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Interfaces that exist in composites greatly influence their mechanical and conductive properties. There are usually three interface
models to characterize the elastic and conductive properties of the interface in composites. For elastic problems, they are the
interface stress model (ISM), linear spring model (LSM), and interphase model. For conductive problems, they are the high
conducting (HC) interface model, low conducting (LC) interface model, and interphase model. For elastic problems with the
interface effects, they can be divided into two types. The first kind of elastic problem concerns the solution of boundary value
problems and aims to predict the effective properties of composites with interface effects. The second kind of elastic problem
concerns the surface/interface stress effects on the elastic properties of nanostructured materials, which is usually characterized
by the ISM. In this paper, three aspects in the elastic problems with interface effects are first reviewed, i.e., equivalent relations
among the three interface models, Eshelby formalism, and micromechanical frameworks. Special emphasis is placed on the ISM
to show how classical models can be extended to the nano-scale by supplementing the interface elasticity to the basic equations
of the classical elastic problems. Then, the conductive problems of the composites with the interface effects are also reviewed,
and the general frameworks for predicting the effective conductivity of the composites are given. Finally, scaling laws depicting
the size-dependent elastic and conductive properties of the composites are discussed.
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1. Introduction

In real composites (or heterogeneous materials), factors such
as processing can cause imperfect interfacial bonding be-
tween the matrix and the second phase inhomogeneities,
which greatly affect the properties of electrical, thermal con-
duction, or elasticity [1]. For example, there is a temperature
difference across the interface between the matrix and inho-
mogeneities when a heat flux is maintained, and this is called
the Kapitza thermal boundary resistance in the field of ther-
mal conduction [2]. Two kinds of models are often used to
model the properties of interface in heterogeneous materials
[3, 4], i.e., the interface models and the interphase model.

*Corresponding author. E-mail address: hlduan@pku.edu.cn (Huiling Duan)
Executive Editor: Leiting Dong

In the interface models, there are discontinuities of quanti-
ties such as displacement, stress, and temperature across the
interface, as shown in Fig. 1a. Among the interface mod-
els, two linear interface models, namely, the interface stress
model (ISM) and linear spring model (LSM) for elasticity,
or high conducting (HC) interface model and low conduct-
ing (LC) interface model for conductivity, have been exten-
sively studied by researchers. For example, the LC interface
(Kapitza resistance) in thermal conductivity has been studied
by theory and experiment [5-7], and the ISM has been used
to characterize the surface/interface stress effect on the me-
chanical properties of composites [8-10]. In the interphase
model, the interface region is described as a layer between
two dissimilar materials and has a finite thickness and given
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Figure 1 a Mathematical interface model and b interphase model.

material properties which are different from those of the sur-
rounding materials, as shown in Fig. 1b. The interphase
is usually viewed as nucleation, chemical reaction, or diffu-
sion zone with homogeneous or variable material properties.
At the matrix/interphase and interphase/inhomogeneity inter-
faces, perfect bonding is generally assumed.

For solid materials, material properties such as elastic
modulus, and thermal conductivity, qualitatively or quanti-
tatively affect the response of the material when it is sub-
jected to given stimuli and constraints. For example, the elas-
tic modulus influences the deformation under applied forces,
and the thermal conductivity affects the amount of heat when
fixed temperature gradients are applied. Material properties
can be divided into many categories, of which equilibrium,
steady state, and structure-sensitive material properties are
the most commonly considered [11].

For the steady-state problem, the properties of heteroge-
neous materials can be characterized by effective ones. It is
noted that the thermal conduction, diffusion, electrostatics,
and magnetostatics are mathematically analogous, which are
called the generalized conductivity problem. A list of quan-
tities in these analogous problems is given in Hashin’s work
[12]. In addition, methods and models for solving elastic
problems have corresponding methods and models for con-
ductive problems. Thus, there is a strong relation between
the issues of effective elastic properties and effective conduc-
tive properties, which has been summarized in Hashin’s work
[12].

The effective properties of heterogeneous materials have
been discussed in a number of reviews [11-13]. This review
paper is concerned with the theoretical aspects of hetero-
geneous materials with equilibrium, steady-state, structure-
sensitive, and effective properties. In addition, this paper ad-
dresses itself to the issues in the presence of interface effects,
and is concerned essentially with the relationships between
the behavior of heterogeneous materials and their structures
with interface effects (Fig. 2). Next, a brief outline of this
review paper is given. Section 2 deals with the interface
models and their equivalent relations for the elasticity prob-
lem. Section 3 gives the Eshelby formalism and microme-
chanical frameworks with three interface effects. Section 4
illustrates a new micromechanical scheme and predicts the
effective elastic modulus of multiphase composites. Section

5 reviews the works related to the effective conductivity of
heterogeneous materials with interface effects. Section 6 pro-
vides two kinds of scaling law governing the size-dependent
effective properties of the heterogeneous materials with in-
terface effects.

2. Interface models for elastic problems

There is a large amount of literature on interface effects that
exist in solid mechanics, which can be divided into two cat-
egories. Works in the first category are concerned with the
solution of boundary value problems and aim to estimate
the effective elastic modulus of the heterogeneous materi-
als with interface effects. Imperfect interface bonding may
exist in heterogeneous materials [14], which greatly affects
their properties [15-20]. For instance, the grain boundary
sliding at room temperature has been reported in polycrys-
talline and granular media [16, 21]. The interfaces in the
nanocrystalline materials can modulate the deformation of
the materials through the grain-boundary sliding and separa-
tion [22-24]. It has also been pointed out that grain boundary
softening is important for both nanocrystalline materials and
conventional materials [25].

Based on the interface models and interphase model men-
tioned in Sect. 1, the elastic fields and effective elastic prop-
erties of the conventional composites have been extensively
studied in the consideration of the interface bonding condi-
tions [8, 9, 15, 26-47]. Based on the atomic simulation of
Schiøtz et al. [24], Jiang and Weng [48] simulated the grain-
boundary region of nanocrystalline materials as interphase
and used a three-phase model to predict the effective mechan-
ical properties of nanocrystalline materials. Wei and Anand
[22] described the thin grain-boundary region by an elastic-
plastic interface model and predicted the effective properties
through a crystal-plasticity model. Tan et al. [49] predicted
the effective modulus of particle-reinforced composites with
a piecewise linear cohesive interface model [49, 50].

Works in the second category are concerned with the
ISM characterizing the elastic properties of nano-structured
materials [51-57]. Gibbs (1906) first introduced the
surface/interface stress in solids, and the study of sur-
face/interface stress has developed steadily since then [58-
63]. Surface/interface stress can be expressed as the sur-
face/interface excess of bulk stress [64, 65] or defined by the
Shuttleworth equation [58]. The atomistic interpretation of
the interface stress has been presented by Nix and Gao [66].
There are two kinds of interface stress discussed in the litera-
ture. One is called coherent interface and assumes that there
is no atomic bond breakage in the interface and the abutting
solids have equal tangential strain. The other assumes that
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Figure 2 Illustration of studies on composite considering interface effects.

the atomic bonds in the interface may break as slipping across
the interface, and there are different tangential strains in the
two solids [67]. In general, coherent interfaces often exist in
materials under various conditions [68].

Surface/interface stress can move atoms away from the
equilibrium positions they normally occupy in the macro-
scopic assemblies [69, 70], and the elastic properties of
nanostructures are influenced by the change in atomic dis-
tance. Attempts through continuum theory and molecular dy-
namic simulation have been made to show how surface stress
can affect the elastic properties of nanobeams, nanowires,
nanoplates, and nanocomposites [10, 34, 35, 71-78]. Miller
and Shenoy [71] used a continuum model and atomistic sim-
ulation to depict the surface stress influence on the elastic
properties of nanosized plates and beams. Zhou and Huang
[79] combined molecular statics and ab initio calculations
to study the elastic properties of nanoplates and found that
the surface can soften or stiffen the nanoplates. Jing et al.
[74] found that the apparent Young’s modulus of nanowires
decreases with the increased diameter of the nanowires via
theory and experiments. The size dependence of the ap-
parent Young’s modulus is caused by the surface effect of
nanowires, including the effects of the surface stress, the ox-
idation layer, and the surface roughness. Mancarella et al.
[10, 35] experimentally tested Young’s modulus of soft com-
posites with microscale droplets, and have found that the ef-
fective elastic properties can be significantly enhanced by mi-
croscale droplets due to the interface stress.

Gurtin and Ian Murdoch [80] proposed the first contin-
uum model to show the influence of surface stress effect
on the elastic properties of nanostructures, and it has been
further developed to calculate the elastic properties of nano-
structured materials [32, 71, 81-83]. Miller and Shenoy [71]
found that the results for nanobeams and nanowires calcu-
lated by the continuum model are similar to those obtained by
the atomistic simulations. Steigmann and Ogden [84] further
considered the effect of bending resistance of elastic films at-
tached to solid boundary surfaces and generalized the Gurtin-
Murdoch theory to the Steigmann-Ogden interface model,
which has been widely applied in calculating the effective

properties of nanocomposites [36, 37].

