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Fracture analysis of a plane crack problem under chemo-mechanical loading is presented based on a linear chemo-elasticity
model. The flux conductivity is introduced to characterize the influence of the crack defect on the diffusion process. Using
Fourier transform and the dislocation density functions, the crack problem is reduced to a set of singular integral equations,
which are solved numerically by the Lobatto-Chebyshev method. Parametric studies are conducted to reveal the effects of flux
conductivity, geometric configuration, chemical and mechanical loads on the crack tip field. The numerical results show that the
stress singularity at the crack tip is usually a mixture of mode I and mode II types.
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1. Introduction

Chemo-mechanical coupling is common in the complex
behavior of natural porous media [1], biological tissues,
advanced functional materials [2], and energy conversion
and storage devices [3,4]. The transfer and transformation of
mass, momentum, and energy will occur under various sti-
muli such as temperature [5], pH [6], light [7], chemical
reaction [8], chemical potential, and stress. In general, there
are two mechanisms for mass transfer of fluids in media [9]:
Darcy’s law, i.e., pressure-driven diffusion [10], such as the
consolidation process of clay and fluid seepage in oil/gas
extraction; and Fick’s law, i.e., chemical potential driven
diffusion [11,12], such as ion diffusion in polymers and
biological materials.
Chemo-elasticity mainly refers to the coupled theory of

diffusion and deformation in elastic solids. Generally, it is
necessary to solve the mass conservation equation coupled
with strain (or stress) and the elasticity equations considering
the diffusion effect. Currently, finite element methods are

mainly used to obtain numerical solutions [13-16]. Only
some studies have given analytical solutions or asymptotic
solutions under equilibrium or some other special cases.
Christensen and Newman [17] studied the one-dimensional
volume expansion and contraction and stress distribution
problems, which are arisen from lithium intercalation in
electrode spherical particles. The asymptotic perturbation
methods are used to analyze the two-dimensional chemo-
elasticity problems under chemical equilibrium, such as a
circular hole in an infinite plate, a straight edge
dislocation [18], and a circular nano-hole in a large thick
plate [19]. Further, Bishay et al. [20] developed a perturba-
tion finite element formulation to analyze chemo-elastic
boundary value problems under chemical equilibrium, ex-
emplified in several cases such as plates with elliptical holes
and cracks. Xu et al. [21] studied the degradation of materials
due to exposure to chemical species and temperature, and
obtained semi-analytical solutions of spherical shells, beams,
and cylindrical structures under the quasi-static state. Re-
cently, Zhang and Zhong [22,23] developed a continuum
theoretical framework of coupled deformation, mass diffu-
sion, heat conduction, and chemical reaction for chemically
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active solids. And they formulated a generalized isotropic
linear theory of chemo-elasticity at isothermal conditions.
Numerical cases of transient swelling accompanied by the
chemical reaction of a polymer membrane were analyzed.
Zhong et al. [24] studied a gel with moisture absorption and
hydrolysis reaction by using the abovemodel and predicted the
chemo-mechanical responses at the transient and steady states.
At present, there are also some studies on crack problems

considering chemical-mechanical coupling. Haftbaradaran
and Qu [25] constructed the path-independent J-integral
under electrochemical equilibrium and solved the problem of
a thin elastic film delaminated from a thick elastic substrate.
Zhang et al. [26] presented J-integral and L-integral under
electrochemical equilibrium based on Noether’s theorem,
and the path-independent integrals can provide a practical
tool for numerical evaluation of singular fields. In a recent
paper, Yang and Qu [8] conducted molecular dynamics si-
mulations to obtain the material properties and critical
fracture strain, and then calculated the concentration and
stress-strain fields using an implicit procedure in ABAQUS
based on a continuum chemo-mechanical model. However,
most available work only considered the crack problems
under chemical equilibrium states, and comparatively few
studies focused on the crack problems under steady or
transient chemical processes.
Hence, in this paper, we are devoted to studying the cou-

pling chemical and mechanical fields near a crack under
steady state diffusion. The paper is organized as follows.
Section 2 summarizes the governing equations for plane
strain cases under steady state diffusion and describes an
equivalent decomposition of the original crack problem. In
Sect. 3, the Fourier transform is used to derive the singular
integral equations corresponding to the crack problem in
terms of the dislocation density functions. The field quan-
tities near the crack are analyzed in Sect. 4. In Sect. 5,
parametric studies are conducted for the chemical potential
and stress intensity factors. Section 6 concludes the present
study with a summary.

