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This paper proposes a novel non-probabilistic reliability model called the convex polyhedron reliability model, focusing on
structural reliability assessment under uncertain conditions. Unlike existing probabilistic and non-probabilistic interval models,
the convex polyhedron model considers the situation where a multi-dimensional convex polyhedron describes the uncertain
variable space. Compared with the interval model, the convex polyhedron model is more compact and reflects the correlation
between uncertain variables based on limited information. The area/volume ratio is introduced to be referred to as the
reliability index in the proposed framework. Then the case of the nonlinear limit state function is discussed and addressed by
the most likely failure point-based linearization method and the piecewise linearization method. Furthermore, this paper
investigates an effective approach to dealing with the structural system reliability analysis problem with multiple failure modes
based on the proposed non-probabilistic convex polyhedron reliability model. Finally, three examples are provided to verify the
effectiveness and applicability of the proposed method. Through comparison with the existing reliability models, the results
show that the reliability evaluated by the probabilistic reliability model and non-probabilistic reliability model are compatible.
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1. Introduction

The widespread uncertainty in the real world has become a
consensus, especially in aerospace, electrical and electronic,
ship, automobile, and other engineering fields. Uncertainty
factors include manufacturing tolerance, random material
parameters, assembly error, load, etc [1-4]. Ignoring the
existence of uncertainty will lead to a series of security
problems. Thus, uncertainty research is unavoidable. There
are currently three main ways to deal with engineering un-
certainty—the probabilistic model, the fuzzy set model, and
the non-probabilistic set model [5].
The probabilistic model has been widely used to handle

the uncertainty in the real structure, which is the most

commonly used method to solve the reliability problem, and
has formed a series of mature reliability analysis techniques
[6-10]. For some types of probabilistic distributions, such as
Gaussian distribution, random variables are defined within
the infinity space, but in actually, the variables are generally
studied with truncated distribution. The truncated probabil-
istic reliability theory is thus established for such truncated
probabilistic distribution [11]. An improved first-order re-
liability method (FORM) is proposed by Du et al. [12] to
evaluate the reliability of structures with truncated random
variables. Zhang et al. [13] proposed a method for reliability
and sensitivity analysis of structural systems using the
truncated reliability method. Sufficient information of un-
certainties is necessary to construct an accurate and rea-
sonable probabilistic density distribution. However, it is
difficult to obtain enough samples of uncertainties in prac-
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tice because the related experiments are time-consuming
and expensive to be carried out for engineering structures. It
was stated in Refs. [14,15] that even minor errors in prob-
abilistic data might lead to significant errors in the estimated
failure probability. Hence, when the data is limited, the
probabilistic model may no longer be suitable for reliability
evaluation. Regarding the fuzzy set model [16-20], the ac-
quisition of membership functions depends more on users’
subjective experience than objective experimental data. As a
result, different fuzzy membership functions can be defined
with the same group of samples, and it is not easy to eval-
uate the quality of these membership functions, bringing a
challenge to the reasonable evaluation of reliability.
In recent decades, many scholars have reached an agree-

ment that the non-probabilistic convex set models, mainly
including the interval model, the ellipsoid model, and the
convex polyhedron model, are more suitable and reasonable
when the information of uncertainties is lacking. Some non-
probabilistic methods have been developed for reliability
analysis. Ben-Haim et al. [14,21] and Elishakoff et al. [22]
proposed and developed the convex model to describe the
data in default of uncertainty information, and then the
concept of non-probabilistic reliability based on convex set
theory is proposed for the first time by Ben-Haim [23]. Qiu
et al. [24] pointed out that there might be errors in Ben-
Haim’s robust reliability theory, and the correctional struc-
tural reliability was proposed using the stress-strength in-
terference. Further, the concept of non-probabilistic
reliability was extensively discussed on more areas, such as
the structural flutter, fracture mechanics, and structural vi-
bration [25-27].
In terms of the interval model, based on the stress-in-

tensity interference model, Wang et al. [28] proposed an
efficient scheme to calculate the volume ratio of the safety
region to the total region constructed by the interval vari-
ables as an index of structural reliability. Guo et al. [29-31]
introduced the traditional first-order reliability method into
the interval convex model, according to which the interval
reliability could be evaluated in the case of the nonlinear
limit state function, and presented an analytical calculation
method for the interval reliability. As another kind of non-
probabilistic convex set model, the ellipsoid model de-
scribes the uncertain domain as a multi-dimensional ellip-
soid, in which the uncertain variables are assumed to be
correlated. Jiang et al. [32,33] proposed a correlation ana-
lysis technique for the multi-dimensional ellipsoid model
and presented a non-probabilistic reliability analysis model
for ellipsoid uncertainties. Cao and Duan [34] constructed a
reliability index for ellipsoid models based on the minimum
distance in the standard variable space. Besides, some other
studies [35-37] on ellipsoid convex models have also been
performed by researchers. In general, the interval model can
only deal with independence problems, while the ellipsoid

model can only address the problems of correlation. Jiang et
al. [38,39] proposed a new convex model called multi-di-
mensional parallelepiped (MP) model, which is a more
general convex model that can consider independent and
dependent variables in a unified framework. Then, in-
tegrating multi-dimensional ellipsoid models and MP mod-
els, a unified construction framework for these convex
models was offered through the correlation analysis ap-
proach, in which an evaluation criterion for convex mod-
eling methods was also presented [40]. Besides, considering
time-variant and spatially varying uncertainties, studies on
interval process [27], convex model process [41] and
bounded field models [42] were successively carried out,
significantly promoting the development of convex model-
based uncertainty analysis and reliability evaluation.
Nowadays, the convex polyhedron is widely used in