When calculating the effective properties of nanocompos-
ites, the Eshelby formalism is essential [85,86]. The Eshelby
formalism [85-87] includes the strain field of inclusion under
uniform eigenstrain in an infinite elastic medium, the elastic
field of inhomogeneity in an infinite medium under arbitrary
uniform far-field stress, and strain energy in solids contain-
ing inhomogeneities. Here, an inclusion is a subdomain sub-
jected to an eigenstrain in a solid with the same elastic prop-
erties of the solid, and an inhomogeneity is a region in a solid
whose elastic properties are different from the surrounding
solid [85, 88]. An inhomogeneous inclusion denotes an in-
homogeneity subjected to an eigenstrain. Many researchers
have made attempts to obtain the Eshelby formalism for the
nano-inhomogeneity. Sharma et al. [89, 90] analyzed the
influence of interface stress on the elastic field of a spher-
ical inhomogeneity embedded in an infinite medium. The
inhomogeneity is subjected to a uniform dilatational eigen-
strain, and the infinite medium is subjected to a hydrostatic
remote loading. Duan et al. [32] gave the Eshelby for-
malism of the nano-inhomogeneity. To predict the effective
properties of the heterogeneous materials containing nano-
inhomogeneities, micromechanical frameworks are required.
Many attempts have been made to give the micromechani-
cal frameworks for estimating the effective properties such
as the elastic modulus and thermal expansion coefficients
[43, 83, 91-93]. For example, Duan et al. [83] provided a
general micromechanical framework for estimating the ef-
fective elastic modulus of heterogeneous materials with the
interface stress effect. Duan et al. [91] further gave the ef-
fective elastic modulus of nanochannel-array materials and
found that rationally designing the pore surface elasticity and
surface coating can make nanochannel-array materials stiffer
than the parent materials. The intrinsic relations governing
these effective properties have also been widely studied by
researchers [45, 46, 94-96].

In other respects, the surface stress effect has been consid-
ered in a finite element method (FEM) by Gao et al. [97], and
the developed FEM has been applied in analyzing the elastic
properties of nano-structured materials. Fang and Liu [98]
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investigated the size-dependent interaction between the edge
dislocation and the circular nano-inhomogeneity. The influ-
ence of the surface/interface elasticity on the nanoparticles
embedded in a semi-infinite elastic medium has been studied
by Mi and Kouris [99].

Since the interface effects play an important role in de-
termining the elastic properties of nano-structure materials,
illustrations of how to consider the interface effects within
the classical framework and interface models characterizing
the elastic properties of the interface are summarized in the
following.

2.1 Three kinds of interface models for elastic problems

To estimate the effective elastic properties of nano-structured
materials, boundary-value problems of thermoelasticity are
first required to be solved, which are given by

∇ ·σσσk = 0 ,
σσσk = Ck : εεεk − ∆Tdk,

εεεk =
1
2

(
∇ ⊗ uk + uk ⊗ ∇

)
.

(1)

Here, superscripts k = I and k = m represent the quantities
in ΩI (inhomogeneity) and Ωm (matrix), respectively. σσσ, u,
and εεε are the stress tensor, displacement tensor, and strain
tensor, respectively. C and d are the stiffness tensor and the
stress-temperature tensor. ∆T is the temperature difference.
When considering the isotropic case, we have dk = dkI(2).
Here, dk = αk(3λk + 2µk), and αk, λk and µk are the thermal
expansion coefficient and elastic moduli, respectively. I(2) is
the second-order identity tensor in three-dimensional space.
It is noted that the inhomogeneity considered here can be the
spherical inhomogeneity or the cylindrical fiber.

In addition to Eq. (1), the corresponding interface condi-
tions need to be supplemented when considering the interface
effects. In the following, three kinds of interface models are
illustrated, i.e., the ISM, LSM, and the interphase model.

2.1.1 ISM

The ISM is described by the generalized Young-Laplace
equation and continuous displacement condition, which are
expressed as [80, 100]

[u] = 0, n · [σσσ] = −∇S · τττ. (2)

[·] = (out) − (in) represents the discontinuity of a quantity
across the interface. n is the unit vector normal to the co-
herent interface Γ, and ∇S · τττ is the interface divergence of
τττ [80]. When the interface is isotropic, the interface stress
τττ can be related to the interface strain εεεs, and the relation is

expressed as

τττ = 2µsεεε
s + λs(trεεεs)1 − ∆Td0. (3)

Here, λs and µs are the elastic moduli of the interface, and d0

is the stress-temperature tensor. 1 is the second-order iden-
tity tensor in the two-dimensional space. When the interface
is isotropic, d0 = d01 and d0 = αsκs. αs is the thermal expan-
sion coefficient of the interface, and κs = 2(µs + λs). When
the interface is coherent, εεεs equals the tangential strain in the
abutting bulk materials. Equation (2) can be applied to model
the excess of the bulk stress at an interface [65], in which
the interface modulus and thermal expansion coefficient may
be obtained using atomistic simulations [69, 70, 82]. Equa-
tion (2) can also be applied to provide an accurate simula-
tion of the thin and stiff interphase [101], in which the inter-
face modulus and thermal expansion coefficient can be de-
termined by the modulus, thickness, and thermal expansion
coefficient of the interphase.

2.1.2 LSM

In the LSM, the interface conditions can be given by [96]

[σσσ] · n = 0, [u] = βββ ·σσσ · n +γγγ · ∆T . (4)

βββ = βnn ⊗ n + βss ⊗ s + βtt ⊗ t is a second-order tensor with
βn, βs, and βt representing the interface elastic parameters.
n, s, and t are the unit normal and tangential vectors of the
interface, respectively. γγγ = γnn+γss+γtt is the displacement-
temperature vector of the interface with γn, γs, and γt being
the interface thermoelastic parameters. Duan and Karihaloo
[96] proposed that the thermoelastic term expressed byγγγ ·∆T
should be included in its constitutive description. Whenβββ→
0, γγγ → 0, the interface displacement jumps disappear and a
perfect bonding is formed at the interface. When βββ → ∞,
γγγ → ∞, the interface tractions disappear, which represents
the debonding of the adjoining media. When parameters in
βββ,γγγ are finite and positive, they define an imperfect interface.
The linear-spring model described by Eq. (4) is generally ap-
plied to model thin and compliant interphase, in which the
interface parameters can be obtained by the modulus, thick-
ness, and thermal expansion coefficient of the interphase.

2.1.3 Interphase model

The interface models, i.e., the ISM and the LSM, are two-
phase models with the volume fraction of the interface re-
gion in the heterogeneous material being zero, whereas the
interphase model is a three-phase model and is composed of
the inhomogeneity, interphase of given thickness, and ma-
trix with perfect bonding assumed at both the inhomogene-
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ity/interphase interface ΓIc and the interphase/matrix inter-
face Γcm, which are expressed as

n j · [σσσ j] = 0, [u j] = 0, j = 1, 2, (5)

where the superscript j = 1 and 2 denote the interfaces ΓIc

and Γcm, and n is the unit normal vector of the interface as
shown in Fig. 1b. The interphase can be either uniform or
gradient [102, 103]. Hashin and Rosen [104] applied the in-
terphase model into calculating the elastic moduli of fiber
composites. Lutz and Zimmerman [105] studied the effect of
the localized interphase on the overall mechanical properties
of a particulate composite. The interphase model has been
used to estimate the mechanical properties of nanocrystalline
with the interphase parameters obtained by the inter-atomic
potential simulation [106].

2.2 Equivalent relations among three interface models

Now that both the interface models (e.g., ISM and LSM) and
interphase model can be applied to model the interface prop-
erties, then the question arises: is it possible to replace the
three-phase model (i.e., interphase model) with a two-phase
model (i.e., interface model) if given a thin interface between
two media? This question has been answered affirmatively
by many researchers [29, 107].

It is often convenient in obtaining the solutions to the
boundary-value problems of composites by replacing the in-
terphase with a proper interface model [108, 109]. There is
extensive literature on this topic to date, from the pioneer-
ing works of Sanchez-Palencia [110], and Pham Huy and
Sanchez-Palencia [111] in conduction, to those works in elas-
ticity [112, 113], and to the recent works in discrete lattice
model representation [114]. Fairly comprehensive references
on simulating the interphase through interface models can be
found in the works of Rubin et al. [109,115-117]. Benveniste
and Miloh [115] derived different regimes of imperfect inter-
faces in a curved thin layer by utilizing the asymptotic expan-
sion of displacement and stress. Rubin and Benveniste [109]
formulated the Cosserat shell model for thin interfaces to
uniformly simulate several regimes of imperfect interfaces.
Although the Cosserat shell model can successfully model
the imperfect interfaces, its construction requires the appro-
priate assumption of strain energies for the shell-like inter-
face. Hashin [116] and Benveniste [117] adopted the Talyor
expansion of the relevant quantities within the interphase to
represent the interphase uniformly through the interface and
obtained a complete spectrum of its material properties.