2. Problem formulation

2.1 Governing equations

Consider a chemically active body made of an elastic host
solid and a diffusive species coming from outside. For two-
dimensional plane problems, we assume that all field quan-
tities are only functions of x and y, that is
u u x y v v x y c c x y= ( , ),  = ( , ),  = ( , ), (1)
where u and v are respectively the displacement components
along x-axis and y-axis directions, and c is the concentration
of the diffusive species (defined by the molar number of
molecules per unit volume). Furthermore, for a plane strain

problem, the linear strain components are given as

( )u
x

v
y

u
y

v
x= ,  = ,  = 1

2 + , 

= = = 0.
(2)x y xy

z yz xz

Assume that the host solid is an isotropic and linearly
elastic material, whose material properties will not change
during the species diffusion process. The components of the
Cauchy stress tensor in the chemically active material are
related to the strains and concentration as [12,23]

( )
( )
( )

G K c c

G K c c

K c c
G

= + + 2 3 ( ),

= + + 2 3 ( ),

= + 3 ( ),
= 2 ,   = = 0,

(3)

x x y x

y x y y

z x y

xy xy xz yz

0

0

0

where λ, G, and K are respectively the Lame constant, shear
modulus, and bulk modulus of the material with K = 3λ + 2G,
η is the coefficient of chemical expansion, and c0 is the re-
ference concentration in the initial state which is taken to be
stress-free, and has a reference chemical potential μ0. In the
absence of body forces, the stress components need to satisfy
the following equilibrium equations:

x y x y+ = 0,  + = 0. (4)x xy xy y

The chemical potential can be given as [12]

( )µ µ N c c K= ( ) 3 + , (5)x y0 0

where N is the chemistry modulus and µ µ µ= 0 is defined
as the chemical potential difference. Although in many cases,
the chemical potential can be described by a logarithmic
function of the concentration, a linear approximation can
also be used in some cases [12,23,27,28]. The linear model is
easy for theoretical analysis by invoking superposition
principle so that it is employed as the first step in tackling
many complex muti-physics problems. When the body
reaches a state of chemical equilibrium, the chemical po-
tential will remain constant and distribute uniformly every-
where. In a steady or transient state, however, the driving
force for diffusion is the gradient of chemical potential, and
the diffusion flux will follow a generalized Fick’s
law [12,27,28]:

j D µ
x j D µ

y= ,  = , (6)x m y m

where jx and jy are two flux components, and Dm is constant
fluid mobility. The mass balance for the diffusive species

should be written as c
t

j
x

j
y= x y . Under steady state

diffusion, the mass balance equation becomes
µ

x
µ

y+ = 0. (7)
2

2

2

2
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Substituting Eq. (5) into Eq. (3), we can rewrite the stress
components as

( )
( )

G K
N µ

G K
N µ

G

= + + 2 3 ,

= + + 2 3 ,

= 2 ,

(8)
x c x y x

y c x y y

xy xy

where K N= 9 /c
2 2 . With the help of Eqs. (2), (4), and

(8), we can obtain the governing equations:

( ) ( )

( ) ( )

G u
x G v

x y G u
y

K
N

µ
x

G v
y G u

x y G v
x

K
N

µ
y

+ 2 + + + = 3 ,

+ 2 + + + = 3 .
(9)

c c

c c

2

2

2 2

2

2

2

2 2

2

As shown in Fig. 1, a strip contains a crack of length 2l.
The crack face is along the x-axis direction, and the midpoint
of the crack is taken as the coordinate origin. The thickness
of the upper and lower layers are a and b, respectively. The
chemical potential differences on the upper and lower sur-
faces of the strip are kept constant, given by µb and µa
(assume µ µ>b a). The normal stress and shear stress on the
strip surfaces are p0(x) and q0(x), respectively.
The superscripts “+” and “−” are used to denote the field

quantities for y > 0 and y < 0, respectively. On the crack face,
the two extreme diffusion boundary conditions are the fully
impermeable,

µ x
y

µ x
y x l( ,0) = ( ,0) = 0,  < , (10)