computer graphics, image processing, and pattern recogni-
tion. However, the majority of current research focuses on
ellipsoidal and interval models, and the application of con-
vex polyhedrons in structural reliability is rarely studied. In
terms of uncertainty quantification, the interval model can-
not consider the correlation between uncertain variables, and
the ellipsoid convex model can only consider the variables
with correlation. Although the multi-dimensional parallel
piped model can consider both correlated and uncorrelated
variables, but its form is simpler than that of the convex
polyhedron model, so the model will lose correlation in the
construction of complex correlation variables. By compar-
ison, the convex polyhedron can better fit the sample data
and construct a more compact uncertainty region which can
handle both correlation and independent variables. At the
same time, the correlation between variables is preserved to
the greatest extent. As shown in Fig. 1, the convex poly-
hedron model is able to represent the spatial distribution
characteristic of the current data more accurately.
On account of the above advantages, to investigate the

potential of convex polyhedron in reliability analysis, in
contrast to existing studies, this paper describes un-
certainties by convex polyhedron models, based on which
the corresponding reliability analysis approach is studied.

Figure 1 Three different models to envelop the experimental samples.
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The novelty of this work is stated as follows. First, we in-
troduce the convex polyhedron model to achieve a compact
description of non-probabilistic uncertainties with correla-
tion considered. Then, using the definition of convex poly-
hedron, it is found that the failure region can also be
modelled by a convex polyhedron under linear cases, re-
sulting in convenient acquirement of its area (or volume).
Accordingly, a novel non-probabilistic convex polyhedron
reliability model is proposed based on the area (or volume)
ratio index. Meanwhile, the most likely failure point-based
and piecewise linearization methods are introduced to con-
struct the convex polyhedron model for the failure region
under nonlinear cases. Further, situation of multiple failure
modes is discussed and convex polyhedron model for
structural comprehensive failure (or safety) region is derived.
The remainder of this paper is organized as follows. The

traditional probabilistic reliability analysis model and mea-
surement of structural interval reliability are reviewed in
Sects. 2 and 3, respectively. In Sect. 4, the index of struc-
tural convex-polyhedron reliability is studied. Structural
system reliability analysis for convex polyhedron model
problems is studied in Sect. 5. Section 6 demonstrates the
efficiency and applicability of the proposed method by a
numerical example and two engineering examples. Finally,
some conclusions are presented in Sect. 7.

2. Conventional probabilistic reliability analy-
sis model

The probabilistic reliability model regards uncertain para-
meters as random variables, because of which the following
limit state function is a random function as well.
M g g x x xx= ( ) = ( , , , ), (1)n1 2

where x x x, , , n1 2 represent random variables. M is the
limit state function value. g x( ) = 0 represents the failure
surface (or the limit state surface), dividing the variable
space into the failure region and the safety region. More-
over, gx x= { : ( ) > 0}s denotes the safety region, while

gx x= { : ( ) < 0}f denotes the failure region. Measured by
random probability, probabilistic reliability is theoretically
defined as
P P

f x x x x x x

= 1

= 1 ( , , , )d d d , (2)n n

s f

joint 1 2 1 2
f

or

P f x x x x x x= ( , , , )d d d , (3)n ns joint 1 2 1 2
s

where Ps and Pf stand for the safety probability and failure
probability, respectively. f x x x( , , , )njoint 1 2 is the joint

probability density function of x. The integral domains in
Eqs. (2) and (3) are the failure region s and safety region

f , respectively.
In practical conditions, the value range of random vari-

ables will not be set to infinity, and the variable space is
usually truncated to a finite region, such as
x x x i n, = 1, 2, , , (4)i i i

where xi and xi are the lower bound and upper bound of the
i-th truncated uncertain parameter.
Since the given variable vector x has been truncated, the

joint probability density function in Eq. (3) should also be a
truncated joint probability density function as follows:

f
f J x x x i n

x
x

( ) =
( ) / , , = 1, 2, , ,

0,  others,
(5)i i i

joint
joint

where

{ }
J f

x x i n

x x= ( )d ,

= : 1 1 ( = 1, 2, , ) .
(6)

i i

joint

Hence, substituting Eq. (5) into Eq. (3) yields the fol-
lowing truncated reliability:

( ) ( )P f J fx x= d = 1 d , (7)x xs,t joint* joint
s s

where s is the safety region and the Monte Carlo method
can be used to estimate Eq. (7).

3. Non-probabilistic interval reliability analysis
model

When the amount of samples is not enough to determine the
probabilistic density function of the variable, the bounded
interval model is utilized to describe the uncertainty with the
upper and lower bounds. Although the range of random
variables is also bounded in truncated probabilistic models
stated in Sect. 2, these variables are of specific probabilistic
density functions in the truncated region. Besides, one of the
key differences between the interval model and probabilistic
model is that the former only pays attention to the upper and
lower bounds of uncertainties. At the same time, the latter
focuses on the probability distribution information, such as
the mean value, variance, or probabilistic density function.
Hence, the interval model is also known as the non-prob-
abilistic interval model.
In the framework of non-probabilistic interval models, the

uncertain parameters in structures are assumed to be interval
variables, i.e., x x x x= [ , ]I . x x xx = ( , , , )n1 2

T and

x x xx = ( , , , )n1 2
T are the upper bound and the lower

bound vectors of the parameter vector x, respectively. The
nominal value vector x c and radius vector x r of interval

Z. Qiu, et al. Acta Mech. Sin., Vol. 39, 421602 (2023) 421602-3



variables are defined as

x x x x x x= 1
2( + ),   = 1

2( ). (8)c r

In one-dimensional, two-dimensional (2-D) and three-di-
mensional (3-D) cases, the variable space of the uncertain
vector x is an interval, a rectangle and a box, respectively.
Without loss of generality, in n-dimensional cases, uncertain
vecter x locates in a n-dimensional hyper-rectangle.
In terms of reliability analysis problems, as stated in Sect.

