

n− 1
2

i −
n−1∑
k=1

(
a(γ)

n−k−1 − a(γ)
n−k

)
δtθ

k− 1
2

i
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=
1

2Pr

[
1 + R

(
1 + Rγa(γ)

0

)] (θn
i+1 − 2θn

i + θ
n
i−1

h2

+
θn−1

i+1 − 2θn−1
i + θn−1

i−1

h2


− R

2Pr
Rγ

n−1∑
k=1

(
a(γ)

n−k−1 − a(γ)
n−k

) θk
i+1 − 2θk

i + θ
k
i−1

h2

+
θk−1

i+1 − 2θk−1
i + θk−1

i−1

h2

 (45)

+ I
Br
Pr

(
1 + Rγa(γ)

0

) [
(un−1

i )2 + (vn−1
i )2

]
− I

Br
Pr

Rγ

n−2∑
k=1

(
a(γ)

n−k−2 − a(γ)
n−k−1

) [
(uk

i )2 + (vk
i )2

]
+

Br
Pr

(
1 + Rγa(γ)

0

) un−1
i+1 − un−1

i−1

2h

2

+

vn−1
i+1 − vn−1

i−1

2h

2
− Br

Pr
Rγ

n−2∑
k=1

(
a(γ)

n−k−2 − a(γ)
n−k−1

) uk
i+1 − uk

i−1

2h

2

+

vk
i+1 − vk

i−1

2h

2 , 1 ≤ n ≤ N, 1 ≤ i ≤ M − 1.

The initial and boundary conditions Eq. (50) can be dis-
cretized as

u0
i = 0, v0

i = 0, θ0
i = 0, n = 0, 0 ≤ i ≤ M,

r0
i = 0, p0

i = 0, ϕ0
i = 0, n = 0, 0 ≤ i ≤ M,

un
0 = e−anτ, vn

0 = 0, θn
0 = 1, 1 ≤ n ≤ N, i = 0,

un
M → 0, vn

M → 0, θn
M = 0, 1 ≤ n ≤ N, i = M.

(46)

Thus, the numerical solutions of governing equations for
velocities and temperature are obtained based on the above
difference schemes Eqs. (43)-(46).

4. Numerical example

In order to check the effectiveness of the finite difference
schemes, the following coupled, fractional partial differential
equations with exact solutions are given:

∂u
∂t
+

∫ 1

0
ϖ(α)λα 0D1+α

t udα

+
Ha2

1 + m2

[
u +

∫ 1

0
ϖ(α)λα 0Dα

t udα
]

−
(
2Ω +

mHa2

1 + m2

) [
v +

∫ 1

0
ϖ(α)λα 0Dα

t vdα
]

=
∂2u
∂z2 +Gr

[
θ +

∫ 1

0
ϖ(α)λα 0Dα

t θdα
]
+ f1,

(47)

∂v
∂t
+

∫ 1

0
ϖ(α)λα 0D1+α

t vdα

+
Ha2

1 + m2

[
v +

∫ 1

0
ϖ(α)λα 0Dα

t vdα
]

+

(
2Ω +

mHa2

1 + m2

) [
u +

∫ 1

0
ϖ(α)λα 0Dα

t udα
]

=
∂2v
∂z2 + f2,

(48)

∂θ

∂t
+ τ

γ
q 0D1+γ

t θ

=
1
Pr

[
1 + R(1 + τγq 0Dγ

t )
] ∂2θ

∂z2

+
Ha2

1 + m2

Br
Pr

(
1 + τγq 0Dγ

t

) (
u2 + v2

)
+

Br
Pr

(
1 + τγq 0Dγ

t

) (∂u
∂z

)2

+

(
∂v
∂z

)2 + f3,

(49)

and the initial and boundary conditions are satisfied:

t = 0 :



u(z, 0) = 0,
∂u(z, 0)
∂t

= 0,

v(z, 0) = 0,
∂v(z, 0)
∂t

= 0,

θ(z, 0) = 0,
∂θ(z, 0)
∂t

= 0,

t > 0 :


u(0, t) = 0, v(0, t) = 0, z = 0,

u(z, t) = 0, v(z, t) = 0, z = L,

θ(0, t) = 0, z = 0,

θ(z, t) = 0, z = L,

(50)

where f1, f2 and f3 refer to the source terms of z and t, and
are defined as

f1(z, t)