The idea to derive an interface model from the interphase
based on Taylor expansions originated from Hashin et al.
[29, 118, 119], and then was used by many researchers. For

example, Miloh and Benveniste [120] used it to simulate the
highly conducting thin interphases; Hashin [116, 121] used
it for a thin interphase which has arbitrary conductivity and
elastic moduli; and Wang et al. [101] used it to obtain the
ISM from a thin and stiff interphase. It is noted that Bövik
et al. [118, 119] successfully represented the isotropic thin
interphase with a LSM for studying the scatting properties
of inhomogeneities. Benveniste [117] generalized the study
of Bövik [119] and achieved the representation of a thin
anisotropic three-dimensional curved interphase through an
interface in the conductive and elastic settings. To the au-
thors’ knowledge, the method of Taylor expansions is exten-
sively used in describing the equivalent relations among the
interphase model and interface models, and the representa-
tive works of this method are Hashin [116], and Benveniste
[117]. However, it is emphasized that although Hashin [116]
and Benveniste [117] used the same tool of Taylor expan-
sions, they are different in derivations of their models. More
detailed discussion can be found in Benveniste’s work [117].

As mentioned above, the ISM and LSM are two exten-
sively used interface models for simulating the interface
bonding conditions in heterogeneous materials and charac-
terizing the elastic properties of the nano-structured materi-
als. It can be seen from Eqs. (3) and (4) that the quantities
in these interface models, such as elastic modulus and elastic
field, depend on the elastic modulus and thermal expansion
coefficient of the interface and need to be determined experi-
mentally. However, since the interface regions have a volume
fraction of zero in these interface models, the experimental
characterization of these interface quantities is difficult. Be-
cause the ISM and LSM are often used to model the behavior
of thin interphases [29, 101, 122, 123], these quantities in the
interface models can be derived from the equivalent relations
between the interface models and the thin interphase. In the
following, we only give some essential results of the equiv-
alent relations between these two models and the interphase
model by using the method of Taylor expansions of Hashin
[116].

Consider thin interphase with a thickness t between the
matrix and the inhomogeneity. The interfaces between the
interphase and inhomogeneity, and between the interphase
and the matrix are denoted by ΓIc and Γcm, respectively.
Spherical particles are used here as an example to illustrate
the process, and the process for cylindrical fiber is simi-
lar. There exist displacement and stress differences (∆u j and
∆σr j, j = r, θ, φ) across the interphase, which can be accu-
rately approximated by the following relations [116]:

∆u j = uc
j(R + t) − uc

j(R) = t uc
j, r

∣∣∣ΓIc ,

∆σr j = σ
c
r j(R + t) − σc

r j(R) = t σc
r j, r

∣∣∣ΓIc .
(6)

The subscript ΓIc represents the quantities at the interface ΓIc,
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and the sub- and superscript “c” represents the quantities of
the interphase. For the interface models, there are displace-
ment and stress jumps ([u j] and [σr j]) across the interface
(Γ), which are given by

[u j] ≡ um
j (Γ) − up

j(Γ ), [σr j] ≡ σm
r j(Γ) − σp

r j(Γ ). (7)

Then, the equivalent relations between the interface models
and interphase models can be obtained by equaling the dis-
placement and stress differences (∆u j and ∆σr j) across the
interphase to the displacement and stress jumps ([u j] and
[σr j]) across the interface, i.e.,

[u j] = ∆u j, [σr j] = ∆σr j. (8)

The displacement and stress differences across a thin and
stiff interphase can be characterized as ∆ u j = 0, ∆σr j =

finite, which is similar to the description of the ISM, i.e.,
Eq. (2). Letting [u j] = um

j (Γ) − up
j (Γ) = 0, [σr j] =

σm
r j(Γ) − σp

r j(Γ) = ∆σr j, then we can obtain the equiva-
lent relations between a thin and stiff interphase and an ISM.
The elastic modulus and thermal expansion coefficient of the
equivalent ISM are given by

λs =
2µcνct
1 − νc

, µs = µct, κs = 2(λs + µs), αs = αc. (9)

Here, νc is the Poisson ratio of the interphase.
The displacement and stress differences across a thin

and compliant interphase can be characterized as ∆ u j =

finite, ∆σr j = 0, and are similar to the LSM described by Eq.
(4). Letting [u j] = um

j − up
j = ∆u j, [σr j] = σm

r j(Γ)−σp
r j(Γ) =

0, then the equivalent relations between a thin and compli-
ant interphase and a LSM are assured. The elastic modulus
and thermal expansion coefficient of the equivalent LSM are
given by

βn =
t

λc + 2µc
, βt =

t
µc
, γ =

αc(1 + νc) − 2αpνc

1 − νc
t. (10)

Equation (10) describes the case of spherical particles, and
can describe the case of cylindrical fibers when 2αp in the
expression is replaced by αfT.

Although the method of Taylor expansions has been suc-
cessfully applied in estimating the relationship between the
interface model and interphase model, it usually assumes that
the interphase is thin and uniform without considering the
complexity of the interphase structure [29,101,122,123]. For
the naturally thin interphase layer, the first order of Taylor ex-
pansions is usually precise. However, higher orders of Taylor
expansions are required to maintain accuracy when studying
the thick interphase [124-127]. For thick and complex mi-
crostructured interphase, the interface position might not be

the mid-layer, which will influence the behavior of the in-
terface model [128]. Furthermore, the method of Taylor ex-
pansions usually corresponds to small-strain linear elasticity,
which might be inapplicable for large deformations. More
attention should be paid to these problems [128].

3. Eshelby formalism and micromechanical
frameworks

3.1 Eshelby formalism

The Eshelby formalism [85-87] is the basis for solving many
elastic problems in composite mechanics, solid state physics,
and materials science. However, the classical Eshelby for-
malism does not include the influence of the interface, which
limits its application in nano-structured materials. In the fol-
lowing, the Eshelby formalisms considering three interface
effects are presented.

3.1.1 Eshelby formalism for ISM

Consider a spherical inhomogeneous inclusion with interface
effect described by the ISM. The spherical inhomogeneous
inclusion is a spherical inhomogeneity embedded in an in-
finite matrix and is subjected to a uniform eigenstrain. The
total strain εεεk(x) in the spherical inhomogeneous inclusion
(k = I) and in the matrix (k = m) can be related to the pre-
scribed uniform eigenstrain εεε∗ in the inhomogeneity through
the following expression [32]:

εεεk(x) = Sk(x) : εεε∗, k = I,m, ∀x ∈ ΩI + Ωm, (11)

where Sk(x) is the Eshelby tensor and x is the position vec-
tor. Similarly, the total stresses σσσk(x) in the two phases can
be related to the prescribed uniform remote stress σσσ0 through
the following expression:

σσσk(x) = Tk(x) : σσσ0, k = I,m, ∀x ∈ ΩI + Ωm, (12)

where Tk(x) is the stress concentration tensor. The Eshelby
tensors Sk(x) and the stress concentration tensors Tk(x) are
transversely isotropic with any radius being the symmetrical
axis. Thus, Walpole notation [129] can be used to represent
them. The Eshelby tensor is expressed as [32]

Sk(r) = S̃k(r)·̃ET
, k = I,m, (13)

in which

S̃k(r) =
[

S k
1(r) S k

2(r) S k
3(r) S k

4(r) S k
5(r) S k

6(r)
]
, (14)

and

Ẽ =
[

E1 E2 E3 E4 E5 E6
]
, (15)
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where r = rn is the position vector. r is the distance from the
material point where the Eshelby tensor is calculated to the
center of the spherical inhomogeneity, and n is the unit vector
along the radius of the spherical inhomogeneity. Sk

q(r) (q =
1, 2, · · · , 6) are the components of the Eshelby tensor and
are functions of r, and Ep (p = 1, 2, · · · , 6) are the elemen-
tary tensors defined by Walpole [129]. Similarly, the stress
concentration tensors can also be represented by the Walpole
notation, which are expressed as [32]

Tk(r) = T̃k(r)·̃ET
, k = I,m, (16)

in which

T̃k(r) =
[

T k
1(r) T k

2(r) T k
3(r) T k

4(r) T k
5(r) T k

6(r)
]
. (17)

The detailed procedure to obtain the results in Eqs. (13)- (17)
can be found in the work of Duan et al. [32].