2, the failure surface divides the variable space into the
failure region and the safety region. As shown in Fig. 2,
when the uncertain parameters are described by non-prob-
abilistic interval models, the 2-D variable space of

x xx = ( , )1 2
T is a rectangle, and g x( ) = 0 is assumed to be

linear. There are three conditions of the relationship between
the failure plane and variable space.
Condition (1) is that the failure plane does not intersect the

variable space, which means that the whole space is a safety
region. Condition (2) is that the failure plane intersects the
variable space at a single point, representing a critical state.
Condition (3) is that the failure plane intersects the variable
space and divides it into the safety region and failure region.
When conditions (1) and (2) occur, it is considered that the

structure is safe. When it comes to condition (3), it is necessary

to evaluate the non-probabilistic reliability. Figure 3 shows the
safety region and failure region in 2-D and 3-D cases, re-
spectively. Referring to Ref. [28], the non-probabilistic relia-
bility index is defined as the ratio of the area or volume of
safety region to that of the whole variable space, namely

P V
V= , (9)s

I safe
total

where Ps
I is the safety index in the non-probabilistic interval

reliability model. Vsafe and Vtotal are the measurement of the
safety region and the whole variable space, respectively. Simi-
larly, the failure index is defined as the ratio of area or volume
of failure region to that of the whole variable space, namely

P V
V= . (10)f

I faliure
total

The safety index and failure index hold

P P+ = 1. (11)s
I

f
I

As shown in Fig. 3, owing to the simplicity of the non-
probabilistic interval model, the safety region and failure
region are concise and regular in geometry, so the non-
probabilistic interval reliability indices can be more easily
obtained by some basic mathematical operations rather than
complex probability analysis in the probabilistic reliability
analysis model.
However, it is undeniable that the reliability assessed by

probabilistic models has a stronger statistical significance,
while the non-probabilistic interval model is an optional
reliability analysis model in the cases of limited data. The
applicable conditions of the above two categories of relia-
bility analysis models are different based on the data size.

4. Convex polyhedron reliability analysis model

This section provides a novel non-probabilistic reliability
analysis model based on uncertainties modeled by convex
polyhedrons, which is a generalization of the interval model
after considering the parameter correlation. If we adopt the

Figure 2 Different relationships between the failure plane and uncertain
variable space.

Figure 3 Safety and failure region in the interval reliability model. a 2-D reliability; b 3-D reliability.
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convex polyhedron model to describe the uncertainties, the
variable space of uncertain variables will be a convex
polyhedron rather than a hype-rectangle in the interval
model [43].

4.1 Construction of the convex polyhedron

Suppose that the uncertain variables in limit state functions
are described as convex polyhedrons, in which the variable
vector can be expressed via the combination of several
vertex vectors as follows [44]:

x x= , (12)
i

N

i i
=1

v

where N is the total number of vertex vectors of the convex
polyhedron. x x xx = ( , , , )n1 2

T is the uncertain variable

vector. ( )x x xx = , , ,i i i in
v

1
v

2
v v T is the vertex vector of the

convex polyhedrons. = ( , , , )N1 2
T is weight vector

for each vertex and holds

= 1,  0 . (13)
i

N

i i
=1

All the vectors satisfying Eq. (12) form a convex poly-
hedron. That is to say, once the vertex vectors are de-
termined, a convex polyhedron can be constructed.
For simplicity, there is another way called closed semi-

space representation to describe the convex polyhedron,
namely

x R Ax b= { | }, (14)n
c

where A is a matrix, and b is a vector. Every component of
the linear inequalities represents a facet of the convex
polyhedron and reflects the correlation between the vari-
ables. It is worth mentioning that the two expressions (i.e.,
the vertex representation Eq. (12) and closed semi-space
representation Eq. (14)) are equivalent, which can be con-
verted to each other [44].
As for 2-D cases, Fig. 1 shows the relationship between

the interval model and the convex polyhedron model. For
given sample points, the interval model only considers the
extreme value of each variable using a rectangle to envelop
all sample points. By contrast, the convex polyhedron model
utilizes a smaller convex hull to envelope all sample points.
As can be seen from Fig. 4, there are countless convex
polyhedrons that can encircle the given sample points.
However, the minimum convex polyhedron (MCP) is indeed
unique, of which the vertex points are selected from the
existing sample points. Hence, as long as the sample points
of uncertain variables are given, a unique MCP can be de-
termined. In this work, the quickhull algorithm (QA) [45] is
introduced to construct the convex polyhedron, which is an
effective approach to selecting the vertices of MCP from the

given samples.
Notably, the convex polyhedron model studied in this

work is based on the minimum convex model that can en-
velop all the sample points so that it can describe the ex-
perimental sample points most compactly and reflect the
correlation between uncertainty parameters.

4.2 Convex polyhedron reliability analysis considering
the linear limit state function

Since the convex polyhedron model belongs to the non-
probabilistic model, therefore, the area ratio and volume
ratio stated in Sect. 3 are employed as the reliability mea-
surement indices in the proposed convex polyhedron relia-
bility analysis model in this section.
In order to concisely describe the framework of the pro-

posed convex polyhedron model, the case of linear limit
state functions is firstly considered, which is the most fun-
damental case. The linear limit state function of the structure
can be written as follows:

M g a a x ax a x= ( ) = + = + , (15)
i

n

i i0
=1

0
T

where a a aa = ( , , , )n1 2
T.