+

and the fully permeable,

µ x µ x µ x
y

µ x
y x l( , 0) = ( , 0),  ( ,0) = ( ,0) ,  < . (11)+

+

In the fully permeable case, the chemical potential distribu-
tion problem is solved by simply ignoring the crack. Thus,
the diffusion flux can be obtained as
j j D j= 0,  = , (12)xc yc m 0

where j
µ µ
a b= + .b a

0

The actual diffusion boundary conditions on the crack face
are much more complex than those given by Eqs. (10) and
(11). And a more general model is adopted in this study, with
an assumption that the crack allows a diffusion flux jy which
is only a certain percentage of the flux jyc corresponding to
the fully permeable case [29]. Therefore, these partial con-
ductive boundary conditions on the crack faces can be
written as

µ x
y

µ x
y k j x l( ,0) = ( ,0) = ,  < , (13)

+
* 0

where k [0, 1]* is the flux conductivity for the crack, which
characterizes the influence of the crack defect on the diffu-
sion process. The limiting case k = 0* represents the fully
impermeable condition along the crack face. While for
k = 1* , the diffusion flux on crack face is the same as the
fully permeable case, so the boundary condition Eq. (13) is
equivalent to Eq. (11).
The boundary conditions of the problem shown in Fig. 1

can thus be written as

x b x a p x

x b x a q x x

( , ) = ( , ) = ( ), 

( , ) = ( , ) = ( ),  < ,
(14)y y

xy xy

+
0

+
0

x x
x x x l

( , 0) = ( , 0)
= ( , 0) = ( , 0) = 0,  < , (15)

y xy

y xy

+ +

µ x b µ µ x a µ x( , ) = ,  ( , ) = ,  < , (16)b a
+

µ x
y

µ x
y k j x l( ,0) = ( ,0) = ,  < . (17)

+
* 0

2.2 Superposition principle

For a small deformation case with linear constitutive rela-
tions, the superposition principle can be applied. As shown in
Fig. 2, the original crack problem is further decomposed into
two subproblems with the following equivalent super-
position conditions:

u u u v v v µ µ µ= + ,  = + ,  = + , (18)I II I II I II

where the superscripts “I” and “II” denote the field quantities
of subproblem I and subproblem II, respectively.
Subproblem I As shown in Fig. 2a, the uncracked strip is

subjected to the same external loads as the original problem.
Under a steady state, there is a diffusion flux J j= yc0 in the
strip. The normal stress and shear stress across the dotted line
x l y( < , = 0) are p x( ) and q x( ), respectively. The boundary
conditions of subproblem I can be written as

x b x a p x

x b x a q x x

( , ) = ( , ) = ( ),

( , ) = ( , ) = ( ),  < ,
(19)y y

xy xy

I+ I
0

I+ I
0Figure 1 Geometry and loads of a plane crack problem.
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µ x b µ µ x a µ x( , ) = ,  ( , ) = ,  < . (20)b a
I+ I

And the distribution of chemical potential difference in the

strip is µ
µ µ
a b y

aµ bµ
a b= + +

+
+

b a b aI .

Subproblem II As shown in Fig. 2b, both the chemical
and mechanical loads on the strip surfaces vanish. The ap-
plied crack face normal stress and shear stress are p x( ) and

q x( ). The sum of the crack face flux J and the flux J0 should
be the same as Eq. (13), so that J k j= ( 1) yc* . The detailed
solutions of this subproblem will be given in the next section.

3. Subproblem II: loads on the crack face

For convenience, although not labeled, the field quantities
discussed in this section are for subproblem II. The corre-
sponding mechanical boundary and continuity conditions are
expressed as

x b x b
x a x a x

( , ) = ( , )
= ( , ) = ( , ) = 0,  < , (21)

y xy

y xy

+ +

x x x x x( , 0) = ( , 0),  ( , 0) = ( , 0),  < , (22)y y xy xy
+ +

u x u x v x v x x l( , 0) = ( , 0),  ( , 0) = ( , 0),  , (23)+ +

x p x x q x x l( , 0) = ( ),  ( , 0) = ( ),  < , (24)y xy
+ +

and the chemical boundary conditions are given by

µ x b µ x a x( , ) = ( , ) = 0,  < , (25)+

µ x
y

µ x
y x( ,0) = ( ,0) ,  < , (26)

+

µ x µ x x l( , 0) = ( , 0),  , (27)+

µ x
y k j x l( ,0) = ( 1) ,  < . (28)