It is noted that the Eshelby tensor SI(x) and the stress con-
centration tensor TI(x) in the inhomogeneity with the inter-
face stress are generally position-dependent, which are dif-
ferent from the classical results. The size dependence of the
Eshelby tensor is represented by two non-dimensional pa-
rameters κrs = lκ/R and µr

s = lµ/R, with R being the ra-
dius of the spherical inhomogeneity, and lκ = κs/µm and
lµ = µs/µm being two intrinsic length scales. The Eshelby
tensor for the case without the interface stress effects can be
directly obtained by setting κs = 0 and µs = 0 or by let-
ting R → ∞, which is a constant tensor. When the spher-
ical inhomogeneity is subjected to a dilatational eigenstrain
given by εεε*=ε0I(2), the total strain of the inhomogeneity is
expressed as εεεI=ε0SI : I(2). Since SI : I(2) is a constant tensor
whether there is interface effect or not, the stress field in the
inhomogeneity is homogeneous, which confirms the results
of Sharma et al. [89].

The strain energy given by the Eshelby formalism is im-
portant for analyzing the mechanical properties of the het-
erogeneous materials [32, 87], since it converts the volume
integration to surface integration. Consider a spherical in-
homogeneity embedded in an elastic matrix occupying the
volume of V . ∂V is the external surface of the matrix, and
Γ is the interface between the inhomogeneity and the ma-
trix. When a uniform strain boundary condition u = εεε0 · x
is applied at the external surface of the matrix, and the elas-
tic strain energy U of the heterogeneous material given by
the Eshelby formula with the interface stress effect can be
expressed as

U = U0 +
1
2

∫
Γ

(
n ·σσσ · u0 − u ·σσσ0 · n

)
dΓ, (18)

in which

U0 =
1
2

∫
V
σσσ0 : εεε0dV. (19)

where εεε0 is a constant strain tensor. σσσ and u are the stress ten-
sor and displacement vector at Γ, and the stress tensor is eval-
uated on the matrix side. σσσ0 and u0 represent the stress tensor
and displacement vector in a homogeneous body consisting
only of the matrix materials, which occupies the region of the
same volume as that of the heterogeneous material. When a
uniform stress boundary condition Σ = σσσ0 ·m(x) is applied at
the external surface of the matrix, the strain energy U of the
heterogeneous material given by the Eshelby formula with
the interface stress effect can be written as

U = U0 +
1
2

∫
Γ

(
n ·σσσ0 · u − u0 ·σσσ · n

)
dΓ, (20)

where m(x) is the outward unit normal vector to the external
surface of the matrix ∂V .

3.1.2 Eshelby formalism for LSM and interphase model

When considering a spherical inhomogeneous inclusion em-
bedded in an infinite matrix with the interface effect de-
scribed by the LSM, the corresponding Eshelby tensor and
stress concentration tensor have the same forms as Eqs. (13)
and (16). The size dependence of the Eshelby tensor is rep-
resented by two non-dimensional parameters lr/R and lθ/R
with R being the radius of the spherical inhomogeneity, and
lr = βnµm and lθ = βsµm being two intrinsic lengths scales.

When the heterogeneous material is subjected to a uniform
strain boundary condition u = εεε0 · x, the elastic strain energy
given by the Eshelby formula with the LSM can be written
as

U = U0 +
1
2

∫
Γ

(
n ·σσσ · u0 − u ·σσσ0 · n

)
dΓ, (21)

where the displacement tensor u is evaluated on the matrix
side. The elastic strain energy given by the Eshelby formula
for the LSM under Σ = σσσ0 ·m(x) is expressed as

U = U0 +
1
2

∫
Γ

(
n ·σσσ0 · u − u0 ·σσσ · n

)
dΓ. (22)

Consider a spherical inhomogeneity embedded in an in-
finite matrix, which has uniform interphase or graded inter-
phase whose elastic modulus is only the function of radius
r. The Eshelby tensors and the stress concentration ten-
sors in the inhomogeneity, the interphase, and the matrix
can be expressed by Eqs. (13) and (16), since the problem
considered here is both geometrically and physically sym-
metric and these tensors are all transversely isotropic ten-
sors. Duan et al. [130] gave the results of the case that
the moduli of the interphase are power-law functions of r,
i.e., κc(r) = κ0rQ, µc(r) = µ0rQ, νc = constant, where
κ0, µ0, and Q are constants. If Q = 0, the results degener-
ate into those of uniform interphase. By making the modulus
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of the infinite matrix tend to infinity or vanish, the Eshelby
tensors with uniform (or graded) interphase can be applied to
the finite spherical inhomogeneity with fixed displacement or
traction-free boundary conditions.

3.2 Micromechanical frameworks

As mentioned above, three interface models, namely, ISM,
LSM, and interphase model, are extensively used to model
the interface properties of the heterogeneous materials. Next,
the interface effects on the effective elastic properties of the
heterogeneous materials are discussed. Interface effects af-
fect the effective modulus of heterogeneous materials in two
ways. The average stress (strain) in the inhomogeneity is
affected by the interface bonding conditions and can be con-
sidered by using the stress (strain) concentration tensor in the
inhomogeneity. The discontinuities in the quantities across
the interface result in additional stress (strain) when calculat-
ing the volume average of the stress (strain), which can be
accounted for by using the stress (strain) concentration ten-
sor at the interface. Then, the effective mechanical proper-
ties of heterogeneous materials can be modeled by the mi-
cromechanical schemes after accounting for interfacial ef-
fects in the calculations of volume-averaged quantities in
these schemes. Benveniste [131] proposed a general frame-
work for considering displacement discontinuities, which has
been applied to calculate the effective modulus of heteroge-
neous materials with displacement discontinuity by Hashin
[29]. Duan et al. [83] gave a general framework for consid-
ering stress discontinuity and using this framework to predict
the effective mechanical properties of the heterogeneous ma-
terials with interface stress effects. In the following, a brief
illustration of the micromechanical framework for predicting
the effective mechanical properties of heterogeneous materi-
als with three types of interface models is given.

A representative volume element (RVE) of the heteroge-
neous material is considered here, which is composed of the
inhomogeneities ΩI and the matrix Ωm. V is the volume of
the RVE, and ∂V is the external boundary of the RVE. Ck

and Dk are the stiffness tensor and the compliance tensor in
the inhomogeneity (k = I) and matrix (k = m). Assume that
the heterogeneous material is statistically homogeneous, and
the average strain ε̄εε and average stress σ̄σσ are defined as [115]

ε̄εε =
1

2V

∫
∂V

(m ⊗ u + u ⊗m) dA,

σ̄σσ =
1
V

∫
∂V

(σσσ ·m) ⊗ x dA,
(23)

where m(x) is the normal vector on the external surface of
the RVE. Then, the effective elastic properties of the two-
phase heterogeneous materials can be estimated by applying

the homogeneous boundary conditions to the external surface
∂V , which are respectively defined as

u = εεε0 · x or Σ = σσσ0 ·m(x), (24)

where εεε0 and σσσ0 are constant strain and stress tensors.
When considering the interface effects, discontinuities in the
displacement vector or traction vector across the interface
should be included, and then the average strain and stress
of the heterogeneous materials are given by

ε̄εε = (1 − fI) ε̄εεm + fI ε̄εεI +
fI

2VI

∫
Γ

(n ⊗ [u] + [u] ⊗ n) dΓ, (25)

and

σ̄σσ = (1 − fI) σ̄σσm + fI σ̄σσI +
fI
VI

∫
Γ

([σσσ] · n) ⊗ x dΓ, (26)

where [σσσ] = σσσm −σσσI, [u] = um − uI. In Eqs. (25) and (26),
[σσσ] = 0 is used for the case considering the linear-spring
model, and [u] = 0 is used for the case considering the ISM.