Suppose that the variable space has been described as a
convex polyhedron in the form of Eq. (14). Then the safety
region s and failure region f are also convex polyhedrons
expressed as follows:

x R A
a

x b
a

x R A
a

x b
a

= ,

= .

(16)

n

n

s T 0

f T 0

Next, taking the 2-D case as an example, the convex
polyhedron reliability analysis model is illustrated in con-
junction with Fig. 5. It can be seen that the limit state plane

Figure 4 The minimum convex hull to encircle the given samples.
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divides the original variable space into two convex poly-
hedrons, namely the safety region and failure region ex-
pressed in Eq. (16).
In the same way as derived in Eqs. (9) and (10), the

convex polyhedron reliability indices are given as follows:

P V
V= , (17)s

c safe
total

P V
V= , (18)f

c faliure
total

where Ps
c represents the safety index in convex polyhedron

reliability models, while Pf
c is the failure index. Vtotal refers

to the measurement of the variable space. Vsafe and Vfaliure
refer to the measurement of the safety region and failure
region, respectively.
In the 2-D and 3-D cases shown in Fig. 5, the above

indices are measured by area ratio and volume ratio, in
which the area of convex polyhedrons can be easily obtained
by geometry. In terms of the case of three dimensions or
higher dimensions, the calculation of the volume (or hyper-
volume) of the convex polyhedron can be conducted by the
triangulation method or signed decomposition method [46]
once the explicit representation of the convex polyhedron is
available. Both of the two algorithms decompose the convex
polyhedron into a series of n-dimensional simple poly-
hedrons, each of which consists of n + 1 vertices. Assume
that the n + 1 vectors of the vertex points of one of the
simple polyhedrons are x x x, , , n0 1 , and the volume of a
simple polyhedron can be calculated by

V n
x x x x= det( , , )

! , (19)n
simple

1 0 0

where n is the dimension of uncertain variables. Thus the
total volume of the original convex polyhedron can be ob-
tained by summing the volume of these simple polyhedrons.
The above algorithms have been maturely integrated into
MATLAB software, so one can directly call the build-in
function “convhulln” to realize the volume calculation. Since

the convex polyhedron-related operations belong to the ca-
tegory of geometric mathematics, and the corresponding
algorithms have been highly integrated with various soft-
ware, which can be conveniently utilized for research pur-
pose without own programming, therefore, the algorithm is
not detailed in the main article. If readers are interested in
the algorithm process, Appendix provides a brief description
of the triangulation method for volume calculation of convex
polyhedrons. Then the convex polyhedron reliability indices
can be calculated by Eqs. (17) and (18).
As for the access to the vertex vectors of convex poly-

hedrons of the safety region and failure region, it has been
stated in Sect. 4.1 that the two expressions of the convex
polyhedron can be converted to each other. Hence the vertex
vectors required for volume calculation can be obtained
based on the closed semi-space representation of the safety
region and failure region, i.e., Eq. (16).

4.3 Discussion on the case of the nonlinear limit state
function

There are many nonlinear factors in practical engineering,
which leads to nonlinear limit state functions. For the gen-
eral nonlinear limit state function, the limit state line is a
curve as shown in Fig. 6, making it difficult to measure the
area of the failure region owing to its irregular geometry. To
overcome the difficulties, the first-order Taylor expansion is
introduced to approximate the limit state function.
For simplicity, the variable space is normalized as follows:

x x x
x i n= , = 1, 2, , , (20)i

i i
i

c
r

where ( )x x xx = , , , n
c

1
c

2
c c T is the nominal value of the un-

certain variable x based on given vertices x x x{ , , , }N(1) (2) ( ) ,
which holds

x x x i n= +
2 , = 1, 2, , , (21)i

i ic

Figure 5 Safety region and failure region in the convex polyhedron reliability model. a 2-D reliability; b 3-D reliability.
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in which

{ }
{ }

x x x x

x x x x

= max , , , ,

= min , , , .
(22)

i i i i
N

i i i i
N

(1) (2) ( )

(1) (2) ( )

xi
r is the radius of each uncertain variable holding

x x x i n= 1
2( ), = 1, 2, , . (23)i i i

r

After the transformation, the limit state function is re-
written as

( )g g x x x x x x x x xx( ) = + , + , , + . (24)n n n1
r

1 1
c

2
r

2 2
c r c

Then Taylor’s series expansion of g x( ) is taken at the
most likely failure point x , which is defined as the closest
point to the origin of x - coordinate on the limit state curve.
The most likely failure point can be obtained by solving the
following optimization problem.

( )x

g

x

x

find x ,

min = ,

s.t. ( ) = 0.