+
* 0

3.1 General solutions

The Fourier transform can be used to transform partial dif-
ferential equations (7) and (9) into a system of ordinary
differential equations, as follows:

M M
y+ = 0, (29)2 2

2

( ) ( )

( ) ( )

G U G V
y G U

y
K

N M

G V
y G U

y GV K
N

M
y

+ 2 + i + + = i 3 ,

+ 2 + i + = 3 , (30)

c c

c c

2 2

2

2

2
2

where “i” is the imaginary unit. The Fourier transform and
inverse Fourier transform are given by

M y µ x y x

U y u x y x

V y v x y x

µ x y M y

u x y U y

v x y V y

( , ) = 1
2 ( , )e d ,

( , ) = 1
2 ( , )e d ,

( , ) = 1
2 ( , )e d ,

( , ) = ( , )e d ,

( , ) = ( , )e d ,

( , ) = ( , )e d .

(31)

x

x

x

x

x

x

i

i

i

i

i

i

Then, the general solution of Eq. (29) may be expressed as
linear combinations of fundamental solutions:

M y B M( , ) = ( ) , (32)
n

n n
±

=1

2
±

where B n( )( = 1, 2)n
± are unknown functions, and the fun-

damental solutions are M = e y
1 , M = e y

2 . According to
Eq. (25), we obtain the general solution of chemical potential
using the inverse Fourier transform:

µ x y B M( , ) = ( ) e d . (33)
n

n n
x±

=1

2
± i

The general solutions of the homogeneous equations cor-
responding to Eq. (30) are written as

U y

V y
A

U
V

( , )

( , )
= ( ) , (34)

n
n

n

n

±

±
=1

4
±

where A n( )( = 1, 2, 3, 4)n
± are unknown functions, and the

fundamental solutions are

Figure 2 Geometry and loads of two subproblems: a subproblem I, b
subproblem II.
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U
V

U y
V y

U
V

U y
V y

= e ,
= ie ,

= e ,
= i( / + )e ,

= e ,
= ie ,

= e ,
= i( / )e ,

(35)

y

y

y

y

y

y

y

y

1

1

2

2

3

3

4

4

where ( ) ( )G G= + 3 / +c c .
The special solutions of non-homogeneous equations Eq.

(30) are assumed as

U y
V y

m y
U
V

( , )
( , )

= ( , ) , (36)
n

n
n

n

±

±
=1

4
±

where m y n( , )( = 1, 2, 3, 4)n
± are unknown functions. When

the following conditions are met

m
y

U
m

y
V= 0,  = 0, (37)

n

n
n

n

n
n

=1

4 ±

=1

4 ±

substituting them into Eq. (30) yields

( )

( )( )

m
y

U
y

K
NG B B

m
y

V
y

K
N G B B

= i3 e + e ,

= 3
+ 2 e + e .

(38)n

n n y y

n

n n

c

y y

=1

4 ±

1
±

2
±

=1

4 ±

1
±

2
±

According to Eqs. (37) and (38), m
y n( = 1, 2, 3, 4)n

±
is

easy to get, and then

( )

( )

m
m
m
m

y y G
G

y G
G y

B
B

=  

e + e
+

0 e

e + e
+

e 0

, (39)

y y

c

y

y y

c

y

1
±

2
±

3
±

4
±

2 2

2

2 0
2

2

1
±

2
±

where ( )
( )

K G
NG G= i
9 +

4 + 2
c

c
.

The general solutions of the non-homogeneous equations
can be expressed as the superposition of the general solutions
of the homogeneous equations and the special solutions of
the non-homogeneous equations. So, the general solutions of
Eq. (30) can be written as

U y
V y

A m y
U
V

( , )
( , )

= ( ) + ( , ) . (40)
n

n n
n

n

±

±
=1

4
± ±

Using the inverse Fourier transform, we obtain the general
solutions of displacements as

( )

( )

u x y A m U

v x y A m V

( , ) = + e d ,

( , ) = + e d ,
(41)n

n n n
x

n
n n n

x

±

=1

4
± ± i

±

=1

4
± ± i

and the stresses as

( )