3.2.1 Micromechanical frameworks with ISM

When a displacement boundary condition u = εεε0 ·x is applied
to the RVE, one can predict the effective stiffness tensor of
the heterogeneous materials with the ISM, which is given by

C̄ = Cm + fI (CI − Cm) : R + fICm : G. (27)

The strain concentration tensors R and G are defined as

ε̄εεI = R : εεε0,
1
VI

∫
Γ

([σσσ] · n) ⊗ x dΓ = Cm : G : εεε0. (28)

When a traction boundary Σ = σσσ0 ·m(x) is applied, the effec-
tive compliance tensor is

D̄ = Dm + fI (DI − Dm) : U − fI Dm: W, (29)

where the stress concentration tensors U and W are defined
as

σ̄σσI = U : σσσ0,
1
VI

∫
Γ

([σσσ] · n) ⊗ x dΓ = W : σσσ0. (30)

3.2.2 Micromechanical frameworks with LSM

Likewise, under the displacement boundary condition u =
εεε0 · x, the effective stiffness tensor of the heterogeneous ma-
terials with the LSM is

C̄ = Cm + fI (CI − Cm) : M − fI Cm: N, (31)

in which two strain concentration tensors M and N are ex-
pressed as

ε̄εεI = M : εεε0,
1

2VI

∫
Γ

(n ⊗ [u] + [u] ⊗ n) dΓ = N : εεε0. (32)
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Under the traction boundary condition Σ = σσσ0 ·m(x), the ef-
fective compliance tensor of the the heterogeneous materials
with the LSM is

D̄ = Dm + fI (DI − Dm) : P + fI Dm : Q, (33)

in which two stress concentration tensors P and Q are given
by

σ̄σσI = P : σσσ0,

1
2VI

∫
Γ

(n ⊗ [u] + [u] ⊗ n) dΓ = Dm : Q : σσσ0.
(34)

It is noted that Eqs. (27) and (29) for the ISM, and Eqs.
(31) and (33) for the LSM can be used to estimate the ef-
fective elastic properties of heterogeneous materials by using
the micromechanical frameworks, such as the dilute concen-
tration approximation, generalized self-consistent method
(GSCM) [132], and Mori-Tanaka method (MTM) [133],
once the strain and stress concentration tensors in these ex-
pressions are obtained.

3.2.3 Micromechanical frameworks with interphase model

When considering an RVE of the heterogeneous materials
containing inhomogeneities with interphases, let fI, fc, and
fm be the volume fraction of the inhomogeneities, inter-
phases, and matrix. The stiffness and compliance tensors of
the interphase are Cc and Dc, respectively. Then, the vol-
ume average strain and stress of the RVE can be respectively
expressed as

ε̄εε = fmε̄εεm + fI ε̄εεI + fcε̄εεc,

σ̄σσ = fmσ̄σσm + fI σ̄σσI + fcσ̄σσc

= fmCm : ε̄εεm + fICI : ε̄εεI + fcCc : ε̄εεc.

(35)

Therefore, the effective stiffness tensor can be calculated by
the following expressions:

C̄ : ε̄εε = Cm : ε̄εεm + fI (CI − Cm) : ε̄εεI

+ fc (Cc − Cm) : ε̄εεc. (36)

Within the above micromechanical frameworks of the in-
terface and interphase models, many researchers have esti-
mated the effective mechanical properties of particle- and
fibre-reinforced composites, including those of Qiu et al.
[134,135]. Hashin and Monteiro [135] used the above frame-
work and the GSCM to estimate the effective elastic prop-
erties of the concrete, which is a kind of three-phase com-
posites consisting of the cement paste matrix, discrete rock
inhomogeneities, and an interfacial transition zone (ITZ) be-
tween them. Zhang et al. [19] predicted the thermal damage
of hybrid fiber-reinforced concrete based on the LSM model.

4. A unified scheme for multiphase composites
with interface effects

So far, to predict the effective mechanical properties of linear
composites, many micromechanical frameworks have been
proposed [136-140], as well as the mechanical behaviors of
nonlinear composites [141-143], such as the GSCM [132,
144], Torquato’s third-order approximation (TOA) [145], and
MTM [133, 146]. Although these micromechanical frame-
works can provide good estimations close to the numerical
results [144], some limitations need to be considered in their
applications. For example, the MTM may underestimate
the effective shear modulus of the heterogeneous materials
when the hard inhomogeneities are in a high volume frac-
tion [144, 147]. From an overall perspective, it is considered
that the GSCM and TOA can provide the best estimations
[4, 148]. Moreover, the GSCM takes the matrix atmosphere
into account, which may greatly improve the accuracy of the
estimated results [148]. In this section, we reviewed a uni-
fied GSCM scheme for multiphase composites with interface
effects based on the Eshelby formalism for the three-phase
configuration.

Consider a heterogeneous material consisting of the ran-
domly distributed spherical inhomogeneities and a continu-
ous matrix, whose effective stiffness tensor C̄ and compliance
tensor D̄ can be given by [149]

C̄ = Cm + fI(CI − Cm) : ĒI, (37)

and

D̄ = Dm + fI(DI − Dm) : T̄I, (38)

where C and D are the stiffness tensor and the compliance
tensor with subscripts “I” and “m” representing the inhomo-
geneities and the matrix. fI is the volume fraction of the in-
homogeneities. ĒI in Eq. (37) and T̄I in Eq. (38) are the
strain concentration tensor and stress concentration tensor in
the inhomogeneities, respectively, and are defined as

ε̄εεI = ĒI : εεε0, σ̄σσI = T̄I : σσσ0. (39)

Here, εεε0 and σσσ0 represent the strain and stress tensors in a
homogeneous material composing only of the matrix mate-
rial and are uniform tensors. ε̄εεI and σ̄σσI are the volume aver-
age strain and stress tensors in the inhomogeneity. ĒI or T̄I

can be estimated by the GSCM scheme, in which the inho-
mogeneity is assumed to be embedded in a finite shell made
of the matrix material, and the whole inhomogeneity-shell
structure is again embedded in an infinite medium with un-
known mechanical properties, as shown in Fig. 3a. The un-
known mechanical properties of the infinite medium are the
effective properties of the heterogeneous materials. Thus, we
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Figure 3 a The GSCM (three-phase) configuration for a heterogeneous
material containing spherical (circular) inhomogeneities. b, c The Eshelby
equivalent inclusion method in a volume average sense for the three-phase
configuration. Reproduced from Ref. [130].

call the infinite medium the equivalent homogeneous
medium. The matrix shell in Fig. 3a can be regarded as
the interphase, and the equivalent homogeneous medium can
be treated as the infinite matrix. Then, the effective stiffness
tensor (or effective compliance tensor) of the heterogeneous
material can be directly calculated by substituting the strain
and stress concentration tensors for the inhomogeneity in the
three-phase configuration into Eq. (37) or (38) [130]. The
effective bulk and shear moduli of heterogeneous materials
estimated by this procedure were found to be the same as
those predicted by Christensen et al. [132, 150]. However,
the obtained effective shear modulus is implicit in the form
of a quadratic equation with redundant coefficients, which
poses a challenge for solving the effective shear modulus.

We have proposed a unified micromechanical scheme for
multiphase composites with interface effects [130, 151, 152].
Different from previous schemes, the strain concentration
tensor ĒI in this new micromechanical scheme is obtained
by the Eshelby equivalent inclusion method shown in Fig. 3b
and c rather than using the configuration in Fig. 3a. And the
Eshelby equivalent inclusion method is in a volume average
sense. In the following, a brief description of this framework
is given.

Consider a three-phase configuration shown in Fig. 3a,
which is under a remote stress σσσ0. The remote stress induces
the stress in the inhomogeneity Ω, whose volume average
form is σ̄σσI with a bar denoting the volume average. Then,
one can replace the region of inhomogeneity with the stiff-
ness tensor of CI by the matrix material with the stiffness
tensor Cm, as shown in Fig. 3b. The volume average stress
in the replaced region is σ̄σσm for the same remote stress σσσ0,
which meets the condition σ̄σσm = B : σσσ0. The fourth-order
tensor B is equal to the classical stress concentration tensor
T0 [130]. The volume average stress in the replaced region
σ̄σσm is usually different from the volume average stress in the
inhomogeneity σ̄σσI. And the replaced region is further applied
a uniform eigenstrain εεε∗, as shown in Fig. 3c. In the classi-
cal Eshelby equivalent inclusion method, the eigenstrain εεε∗

satisfies the following condition:

CI : (ε̄εεm + ε̄εε′) = Cm : (ε̄εεm + ε̄εε′ − εεε∗), (40)

where ε̄εεm is the volume average strain in the replaced region.
The relationship between the disturbed strain ε̄εε′ and the uni-
form eigenstrain εεε∗ is ε̄εε′ = S̄I : εεε∗ with S̄I being the volume
average Eshelby tensor in the replaced spherical region in
Fig. 3c [130].

An approximation for the stress concentration tensor T̄I is
given here based on the Eshelby equivalent inclusion method
in a volume average sense [130], which is represented by T̄∗

and is given by

T̄∗ =
[
I(4s) − CI : S̄I : (CI

−1 − Cm
−1)

]−1
: CI : Cm

−1 : B,
(41)

where I(4s) is the fourth-order symmetric identity tensor in
three-dimensional space [138]. Similarly, an approximation
for the strain concentration tensor ĒI represented by Ē∗ can
be expressed as

Ē∗ =
[
I(4s) − S̄I : Cm

−1 : (Cm − CI)
]−1

: A. (42)

The fourth-order tensor A satisfies the condition ε̄εεm = A : εεε0

and is expressed as A = CI
−1 : B : Cm.