(25)
i

n

i
2

=1

2

In this work, Hasofer-Lind and Rackwitz-Fiessler (HL-
RF) iteration method [47,48] is used to solve Eq. (25). The
iteration scheme is given as follows:

d
g g

g

d g
g

x x x

x

x x
x

=
( ) ( )

( )
,

= ( )
( )

,

(26)

k
k k k

k

k k k

k

( )
( ) ( ) T ( )

( )

( +1) ( ) ( )

( )

where

g g

g
x

g
x

g
x

x x
x

x x x

( ) = ( )

= ( ) , ( ) , , ( ) . (27)
n

T

1 2

T

After acquiring the most likely failure point x , taking the
first-order Taylor’s series expansion of g x( ) at x yields

( )M g g
g
x

x xx x= ( ) ( ) + . (28)
i

n

i
i i*

=1
*

*

Thus the linear approximation of the weak nonlinear limit
state surface can be expressed as follows:

g
g
x

xx( ) + = 0. (29)
i

N

i
i*

=1 *
*

Then, based on linearized limit state surface Eq. (29), the
method for the case of linear limit state functions provided
in Sect. 4.2 can be adopted to conduct the convex poly-
hedron reliability analysis.
In view of general cases, if the limit state function has

strong nonlinearity, as shown in Fig. 7, the above Taylor’s
series expansion-based linearization method may lead to
unacceptable errors. In order to overcome the difficulty, a
piecewise linearization method is presented to approximate
the strong nonlinear limit state function.
Figure 8 shows the nonlinear limit state surface approx-

imation by the piecewise linearization method with several

Figure 6 Nonlinear limit state function and its linear approximation. a Nonlinear limit state function; b approximation in normalized space.

Figure 7 Error caused by linear approximation.
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line segments. It can be seen that the nonlinear limit state
surface and the convex polyhedron boundary intersect at
x x,1 2. The tangents l1, l2, l3 at x x x, ,1 2 are obtained by
Taylor’s series expansion, respectively. x x,3 4 are the inter-
section of l3, l1, and l2, respectively. Then the failure region
and safety region in this 2-D case can be described by
convex polyhedrons constructed by vertices x x x, , , N1

v
2
v v

and x x x x x, , , ,1 2 3 4.
The above discussion is suitable for 2-D cases. In higher

dimensional cases, it is difficult to catch the intersection, but
the piecewise linearization method proposed in this paper
can still be extended to high-dimensional strong nonlinear
cases. A possible treatment is collecting a point set on
failure surface, i.e., x x x= { , , , }x

1 2 satisfying

g ix( ) = 0,  = 1, 2,i . Then taking Taylor’s series expan-
sion yields the linear approximation of failure surface as
follows. The extend strong nonlinear limited state function

(LSF) piecewise linearization method in 2-D and 3-D are
shown in Fig. 9.

g
g
x

x

g
g
x

x

g
g
x

x

x

x

x

( ) + = 0,

( ) + = 0,

( ) + = 0,

(30)

i

N

i
i

i

N

i
i

i

N

i
i

*

=1 *
*

1

=1
1

1

2

=1
2

2

If the original failure surface is convex, the overlap of the
failure or safety regions based on failure planes in Eq. (30)
forms a convex polyhedron, which is the approximation of
the original failure or safety region. In theory, the more
points utilized, the more accurate the approximation. It is
noted that this subsection only discusses a preliminary idea,
and detailed studies will be carried out in the future.

5. Convex polyhedron reliability analysis for
structural system problems with multiple failure
modes

The reliability analysis of structural systems has attracted
great attention from researchers. When it comes to the case
of multiple failure modes, because of the difficulty of re-
liability solving due to the correlation between the main
failure modes, the conservative but straightforward treat-
ment method is to ignore the correlation directly, which will
lead to a large error in reliability evaluation. Given this, this
paper proposes a failure region superposition method to deal
with the correlation of multiple failure modes, and it can get
more accurate reliability evaluation results.
In engineering structures, there always exist various cor-

relations between failure modes, of which the influence
must be considered. In this section, we suppose that theFigure 8 Piecewise linearization for the nonlinear limit state function.

Figure 9 Extend strong nonlinear LSF piecewise linearization method in 2-D and 3-D.
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correlated limit state functions of the i-th and j-th failure
modes are expressed by M R R( , )i 1 2 and M R R( , )j 1 2 , in which
the correlated variables are R1 and R2.
In general, we should calculate the hybrid correlation

coefficient of two failure modes and the second-order joint
failure probability of two failure modes to obtain the relia-
bility of the entire structural system, as discussed by Qiu and
Wang [49]. However, calculating the hybrid correlation
coefficient and joint failure probability will be a challenge in
multiple failure modes. This paper presents a convex poly-
hedron reliability analysis method for structures with cor-
related failure modes based on the mixed failure region.
Assuming that uncertain variables in Mi and Mj are R1 and

R2, we can accordingly obtain the failure region for each
failure mode. The failure plane corresponding to failure
modeMi divides the variable space into failure region and
safety region as shown in Fig. 10. Considering only the
failure mode Mi, the structural failure index is

P V
V= , (31)i

i
f

f
total

where V if represents the area or volume of failure region in
the failure mode Mi.
Similarly, considering only the failure mode Mj, the

structural failure index is

P
V

V= , (32)j
j

f
f

total

where V jf represents the area or volume of failure region in
the failure mode Mj.
Considering the two failure modes simultaneously, we

discuss the parallel system and series system [50], respec-
tively. Here we only consider linear cases, assuming that

M a a R= + , (33)i i i0
T

M a a R= + . (34)j j j0
T

For parallel systems, the structural system fails only if both
failure modes are activated. Hence, the failure region of the
structural system is the intersection of the failure regions of two
failure modes, namely, = i jfparallel f f . As shown in Fig.
11a, the failure region is a convex polyhedron. According to
Eq. (16), the convex polyhedron of fparallel can be expressed as

a
a

x R

A
a

a
x

b
= | . (35)i

j

i

j
fparallel

2 T

T
0

0

And its area or volume Vfparallel can be calculated by the
approach for convex polyhedrons, as stated in Sect. 4. Then
the failure index is able to be calculated by

Figure 10 Failure region of single failure modes. a Failure region under mode Mi; b failure region under mode Mj.