= 2t2 + 2tz(L − z)

+ z(L − z)
∫ 1

0
ϖ(α)λα 0D1+α

t t2dα

+
Ha2

1 + m2 z(L − z)
[
t2 +

∫ 1

0
ϖ(α)λα 0Dα

t t2dα
]

−
(
2Ω +

mHa2

1 + m2

)
z(L − z)2

[
t3 +

∫ 1

0
ϖ(α)λα 0Dα

t t3dα
]

− 3Grz2(L − z)
[
t2 +

∫ 1

0
ϖ(α)λα 0Dα

t t2dα
]
,

(51)

f2(z, t)

= −t3(−4L + 6z) + 3t2z(L − z)2

+ z(L − z)2
∫ 1

0
ϖ(α)λα 0D1+α

t t3dα

+
Ha2

1 + m2 z(L − z)2
[
t3 +

∫ 1

0
ϖ(α)λα 0Dα

t t3dα
]
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−
(
2Ω +

mHa2

1 + m2

)
z(L − z)

[
t2 +

∫ 1

0
ϖ(α)λα 0Dα

t t2dα
]
,

(52)

f3(z, t)

= z2(L − z)
(
6t + 3τγq 0D1+γ

t t2
)

− 6
Pr

(L − 3z)
[
1 + R

(
1 + τγq 0Dγ

t

)]
t2

− Ha2

1 + m2

Br
Pr

z2(L − z)2
(
1 + τγq 0Dγ

t

)
t4

− Ha2

1 + m2

Br
Pr

z2(L − z)4
(
1 + τγq 0Dγ

t

)
t6

− Br
Pr

(L − 2z)2
(
1 + τγq 0Dγ

t

)
t4

+
Br
Pr

(L − z)2(L − 3z)2
(
1 + τγq 0Dγ

t

)
t6.

(53)

The exact solutions of the system are u(z, t) = t2z(L − z),
v(z, t) = t3z(L − z)2 and θ(z, t) = 3t2z2(L − z).

And then, a comparison is made to prove the feasibility of
numerical methods when ϖ(α) = 2α, τ = 1/200, h = 1/100,
λ = 0.1, Ω = 0.5, γ = 0.9, τq = 0.5, Pr = 0.5, Br = 0.15,
Ha = 0.15, Gr = 0.1, R = 1, a = 1 and m = 1. Figure
2 shows the numerical and exact solutions of the fractional
system. It is clearly that there is a high degree of consis-
tency between the numerical solution and the exact solution,
which indicates that the error between the numerical solution
and the exact solution is minimal, demonstrating the effec-
tiveness of the numerical method.

5. Results and discussion

In this section, the velocity and temperature distributions of
the generalized Maxwell fluid charactered by the time dis-
tributed order fractional derivatives are investigated. In order
to quantitatively analyze the flow velocity of the fluid, the
weighted functions ϖ(α) for Eqs. (19) and (20) are consid-
ered to follow the power law distribution, i.e., ϖ(α) = ναν−1,
which is used to describe some physical phenomena followed
by the ultraslow kinetics [44, 49]. Here, a linear increasing
case is considered by taking ν = 2. For the heat transfer in
fluid flow, the fractional energy equation (21) is constructed,
which can be regarded as a special case of the distributed or-
der fractional energy equation. This is because the distributed
order fractional model can be reduced to the fractional model
with the order γ0 when the weight function obeys the Dirac
delta function [44], i.e., δ(γ − γ0). To accurately portray the
flow and heat transfer characteristics of the fluid, some model
parameters need to be determined. The governing equations
of velocities and temperature are treated on the computa-
tional region [0, 2]. The rest parameters have been provided

in Sect. 4. Then, the effectiveness of the numerical method
and the effects of some relevant parameters on fluid veloc-
ity and temperature distributions are studied at t = 0.5. The
results are shown in Figs. 3-9.
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Figure 2 Comparison between numerical and exact solutions of the exam-
ple.
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5.1 Effectiveness of the numerical method