When the spherical inhomogeneity is isotropic and is em-
bedded in an isotropic matrix, T̄∗ can be written as

T̄∗ = α∗J3 + β
∗K3, (43)

with

J3 =
1
3

I(2) ⊗ I(2), K3 = −
1
3

I(2) ⊗ I(2) + I(4s), (44)

where α∗ is the dilatational component, and β∗ is the devi-
atoric component. It is found that α∗ is equal to the exact
result obtained by directly solving the problem in Fig. 3a,
and β∗ is identical to the exact numerical results [130]. It
means that the approximation of the stress concentration ten-
sor is of high accuracy. Therefore, we can predict the ef-
fective mechanical properties of heterogeneous materials by
replacing T̄I with T̄∗. Compared with the classical GSCM,
the replacement method has a simpler expression for the ef-
fective shear modulus [130]. Duan et al. [130] also found
that this replacement method is self-consistent. Furthermore,
this replacement method described above can be applied to
circular inhomogeneities, and S̄I, T̄I, and T̄∗ show similar
properties to those of the spherical inhomogeneity.

When further considering a composite containing multiple
different particles denoted by k = 2, 3, · · · , N, we can obtain
the effective stiffness tensor C̄ and compliance tensor D̄ by
the following decoupled formulas:

C̄ = Cm +

N∑
k=2

fk(Ck − Cm) : Ēk,

D̄ = Dm +

N∑
k=2

fk(Dk − Dm) : T̄k.

(45)
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Here, Ēk and T̄k are given by Eqs. (41) and (42), respectively.
After briefly describing the new micromechanical scheme,

the new scheme is applied to predict the effective elastic mod-
ulus of heterogeneous materials in the following.

4.1 Heterogeneous materials containing spherical par-
ticles

Let us first consider the heterogeneous material composed
of a continuous matrix and randomly distributed identical
spherical particles. The obtained effective bulk modulus cal-
culated by the new scheme is expressed as

κ̄ =
4(1 − fI)κmµm + κI(3κm + 4 fIµm)

3(1 − fI)κI + 3 f κm + 4µm
, (46)

which is identical to the result given by the original GSCM
[132] and the MTM [133, 146]. The effective shear modulus
µ̄ given by the new scheme is implicit and is expressed as
[130]

A′
(
µ̄

µm

)2

+ B′
(
µ̄

µm

)
+C′ = 0, (47)

where

A′ = −
[
126 f 7/3

I − 252 f 5/3
I + 50(7 − 12νm + 8ν2m) fI

]
× (1 − g3) + 4(7 − 10νm)N1,

B′ =
[
252 f 7/3

I − 504 f 5/3
I + 150(3 − νm)νm fI

]
(1 − g3)

− 3(7 − 15νm)N1,

C′ = −
[
126 f 7/3

I − 252 f 5/3
I + 25(7 − ν2m) fI

]
(1 − g3)

− (7 + 5νm)N1,

(48)

in which N1 = −7 + 5νm − 2g3(4 − 5νm), g3 = µI/µm with
νm being the Poisson ratio of the matrix. Compared to the
result given by the original GSCM, the coefficients given by
the new scheme are much simpler. And the shear modulus
obtained by the new scheme through Eq. (47) is numerically
indistinguishable from the results given by the GSCM [130].

When considering a general composite consisting of mul-
tiple different inhomogeneities, which are denoted by k = 2,
3, · · · , N, the calculated effective modulus is of high accu-
racy, which is given by

κ̄e
κm
�

N∏
k=2

κ̄

κm

(
fk,
µk

µm
, νk, νm

)
, (49)

and

µ̄e

µm
�

N∏
k=2

µ̄

µm

(
fk,
µk

µm
, νk, νm

)
, (50)

where κ̄( fk, µk/µm, νk, νm) and µ̄( fk, µk/µm, νk, νm) are the ef-
fective bulk modulus and the effective shear modulus of the

heterogeneous materials which is composed of the matrix
material of the considered multiphase composite and the k-
th kind of inhomogeneity, and can be calculated from Eqs.
(46) and (47). Then, the effective mechanical properties of
the multiphase composite can be obtained by Eqs. (49) and
(50) along with Eqs. (46) and (47). Compared with the re-
sults obtained by Christensen et al. [132, 150], the effective
moduli calculated by the new scheme are very accurate.

4.2 Heterogeneous materials containing cylindrical
fibers

Now, we consider a heterogeneous material, which is com-
posed of a continuous matrix and randomly distributed but
aligned identical cylindrical fibers. The aligned fibers have a
volume fraction of fI. The aligned fiber-reinforced material
is macroscopically transversely isotropic and has five inde-
pendent elastic constants. Hill [153] and Hashin [154] pro-
posed a model for estimating the effective elastic constants
of the fiber-reinforced composites, which can accurately pre-
dict the elastic constants related to the fiber direction and the
bulk modulus in the plane perpendicular to the fibers. How-
ever, it can only provide bounds on the shear modulus of
the fiber-reinforced composite. Based on the configuration
shown in Fig. 3a in a two-dimensional sense, Christensen and
Lo [132] subsequently developed the GSCM for the fiber-
reinforced composites to estimate the transverse shear mod-
ulus. Therefore, the new scheme described above can be used
to estimate the effective elastic modulus of the aligned fiber-
reinforced heterogeneous materials. The calculated effective
plane-strain bulk modulus k̄ is expressed as

κ̄ =
(1 − fI)κmµm + κI(κm + fIµm)

(1 − fI)κI + fIκm + µm
, (51)

which is identical to the results given by the classical GSCM
[132]. κm and µm are the plane-strain bulk modulus and
shear modulus of the matrix, respectively, and κI is the plane-
strain bulk modulus of the fibers. The effective transverse
shear modulus µ̄T of the heterogeneous material is implicit
and needs to be solved from the following quadratic equa-
tion:

a′
(
µ̄T

µm

)2

+ b′
(
µ̄T

µm

)
+ c′ = 0, (52)

where

a′ = [−3 f 3
I + 6 f 2

I − 4(4ν2m − 6νm + 3) fI](1 − g2)

− (3 − 4νm)N2,

b′ = (6 f 3
I − 12 f 2

I + 8νm fI)(1 − g2) + 2(1 − 2νm)N2,

c′ = (−3 f 3
I + 6 f 2

I − 4 fI)(1 − g2) + N2,

(53)
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with N2 = 1 + g2(3 − 4νm), g2 = µT I/µm. νm is the Poisson
ratio of the matrix, and µT I is the transverse shear modulus
of the fibers. Compared with the classical GSCM, the results
obtained from Eq. (52) have the same accuracy but a simpler
expression.

For the case of aligned fiber-reinforced multiphase com-
posites, the decoupled formulas for calculating the effective
elastic moduli are given by [150]

κ̄e
κm
�

N∏
k=2

κ̄

κm

(
fk,
µTk

µm
, νk, νm

)
, (54)

µ̄Te

µm
�

N∏
k=2

µ̄T

µm

(
fk,
µTk

µm
, νk, νm

)
, (55)

where κ̄e and µ̄Te are the transverse plane-strain bulk modulus
and effective transverse shear modulus of the composites. κ̄
and µ̄T are the plane-strain bulk modulus and shear modulus
of the heterogeneous materials, which are only composed of
the matrix materials of the considered multiphase compos-
ites and the k-th kind of fiber, which can be determined by
Eqs. ( 51) and (52). The volume fraction of the k-th kind of
fiber is fk. Therefore, combined with Eqs. (51) and (52), and
Eqs. (54) and (55), the effective modulus of the multiphase
fiber-reinforced composite material is calculated.

5. Formalism for effective conductivity with in-
terface effects

Besides the widely studied elastic properties, the conductive
properties of heterogeneous materials with interface effects
have also attracted considerable interest among researchers
[92,93,96,155,156]. To capture the conductive properties of
the interface and calculate the effect of the interface on the
conductivity of the heterogeneous materials, three kinds of
interface models are usually applied, i.e., the LC interface
model, the HC interface model, and the interphase model
[120, 121]. Take the thermal conductivity problem as an ex-
ample. Both LC and HC interface models in the thermal
conductivity problem are the zero-thickness interface model.
There is a discontinuous temperature field and continuous
normal heat flux across the LC interfaces. LC interfaces are
often referred to as the interfaces with the Kapitza thermal
resistance [2], where the thermal resistance can be caused by
the roughness or acoustic mismatch at the boundary of two
media, or results from the presence of low conductive thin in-
terphases. The effect of the LC interface on the effective con-
ductivity of heterogeneous materials has long been studied
[146, 157-167]. For example, Hasselman and Johnson [159]
have extended the classical work of Maxwell and Rayleigh,
and derived an effective medium approximation (EMA) for

calculating the effective thermal conductivity of heteroge-
neous materials. A more general formulation of EMA has
been subsequently developed by Nan et al. [165] for calcu-
lating the effective thermal conductivity of the heterogeneous
materials containing spherical inhomogeneities. HC inter-
face models describe the interface with a continuous temper-
ature field and discontinuous normal heat flux across it. Such
interface behavior is caused by the presence of high conduc-
tive thin interphases [111]. The effect of the HC interface on
the effective conductivity of heterogeneous materials has also
been extensively studied [120, 140, 163, 166, 168, 169].