Figure 11 Failure region in the case of multiple failure modes. a Failure region for parallel systems; b failure region for series systems.
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P
V
V= . (36)fparallel
fparallel

total

For series systems, the structural system fails once any of
the failure modes is triggered. As shown in Fig. 11b, the
failure region of the structural system is the union of the failure
regions of multiple failure modes, i.e., = i jfparallel f f . In
such circumstance, fparallel is not a convex polyhedron, but
the safe region is a convex polyhedron holding

a
a

x R

A
a

a
x

b
= | . (37)i

j

i

j
sseries

2 T

T
0

0

After the representation of the convex polyhedron is ob-
tained, one can calculate its area or volume Vsseries. The
failure index can be calculated by

P P V
V= 1 = 1 . (38)fseries sseries
sseries
total

Similarly, considering multiple failure modes and high
dimensional cases, the above can be simply extended,
namely, = nfparallel f1 f2 f for parallel systems
and = nsseries s1 s2 s for series systems. Note
that the hybrid systems simultaneously involving parallel
and series relations are not discussed in this paper.

6. Numerical and engineering examples

In this section, to demonstrate the effectiveness and accuracy of
the proposed convex polyhedron reliability method, one nu-
merical example and two engineering examples are provided.

6.1 Numerical example with a linear limit state function

In this section, we use a numerical example to demonstrate
the efficiency and validity of the present non-probabilistic
convex polyhedron safety measurement.
We consider a general limit state function as follows:

M r s r s( , ) = , (39)
where r s, represents general structural strength and general
structural stress, respectively.
For comparison, the probabilistic reliability analysis

model is first investigated. It is assumed that the distribution
of two variables follows the truncated normal probabilistic
density function, namely

f r s

c s S r R
a

s S r R
b

( , )

= exp [( )cos ( )sin ]

[( )sin + ( )cos ] , (40)

joint

c c 2

2

c c 2

2

when r R R s S S,c r c r, and

f r s( , ) = 0, (41)joint

when r R R>c r or s S S>c r. c is the normalization
constant by which the following relationship is held:

f r s r s( , )d d = 1. (42)
S S

S S

R R

R R+ +

joint
c r

c r

c r

c r

is the off-axis angle, and a b, are variance-dependent
parameters.
We set the parameters in Eq. (40) as θ = 45°, Rc = 5, Rr =

2.5, Sc = 4.5, Sr = 2.5. Figure 12 shows the probabilistic
density function of random variables.
Based on Eq. (2), the failure probability of Eq. (39) can be

obtained.

P f r s r s= ( , )d d = 0.3029. (43)f joint
f

Next, the non-probabilistic reliability models are dis-
cussed. Suppose that the probabilistic density function Eqs.
(40) and (41) reflects the real probabilistic distribution of the
uncertain variables, and then 100 sample points are gener-
ated, by which the convex polyhedron model is established.
For comparison, some other available non-probabilistic
models are also established in this example, including
the interval model, ellipsoid model, and rectangle MP
model [40].
It is notable that the purpose of the above treatment is to

imitate the situation where the number of sample points is
limited and not enough to determine the probabilistic char-
acteristics in practical engineering. Therefore, considering
such practical situation of limited data, the non-probabilistic
reliability models are adopted. Then, considering the ideal
situation of adequate data, the probabilistic reliability is
calculated by Eqs. (40) and (41) and referred to as the actual
reliability for comparison. Through such comparison with a

Figure 12 Probabilistic density function of random variables R and S .
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reference standard, we can evaluate the performance of
different non-probabilistic models more reasonably and
intuitively.
Figure 13 shows the difference between the convex

polyhedron reliability model and other non-probabilistic
models. In virtue of the area ratio, we can calculate the
failure indices of different non-probabilistic models. The
failure index of the convex polyhedron reliability analysis
model is P V V= / = 0.3238f

c
failure total . In the same way, the

failure indices of the interval model, ellipsoid model, and
rectangle MP model are P = 0.3930f

I , P = 0.3885f
E , and

P = 0.2850f
RMP , respectively.
Since the generation of sample points has randomness, 10

simulations are carried out to illustrate the performance of
the provided models more reasonably. The results are listed
in Table 1 and discussed as follows.
In most situations, the relationship between the failure

indices of interval and convex polyhedron models satisfies

P P> . (44)f
I

f
c

It can be seen that the reliability assessed by the interval

model is more conservative than that of the convex poly-
hedron model.
As for ellipsoid model and rectangle MP model, which are

also constructed considering correlation, the relationship
between convex polyhedron and ellipsoid models holds

P P> . (45)f
E

f
c

From Fig. 13 we can observe that the convex polyhedron
model is more refined than ellipsoid model, therefore ex-
plaining the relationship (45). Meanwhile, no specific reg-
ularity appears in the relationship between the rectangle MP
reliability model and convex polyhedron model or ellipsoid
model. Nevertheless, since the correlation is considered, it is
obviously that the reliability assessed by convex poly-
hedron, ellipsoid and rectangle MP models is less con-
servative than that of interval model, i.e., P P>f

I
f
c, P P>f

I
f
E

and P P>f
I

f
RMP.