To verify the effectiveness and stability of the numerical
method proposed above, we investigate the numerical solu-
tions of the momentum and energy equations through the fi-

nite difference schemes. As shown in Fig. 3, we plot the
velocities and temperature profiles by taking different N for
h = 1/100 and M for τ = 1/200, respectively. Obviously,
when the space or time step is changed and the other vari-
ables are fixed, the values of u, v and θ are relatively stable
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Figure 3 Numerical solutions of velocities and temperatures for different values of N and M.
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and have no significant differences. The high consistencies of
numerical solutions also indicate that the numerical method
is effective and feasible in describing the unsteady MHD flow
and heat transfer of complex viscoelastic fluid.

5.2 Effects of pertinent parameters on velocity distribu-
tions

It is well known that model parameters have important effects
on the flow and heat teansfer processes of non-Newtonian flu-
ids [50, 51]. Thus, in order to further study the flow proper-
ties of generalized Maxwell fluid with distributed order char-
acteristics in rotating system, we present the influences of
several pertinent parameters on fluid flow velocities u and v,
graphically. As shown in Figs. 4-8, velocity profiles with z
are drawn by considering different values of the relaxation
time λ, rotational angular velocity Ω, Hartmann number Ha,

thermal Grashof number Gr and Hall parameter m, respec-
tively.

In Fig. 4, the velocity profiles with z are plotted. It is ap-
parent that the flow velocities u and v show different fluctua-
tion trends with λ. The increasing of λ leads to the steady ve-
locities closer to the plate, which presents the phenomenon of
heavy tail. It indicates the stress relaxation characteristics of
the generalized Maxwell fluid model with power law weight
function. Moreover, it is worth noting that the maximum val-
ues of velocity in the whole calculation area increase with
the increase of λ. Then, for different Ω, the velocity distribu-
tions are given in Fig. 5. It can be found that the variations
of Ω make the profiles of velocities u and v show a contrary
regular. That is, as Ω increases, u decreases and v increases.
It shows that the fluid deflection force caused by the rotation
effect plays an important role in the velocity distributions.

In Fig. 6, the effects of Hartmann number Ha on velocities
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Figure 4 Velocity profiles of u and v for different λ.
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Figure 5 Velocity profiles of u and v for different Ω.
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Figure 6 Velocity profiles of u and v for different Ha.
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Figure 7 Velocity profiles of u and v for different Gr.
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Figure 8 Velocity profiles of u and v for different m.

u and v are depicted. In the whole calculation region, we can
see that the value of u decreases monotonically with z, but
the value of v presents an analogous parabola characteristic.

This is because the left boundary values of velocity u and v
are different, which makes their velocity curves present dif-
ferent change rules. It indicates that the flow characteristics
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Figure 9 Temperature distributions for different τq and Pr.

of fluid at the boundary have a significant impact on the flow
behavior in the whole region. Another obvious phenomenon
is that Ha plays an important role in velocity distributions.
We note that u reduces with the increase of Ha, and v raises
in the wake of increase of Ha. It shows that the increase of
Hartmann number means that the role of viscous force is rel-
atively small, and the Lorentz force caused by the magnetic
field acting on the fluid plays a leading role, but it will hinder
the flow of the fluid [43]. Figure 7 plots the effect of ther-
mal Grashof number on the fluid velocities. It is observed
that due to the increase of Gr, the velocity distributions will
fluctuate over the whole region. The values of the velocities
u and v increase with the increase of Gr. And the greater Gr,
the greater the maximum values of the velocities u and v. As
shown in Fig. 8, the velocities profiles for different values of
Hall parameter m are plotted. It is clear that when the mag-
netic field strength is weak, the flow velocity of the fluid is
not affected by m, and when the magnetic field is strong, the
fluid velocity changes with m. It shows that Hall effect has no
significant effect on the velocities under the action of weakly
magnetic field. In addition, it can be observed that a larger
velocity components u and v are obtained with the increase
of m in the presence of the strong magnetic field (Ha = 5),
which indicates that the strong Hall effect plays an important
role in the axial velocity distribution of the fluid.