Torquato and Rintoul [163] derived the rigorous bounds
for the effective conductivity of heterogeneous materials with
LC and HC interfaces, which contains the information of
the volume fraction of the inhomogeneities and the higher-
order microstructural information. Lipton [170] introduced a
new parameter named “surface to volume dissipation”, and
pointed out that the presence of specific particles will in-
crease the effective conductivity of the heterogeneous ma-
terials when the “surface to volume dissipation” lies above a
critical value. Garboczi et al. [171] modeled the ion diffu-
sion in concrete with the presence of HC interfaces. Lipton
and Talbot [166] gave the bound of the effective conductivity
for a two-phase composite under the consideration of the LC
and HC interfaces. In their bound, the interface can be highly
conductive or resistive, and the material properties and geo-
metrical arrangement of the phases can be anisotropic. In a
series of works by Benveniste and Miloh, various aspects re-
lated to heterogeneous materials with LC and HC interfaces
have been studied. For example, Miloh and Benveniste [120]
used the ellipsoidal harmonics and mean-field approxima-
tions to predict the effective conductivity of heterogeneous
materials containing ellipsoidal inhomogeneities with HC in-
terfaces. Benveniste and Miloh [172] also proposed the con-
cept of neutral inhomogeneity in thermal conduction and in-
vestigated the presence of neutral inhomogeneity in conduc-
tion phenomena with LC and HC interfaces.

5.1 Three kinds of interface model for conductivity

Hashin and Shtrikman [173] showed that the problems for
predicting the effective characteristics of heterogeneous ma-
terials, such as heat conductivity, electrical conductivity, di-
electric constant, diffusivity, and magnetic permeability, are
mathematically analogous. Here, we take the prediction of
thermal conductivity of heterogeneous materials as an exam-
ple. Let us consider an RVE of heterogeneous material with a
volume of V . q(x), H(x), and Φ(x) denote the local heat flux,
the local intensity field, and the temperature field at position
x, respectively. The basic equations for solving the local heat
flux q(x) and intensity field H(x) within the RVE are given
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by

∇ · q(x) = 0, ∇ ×H(x) = 0, H(x) = −∇Φ(x),

q(x) = K(x) ·H(x), or H(x) = ρ(x) · q(x),
(56)

where K(x) and ρ(x) are respectively the second-order con-
ductivity and resistivity tensors. In general, the boundary
condition on the RVE boundary ∂V is one of the following
two equivalent forms:

Φ(∂V) = −H0 · x or q(∂V) = q0, (57)

where H0 and q0 are respectively the constant intensity and
heat flux. Interface conditions between the inhomogeneities
and the matrix in the heterogeneous materials must also be
specified in addition to Eqs. (56) and (57) to solve the local
heat flux q(x) and intensity field H(x).

As mentioned before, the LC interface model, HC inter-
face model, and interphase model are usually used in con-
sidering the interface effect. In the following, the interface
conditions for these interface models are summarized.

The LC interface simulates an interface with continuous
normal heat flux and discontinuous temperature field, whose
interface conditions are given by

[qn ] = 0, [Φ] = −α qn , (58)

where qn is the normal heat flux. α is the interface parameter
that describes the temperature discontinuity across the inter-
face, with α → 0 denoting the ideal interface, and α → ∞
denoting the interface of adiabatic contact.

The HC interface simulates an interface with a continuous
temperature field and discontinuous heat flux, whose inter-
face conditions are expressed as

[Φ] = 0, [qn ] = β∆SΦ, (59)

where ∆SΦ is the surface Laplacian of Φ. β is the surface pa-
rameter that describes the discontinuity of the heat flux, with
β → 0 denoting an ideal interface, and β → ∞ denoting the
interface in contact with a medium with infinite conductivity.

The interphase model is a three-phase model consisting of
inhomogeneity, matrix, and an interface of finite thickness,
in which perfect bonding conditions are generally assumed
at the inhomogeneity/interphase interface ΓIc and the inter-
phase/matrix interface Γcm. Therefore, the interface condi-
tions are given by

[Φ j] = 0, [q j
n] = 0, j = 1, 2, (60)

where superscript j = 1 and 2 represents the interfaces ΓIc

and Γcm, respectively. [Φ j] and [q j
n] denote the temperature

field discontinuity and heat flux discontinuity, respectively.

After given basic equations and interface/boundary condi-
tions for the thermal conductivity problem, the effective con-
ductivity of the heterogeneous materials can be obtained by
the micromechanical model. In the following, a brief illus-
tration of the micromechanical frameworks for estimating the
effective conductivity of the heterogeneous materials with the
interface effects is given.

5.2 Frameworks for effective conductivity

Consider a heterogeneous material with the inhomogeneity
conductivity tensor KI (resistivity tensor ρI) and matrix con-
ductivity tensor Km (resistivity tensor ρm), similar to those
of the elasticity problems, the definitions of the volume aver-
age intensity and volume average heat flux in the RVE with
boundary ∂V are

H̄ =
1
V

∫
V

H dV = − 1
V

∫
∂V
Φ m dA, (61)

and

q̄ =
1
V

∫
V

qdV =
1
V

∫
∂V

(q ·m) x dA. (62)

In the presence of imperfect interfaces with temperature and
flux discontinuities, these averages can be written as [174]

H̄ = (1 − fI) H̄m + fI H̄I +
fI
VI

∫
Γ

[Φ] n dΓ, (63)

and

q̄ = (1 − fI) q̄m + fI q̄I +
fI
VI

∫
Γ

([
q
] · n)

x dΓ. (64)

In Eqs. (63) and (64),
[
q
]
= 0 for the LC interface model and

[Φ] = 0 for the HC interface model.

5.2.1 Frameworks with LC interface model

Under Φ(S ) = −H0 · x, the effective conductivity K̄ is given
by [146]

K̄ = Km + fI (KI −Km) ·M′ + fI Km·N′, (65)

in which M′ and N′ are two intensity concentration tensors
in the inhomogeneity and at the interface expressed as

H̄I = M′ ·H0,
1
VI

∫
Γ

[Φ] n dΓ = N′ ·H0. (66)

Under q(S ) = q0, the effective resistivity ρ̄ is

ρ̄ = ρm + fI
(
ρI − ρm

) ·P′ + fIρm ·Q′, (67)

in which P′ and Q′ are two flux concentration tensors in the
inhomogeneity and at the interface expressed as

q̄I = P′ · q0,
1
VI

∫
Γ

[Φ] n dΓ = ρm · Q′ · q0. (68)
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5.2.2 Frameworks with HC interface model

Under Φ(S ) = −H0 · x, the effective conductivity K̄ is

K̄ = Km + fI (KI −Km) · R′ + fI Km · G′, (69)

in which two intensity concentration tensors R′ and G′ in the
inhomogeneity and at the interface are defined by

H̄ I = R′ ·H0,
1
VI

∫
Γ

([
q
] · n) ⊗ x dΓ = Km ·G′ ·H0. (70)

Under q(S ) = q0, the effective resistivity ρ̄ is

ρ̄ = ρm + fI
(
ρI − ρm

) · U′ − fIρm ·W′, (71)

in which two strain concentration tensors U′ and W′ in the
inhomogeneity and at the interface are defined by

q̄ I = U′ · q0,
1
VI

∫
Γ

([
q
] · n) ⊗ x dΓ =W′ · q0. (72)

It is noted that Eqs. (65) and (67) for the LC interface
model, and Eqs. (69) and (71) for the HC interface model can
be applied to estimate the effective conductivity of heteroge-
neous materials through the micromechanical methods, such
as the dilute concentration approximation and the GSCM
[175], once the intensity and flux concentration tensors in
these expressions have been obtained.

5.2.3 Frameworks with interphase model

When considering the interphase model, let Kc and ρc be
the conductivity and resistivity tensors of the interphase. Ac-
cording to Eq. (62), the volume average intensity and flux of
the RVE are then given by

H̄ = fmH̄m + fI H̄I + fcH̄c, (73)

and

H̄ = fmH̄m + fI H̄I + fcH̄cq̄I + fcq̄c

= fmKm · H̄m + fIKI · H̄I + fcKc · H̄c.
(74)

Then the effective conductivity K̄ can be calculated by the
following expression:

K̄ · H̄ = Km · H̄m + fI (KI −Km) · H̄I + fc (Kc −Km) · H̄c.