As shown in Table 1, on average, the relationship between
the convex polyhedron model and other models satisfies

P P P P> > > , (46)f,ave
I

f,ave
E

f,ave
RMP

f,ave
c

Figure 13 Comparison of different non-probabilistic reliability models. a Interval reliability model; b convex polyhedron reliability model; c ellipsoid
reliability model; d rectangle MP reliability model.
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where the average deviations of P P P P, , ,f
I

f
E

f
RMP

f
c are

34.39%, 23.81%, 11.05%, 6.56%, respectively. The com-
parison indicates that, in the case of a limited sample size,
the non-probabilistic convex polyhedron reliability is more
consistent with the actual reliability. Although the results of
convex polyhedron model and rectangle MP model are si-
milar on average, the latter shows obvious fluctuation in
single calculations.
In general, it is evident that the reliability evaluated by

non-probabilistic models is more conservative than prob-
abilistic reliability because the former merely utilizes
limited information while the latter takes advantage of
adequate information. This phenomenon also illustrates
the compatibility between the reliability evaluated by
probabilistic and non-probabilistic models. When data are
adequate and the probabilistic distribution can be ob-
tained, the probabilistic reliability analysis model is the
best way to precisely evaluate the structural reliability. If
data are limited and the probabilistic distribution is un-
available, the non-probabilistic reliability analysis model
will be a practicable reliability analysis approach to pro-
vide the more conservative assessment for structural
safety.

6.2 Cantilever beam structure with a nonlinear limit
state function

As shown in Fig. 14, a cantilever beam is investigated in this
example. The external loads in this model are P = 50000 Nz

and P = 25000 Ny .
The maximum stress at the fixed end of the beam should

be less than the yield strength S , and then a limit state
function can be derived as follows:

g S P L
b h

P L
bhX( ) = 6 6

, (47)z y
2 2

where L, b and h are treated as uncertain variables with

intervals as listed in Table 2. Sample points are randomly
generated to construct the convex polyhedron models.
Figure 15 shows the convex polyhedron and nonlinear

failure plane. The black dots represent the sample points that
generate the convex polyhedron, and the red surface is the
nonlinear failure surface.
The limit state function Eq. (47) is a nonlinear limit state

function. Therefore, we transform the nonlinear limit state
function to a linear limit state function using Eqs. (24) and
(29) as stated in Sect. 4.3. First, the coordinate transfor-
mation is conducted as follows:

g S P L L
b b h h

P L L
b b h h

x( ) = 6 ( + )
( + ) ( + )

6 ( + )

( + )( + )
. (48)z yc

c
2

c

c

c c
2

And the linear limit state function can be written as

g g g
L L g

b b g
h hx x x x x( ) = ( ) + ( ) + ( ) + ( ) , (49)

where the terms are expressed as follows:

Table 1 Results from 10 simulations

Sequence
Convex polyhedron Interval Ellipsoid Rectangle MP

Pf
c Deviation (%) Pf

I Deviation (%) Pf
E Deviation (%) Pf

RMP Deviation (%)

1 0.3688 21.76 0.4249 40.28 0.3885 28.26 0.2850 5.91
2 0.3163 4.42 0.3886 28.29 0.3434 13.37 0.3105 2.51
3 0.3040 0.36 0.4238 39.91 0.3995 31.89 0.2945 2.77
4 0.3185 5.15 0.3896 28.62 0.3592 18.59 0.3633 19.94
5 0.3535 16.70 0.4169 37.64 0.3723 22.91 0.3917 29.32
6 0.3282 8.35 0.4240 39.98 0.4154 37.14 0.3522 16.28
7 0.2996 1.09 0.4076 34.56 0.3894 28.56 0.3130 3.33
8 0.3112 2.74 0.3986 31.59 0.3530 16.54 0.3766 24.33
9 0.3582 18.26 0.4136 36.55 0.3998 31.99 0.3968 31.00
10 0.2694 11.06 0.3830 26.44 0.3298 8.88 0.2800 7.56

Average 0.3228 6.56 0.4071 34.39 0.3750 23.81 0.3364 11.05

Figure 14 Cantilever beam.

Table 2 Information of uncertain variables
Parameter Intervals

L [900 mm, 1100 mm]
b [90 mm, 110 mm]
h [180 mm, 220 mm]
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Failure region and safety region are shown in Fig. 16.
g x( ) and g x( ) are nonlinear and linear limit state func-
tions, respectively. The most likely failure point is calcu-
lated by Eq. (25). As can be seen from Fig. 16, g x( ) and
g x( ) are very close, indicating that the linear approxima-
tion of g x( ) is reasonable. Then the convex polyhedron
reliability of the cantilever beam can be calculated as

P V
V= = 13.4841

13.6001 = 99.15%. (51)s
safe
total

6.3 A wing structure with multiple failure modes

In order to verify the performance of the proposed method in
practical engineering, this example considers a wing struc-
ture shown in Fig. 17. The external pressure p, elasticity
modulus E, skin thickness tskin, beam thickness tbeam, and rib
thickness trib are considered as uncertain variables.
It is treated in the same way as example 1 that an ideal

situation is first supposed where the uncertain variables are
of the known truncated normal distribution listed in Table 3,
where is the variance factor.

Under such an ideal circumstance, one can directly assess
the reliability via probabilistic models. However, in practice,
available data are limited, and the ideal situation where the
probabilistic distribution is known is generally difficult to
achieve. To simulate the situation where the available data
are limited and probabilistic distribution is unknown, in this
example, we generate a small number of samples through
the probabilistic distribution in the ideal situation as avail-
able limited data. Then only these limited data are used for
reliability analysis with non-probabilistic models involving
the convex polyhedron model and interval model.
There are two main failure criteria that the maximum

stress and maximum displacement must be below the al-
lowable values, which are set as = 275 MPa0 and
u = 13 mm0 , respectively, in this example.

M p E t t t
M u u p E t t t

= ( , , , , ),
= ( , , , , ).

(52)1 0 max skin beam rib

2 0 max skin beam rib

Figure 15 Uncertain variable space and nonlinear failure surface.