5.3 Effects of pertinent parameters on temperature dis-
tributions

The effects of pertinent parameters on temperature distribu-
tions of the generalized Maxwell fluid are investigated. The
temperature profiles for different values of relaxation time τq

of the fractional heat conduction equation (21) are presented
in Fig. 9(a). It can be seen that the increase of τq leads to the

decrease of the temperature. The influences of the Prandtl
number Pr on temperature of the fluid are depicted in Fig.
9(b). We note that temperature reduces with the increase of
Pr. An important point is that Prandtl number can be used
to describe the interaction between of momentum boundary
layer and temperature boundary layer. The increase of Pr
suggests that the fluid viscosity is raising and the thickening
of momentum boundary layer is obtained, which leads to the
decrease of thermal conductivity and the thinning of temper-
ature boundary layer [43].

Figure 10(a) exhibits the temperature distributions of the
generalized Maxwell fluid with the radiative heat flux for
different values of R. The increase of radiation number R
reduces the temperature of the fluid. It shows that the temper-
ature curve is not only related to thermal radiation, but also
affected by the heat transfer performance of fluid particles.
For the different values of Brinkman number Br, the temper-
ature profiles are plotted in Fig. 10(b). It can be found that
the temperature raises with the addition of Br. The Brinkman
number is used to depict the ratio between viscous effect and
external heating of the flow. The large value of Br indicates
that the viscous heat effect plays a dominant role in the pro-
cess of heat conduction. When the viscosity heat effect is
relatively strong, the heat transfer coefficient is relatively low
and the temperature drop is relatively small. Finally, the ef-
fects of Hartmann number Ha and Hall parameter m on tem-
perature distributions are given in Fig. 11. It is clear that the
temperature profiles show a high degree of consistency when
Ha takes different values. It suggests that the temperature is
insensitive to changes of the external magnetic field. From
Fig. 11(b), we notice that under the action of strong or weak
magnetic field (Ha = 5 or Ha = 0.15), the influence of Hall
parameter on temperature is extremely subtle. It is because
the magnetic field and Hall effect directly affect the flow of
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Figure 10 Temperature profiles for different R and Br.
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Figure 11 Temperature profiles for different Ha and m.

the fluid, and act on the temperature through the coupling
effect.

6. Conclusions

In this work, we investigate the fractional models of the un-
steady rotating MHD flow and heat transfer of generalized
Maxwell fluid over an infinite plate in the presence of a strong
magnetic field. Firstly, in view of the complexity of general-
ized Maxwell fluid flow and heat transfer, fractional calculus
theory is introduced to depict the laws of the fluid motion
and heat conduction, which deviate from normal behavior.
The distributed order time fractional momentum equations
and fractional energy equation are derived by using the dis-
tributed order derivative and Caputo fractional derivative, re-
spectively. The numerical simulation method for the built

coupled models is carried out. The Crank-Nicolson finite
difference schemes are proposed to calculate the numerical
solutions of the models. A numerical example is constructed
to compare the performances between numerical and exact
solutions. Then, the effectiveness and feasibility of the nu-
merical method are verified, and the effects of relevant pa-
rameters on fluid velocities and temperature are discussed,
graphically. Results verify that the Hall parameters have a
great influence on the fluid velocity under the action of strong
magnetic field.
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乔艳丽,续焕英,齐海涛
摘要 黏弹性流体的流动和传热特性研究一直是一个备受关注的问题.然而,一些黏弹性流体的行为会偏离由整数阶控制方程描述

的经典的流动和传热现象.因此,建立一种新的本构关系来研究复杂黏弹性流体是有必要的. 本文研究了霍尔效应作用下具有分布阶

特性的广义Maxwell流体在无穷平板上的旋转磁流体流动和传热现象.考虑到广义Maxwell流体流动和传热的多尺度特性和非局部性,

引入分数阶微积分理论准确地描述流动和传热机理,导出了由时间分布阶动量方程和时间分数阶能量方程组成的分数阶控制方程. 为

了计算速度和温度控制方程的数值解,我们基于L1近似公式提出了Crank-Nicolson有限差分格式,然后,验证了数值方法的有效性和可

行性,并以图形形式讨论了相关参数对流体速度和温度的影响,给出了一些结论.
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