(75)

6. Scaling laws for size-dependent properties

Because of their importance in various fields, the size-
dependent properties of materials have been studied for a
long time, and have recently received more attention at the

nanoscale. In nature and modern industry, nano-structures
are common [69-71, 176-180] and the large surface area
to volume ratio of these nano-structures significantly af-
fects their properties. For instance, the failure mode can be
changed by reducing the size of the solids. Brittle calcium
carbonate particles with a size less than 850 nm will be duc-
tile and can not be comminutied by fracturing [181, 182].

When considering the size-dependent properties of mate-
rials with the feature size of L, let F(L) denote the concerned
property at a small size L, and F(∞) denote the correspond-
ing property of the bulk. Based on the dimensional analysis,
the ratio of F(L) to F(∞) can be then written as a function of
some non-dimensional variables X j ( j = 1, 2, · · · , M) and a
size-related non-dimensional parameter lin/L, i.e.,

F(L)
F(∞)

= F (X j, lin/L), (76)

where lin is an intrinsic length scale related to the surface
properties. The function in Eq. (76) can be extended in
powers of lin/L for many physical properties. When lin is
much smaller than L, only the linear term in the extended
expressions of lin/L needs to be retained. Therefore, the size-
dependent properties of the considered materials can be ac-
curately described by the scaling laws expressed as

F(L)
F(∞)

= 1 +A
lin
L
, (77)

and
F(∞)
F(L)

= 1 +B
lin
L
, (78)

where A and B are two non-dimensional coefficients. In the
following, we will confirm that the scaling laws Eqs. (77) and
(78) are obeyed by many materials properties such as elastic
modulus, thermal conductivity, and melting temperature.

6.1 Scaling laws for size-dependent elasticity

When considering the interface effects on the effective elas-
tic properties through LSM and ISM, some intrinsic length
scales emerge, i.e.,

lr =
µm

βn
, lθ =

µm

βs
, for LSM, (79)

and

lλ =
λs

µm
, lµ =

µs

µm
, for ISM. (80)

Therefore, the effective modulus of heterogeneous materi-
als with the LSM or ISM interface effects are usually size-
dependent. The detailed size dependence of the effective
modulus of the heterogeneous materials can be investigated
by the micromechanical schemes described above. When
the length scale of the inhomogeneity is much smaller than
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the characteristic size of the heterogeneous material, the size
dependence can be briefly described by two simple scaling
laws, which are very accurate.

For illustrative purposes, a two-phase heterogeneous ma-
terial is considered here. The ISM interface model is first
studied which describes the elasticity of the isotropic inter-
face with two surface elastic constants λs and µs [89, 183],
which results in two intrinsic length scales lλ and lµ [32, 83].
Then, the mechanical properties of the heterogeneous mate-
rial are expected to obey a scaling law [184], which is given
by

F(L)
F(∞)

= 1 +
1
L

(αλlλ + βµlµ). (81)

The scaling law is a linear combination of two length scales
with αλ and βµ being the coefficients. Equation (81) can be
applied to many properties, such as the maximum stress con-
centration factor, the effective elastic modulus, the Eshelby
tensor, and the effective thermal expansion coefficient.

The melting point temperature of nanomaterials also
shows size dependence, which is supported by a large amount
of test data and theoretical models [185-192]. It has been
shown that the melting temperature T (R) of a spherical nano-
particle depends on the particle radius R and the correspond-
ing scaling law is given by

T (R)
T (∞)

= 1 − 2
lin
R
. (82)

The intrinsic length scale lin is given by Wang et al. [184].
Equation (82) is the Gibbs-Thomson equation, which takes
account of the relative thermodynamic contributions of sur-
face and bulk energy and provides theoretical support for the
scaling law Eq. (77). The size-dependent evaporation tem-
perature of nanoparticles has also been confirmed to follow
the scaling law Eq. (77) [193].

Besides the ISM interface, the LSM interface has also been
widely used to simulate the interface properties of heteroge-
neous materials. For a two-phase heterogeneous material, the
effective elastic modulus can be described by a simple scal-
ing law, which is expressed as [152]

F(∞)
F(L)

= 1 +
1
L

(αrlr + βθlθ), (83)

where αr and βθ are the coefficients to combine two length
scales lr and lθ.

6.2 Scaling laws for size-dependent conductivity

As mentioned above, HC and LC interface models are the
widely used interface models to estimate the effective con-
ductivity of heterogeneous materials with two intrinsic length

scales emerged in the derivation of the effective conductivity
tensors, i.e.,

llow = αKm, for LC interface model, (84)

and

lhigh =
β

Km
, for HC interface model, (85)

where Km is the conductivity of the matrix. The scaling law
for a heterogeneous material composed of spherical inho-
mogeneities and continuous matrix with the LC interface is
given by

K̄(∞)
K̄(R)

= 1 +
1
R
Υlsllow, (86)

where Υls is a non-dimensional parameter, and is given by

Υls =
9 fΛ2

2

[(1 + 2 f )Λ2 + 2(1 − f )][(1 − f )Λ2 + 2 + f ]
. (87)

The size-dependent scaling law of the effective conductivity
of the heterogeneous material with the HC interface is given
by

K̄(R)
K̄(∞)

= 1 +
1
R
Υhslhigh. (88)

Here, Υhs is a non-dimensional parameter. It is interesting
that, since the interface properties modeled by the ISM (or
HC) interface model and LSM (or LC) interface model have
opposite physical interpretations, the corresponding scaling
laws, namely, Eqs. (81) and (83), Eqs. (86) and (88), are
formally mathematically reciprocal.

It has been confirmed that the size dependence of the ma-
terial properties can be accurately depicted by the scaling
law formulated by Eq. (77) or (78). In addition, the scal-
ing law can also help to examine the material properties ob-
tained by experimental and numerical methods, and can help
to reduce the large number of experiments and simulations
used to determine the parameter A lin or Blin. Since experi-
ments at nano-scale usually require specific instruments and
elaborate analysis, such as the experiments on compounds,
alloys [194], and nano-particles [195], reducing the number
of experiments through the scaling law is quite important and
useful in analyzing the properties of nanostructured materi-
als.

7. Concluding remarks

In summary, this paper reviews the fundamental issues in
studying the elastic and conductive properties of heteroge-
neous materials under the consideration of interface effects,
including the interface models, Eshelby formalism, and mi-
cromechanical frameworks for elastic and conductive proper-
ties. These results demonstrate that the interface between the
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inhomogeneities and the matrix greatly affects the elastic and
conductive properties of nano-structured materials. Further-
more, scaling laws for the elastic and conductive problems
with the interface effects are also reviewed to show the influ-
ence of the characterized size of the nano-structured and how
elastic and conductive properties vary with the characterized
sizes.

It should be emphasized that this work focuses on the in-
terface effects on the linear properties (such as the elastic
moduli and conductivity), which have been well developed.
In contrast, interface influence on the finite deformation and
nonlinear elastic response has obtained less attention and
few results. Studying the nonlinear mechanical behavior is
important for characterizing soft materials and biomaterials.
Thus, the influence of the interface on the nonlinear behavior
of the composites needs more attention and further investiga-
tion in the future.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 11988102, 11872004, and 91848201).
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具具具有有有界界界面面面效效效应应应的的的复复复合合合材材材料料料细细细观观观力力力学学学

段慧玲,王建祥,黄筑平
摘要 复合材料中存在界面, 这些界面极大地影响了复合材料的力学和传导性能. 复合材料中界面的弹性与传导特性通常通过三

种界面模型进行表征. 对于弹性问题, 这三种界面模型分别是界面应力模型(interface stress model, ISM)、线性弹簧模型(linear spring

model, LSM)和界面相模型. 对于传导问题, 这三种界面模型分别是高传导(high conducting, HC)界面模型、低传导(low conducting,

LC)界面模型和界面相模型. 具有界面效应的弹性问题又可以分为两类. 第一类弹性问题涉及边值问题的求解, 旨在预测具有界面效应

的复合材料等效性能; 第二种弹性问题涉及表面/界面应力对纳米结构材料弹性性能的影响, 通常以界面应力模型进行表征. 本文首先

回顾了具有界面效应的弹性问题的三个方面, 即三种界面模型之间的等价关系, Eshelby体系和细观力学框架. 本文着重以界面应力模

型为例, 展示了如何通过将界面弹性补充到经典弹性问题的基本方程中, 将经典理论框架扩展到纳米尺度. 然后, 还回顾了具有界面效

应的复合材料的传导问题, 并给出了预测复合材料等效传导性能的一般框架. 论文的最后还讨论了用于描述复合材料与尺寸相关的弹

性和传导性能的标度律.
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