Figure 16 Approximate linear failure surface and failure region.

Figure 17 Wing structure with fixed root.

Table 3 The uncertain information of variables
p (Pa) E (Mpa) t skin (mm) t beam (mm) t rib (mm)

Mean value 17 110 2 2 2
Standard deviation 1 10 0.1 0.1 0.1
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The maximum stress and maximum displacement are
calculated by the finite element method. As shown in Fig.
18, a FE model with 6297 nodes and 8164 elements is
created to carry out the structural analysis.
Further, in order to evaluate the practical utility and ra-

tionality of the reliability calculated by non-probabilistic
models, we employ the probabilistic reliability in the ideal
case as a standard for comparison.
The safety reliability and failure reliability estimated by

the three models with respect to the variance factor are
plotted in Figs. 19 and 20, respectively. From the results, we
can see that with the increase of the variance factor, the
safety reliability index decreases and the failure reliability
index increases. More importantly, the curves have shown
that the convex polyhedron reliability fits better with the
standard probabilistic reliability with a maximum error of
0.64%. Moreover, the reliability evaluated by the convex
polyhedron model is always more conservative than that of
the truncated probabilistic model.
In view of the interval model, with the variance factor

increasing, the deviation between the interval model and the
truncated probabilistic model becomes larger. Moreover,
since the correlation is not taken into account, the reliability
obtained by the interval model is much more conservative.

In summary, on the one hand, this example verifies the
applicability of the proposed convex polyhedron reliability
model in engineering structures with multiple failure modes.
On the other hand, the reliability is evaluated under two
kinds of cases. In the ideal case, the probabilistic distribu-
tion is given and the probabilistic reliability is calculated as
a reference solution. In the case of limited data, the prob-
abilistic distribution is unknown and non-probabilistic
models are implemented for reliability analysis using these
limited data. By comparison, the performance of the adopted
non-probabilistic models is illustrated. Besides, since the
uncertainty exists objectively, the reliability evaluated by
different models should be compatible. The comparison also
supports this viewpoint.

7. Conclusions

In this paper, considering the limitations of high demand on
the original data for the probabilistic reliability model and
the overly rough estimation of the interval reliability model,
a convex polyhedron-based reliability analysis model is
proposed. The non-probabilistic convex polyhedron model
is introduced to describe the uncertainties with correlation,
and the reliability is quantified via the measurement ratios of
the safety region, safety region, and total region. In terms of
nonlinear limit state functions, this paper provides the most
likely failure point-based linearization method and the pie-
cewise linearization method to deal with weak and strong
nonlinear problems, respectively. Further, the system relia-
bility analysis method for structures with multiple failure
modes is studied based on the proposed convex polyhedron
reliability model. Under the same situation of limited data,
compared with the interval model, the convex polyhedron
model envelopes the uncertainties with a MCP instead of an
interval, reducing the uncertain variable space by con-
sidering the correlation. Therefore, the reliability evaluated
by the proposed method will be more consistent with the
actual situation than that of interval reliability models.

Figure 18 Finite element model of the wing structure.

Figure 19 Safety index of the three models versus . Figure 20 Failure index of the three models versus .
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Finally, three examples are provided to demonstrate the
performance of the proposed reliability analysis model. The
first example verifies the validity of the proposed method by
a linear numerical example, in which the probabilistic re-
liability is supposed to be the actual reliability. The proposed
method, the interval, ellipsoid, and rectangle MP models are
employed to assess the reliability based on limited data
generated via the probabilistic distribution. The comparing
results show that the non-probabilistic reliability is more
conservative than the probabilistic reliability, indicating the
compatibility, and the convex polyhedron reliability is more
consistent with the actual reliability. The second example
tests the proposed method by a cantilever beam structure
with a nonlinear limit state function, demonstrating the
ability of the proposed method to address the nonlinearity. In
order to verify the applicability of the proposed method to
engineering structures, a wing structure with multiple failure
modes is studied in the third example. The probabilistic
reliability model, the interval reliability model, and the
proposed convex polyhedron reliability model are adopted
to evaluate the system reliability of the wing structure under
different variance factors. The comparison indicates that the
convex polyhedron reliability is always similar to the
probabilistic reliability and more conservative, illustrating
the rationality and applicability of the proposed convex
polyhedron reliability model. Noting that this paper mainly
implements a study on the non-probabilistic convex poly-
hedron reliability model under the linear or weakly nonlinear
cases, along with a preliminary discussion on treatment in
strongly nonlinear cases, so it is still necessary to study
strongly nonlinear problems in more detail in the future.
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用于具有多失效模式和带相关不确定性结构可靠性分析的基于有
限数据的非概率凸多面体模型

邱志平, 唐海峻, 祝博

摘要 本文提出了一种新的非概率可靠性模型, 关注不确定性条件下结构可靠性评估, 称为凸多面体可靠性模型. 与现有的概率和非

概率区间模型不同, 凸多面体模型考虑用多维凸多面体描述不确定变量空间. 与区间模型相比, 凸多面体模型更紧凑, 反映了基于有限

信息的不确定变量之间的相关性. 在所提出的准则中, 面积/体积比被视作可靠性指标. 然后, 利用基于最可能失效点的线性化方法和分

段线性化方法对非线性极限状态函数的情况进行了讨论和处理. 在此基础上, 研究了基于非概率凸多面体可靠性模型的多失效模式结

构系统可靠性分析的有效方法. 最后, 通过三个实例验证了该方法的有效性和适用性. 通过与现有可靠性模型的比较, 结果表明, 概率

可靠性模型和非概率可靠性模型评估的可靠性是相容的.
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