( )

x y A m P

K
N B M

x y A m Q

( , ) = + e d

3 e d ,

( , ) = + e d ,

(42)

y
n

n n n
x

n
n n

x

xy
n

n n n
x

±

=1

4
± ± i

=1

2
± i

±

=1

4
± ± i

where ( )P y U G V
y( , ) = i + + 2n c n c

n ,Q y G U
y( , ) = +n

n

GVi n Furthermore, the concentration is

( )

c c N B M K
N

A m U
V
y

m
y

V

= 1 e d + 3

× + i + + e d .
(43)

n
n n

x

n
n n n

n n
n

x

±
0

=1

2
± i

=1

4
± ±

±
i

3.2 Singular integral equations

To obtain the singular integral equations, we introduce the
following dislocation density functions:

g x x µ x µ x( ) = [ ( , 0) ( , 0)], (44)1
+

g x x u x u x( ) = [ ( , 0) ( , 0)], (45)2
+

g x x v x v x( ) = [ ( , 0) ( , 0)]. (46)3
+

According to Eqs. (23) and (27), g x x l( ) = 0( )n .
For the chemical boundary conditions Eqs. (25)-(27) and

(44), we get the following equations for determining the

unknown coefficients B n( )( = 1, 2)n
± :

B M b B M a( , ) = 0,  ( , ) = 0, (47)
n

n n
n

n n
=1

2
+

=1

2
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( )

( )

B B
M

y

B B M g s s

( , 0)
= 0,

( , 0) = i
2 ( )e d .

(48)n
n n

n

n
n n n l

l s

=1

2
+

=1

2
+

1
i

For the mechanical boundary conditions Eqs. (21)-(23),
(45), and (46), we get the following equations for de-
termining the unknown coefficients A n( )( = 1, 2, 3, 4)n

± :

[ ]

A m b P b

A m a P a

+ ( , ) ( , ) = 0,

+ ( , ) ( , ) = 0,
(49)n

n n n

n
n n n

=1

4
+ +

=1

4

[ ]

A m b Q b

A m a Q a

+ ( , ) ( , ) = 0,

+ ( , ) ( , ) = 0,

(50)n
n n n

n
n n n

=1

4
+ +

=1

4

( )

A A m m P

K
N B B M

+ ( , 0) ( , 0) ( , 0)

3 ( , 0) = 0,
(51)n

n n n n n

n
n n n

=1

4
+ +

=1

2
+

A A m m Q+ ( , 0) ( , 0) ( , 0) = 0, (52)
n

n n n n n
=1

4
+ +

A A m m U

g s s

+ ( , 0) ( , 0) ( , 0)

= i
2 ( )e d , (53)

n
n n n n n

l

l s

=1

4
+ +

2
i

A A m m V

g s s

+ ( , 0) ( , 0) ( , 0)

= i
2 ( )e d . (54)

n
n n n n n

l

l s

=1

4
+ +

3
i

Combining the boundary conditions Eqs. (24) and (28), the
following integral equations are obtained:

K g s s k j

K g s s p x

K g s s q x

x l

1
2 ( ) ( )e d d = ( 1) ,

1
2 ( ) ( )e d d = ( ),

1
2 ( ) ( )e d d = ( ), 

< ,

(55)

l

l x s

l

l

k
k k

x s

l

l

k
k k

x s

11 1
i ( ) * 0

=1

3

2
i ( )

=1

3

3
i ( )

where K ( )11 and K i j( )( = 2, 3; = 1, 2, 3)ij are expressions
in terms of .
To ensure the accuracy of the solutions, further transfor-

mation is required to isolate the Cauchy type integral kernel.

Define k K= Im lim ( )ij ij+
, we get

( ) ( )k k
G G

G k
G G

G
k k k k

= 1
2,  =

+
+ 2 ,  =

+
+ 2 ,

= = = = 0,
(56)

c

c

c

c
11 23 32

21 22 31 33

and the integral formula ( )s x s x s xsin cos d = 1
2

1
+ + 1

0

[30] is used. And we find that K ( )ij has the following
properties: K ( )11 , K ( )21 , K ( )23 , and K ( )32 are odd
functions and imaginary numbers; K ( )22 , K ( )31 , and
K ( )33 are even functions and real numbers. Then Eq. (55)
can be simplified as

k
s x

Q g s s k j

k
s x

Q g s Q g s s

p x p x
k

s x
Q g s Q g s s

q x q x x l

1 + ( )d = ( 1) ,

1 + ( )+ ( ) d

= ( ) ( ), (57)

1 + ( )+ ( ) d

= ( ) ( ),   < ,

l

l

l

l

c

l

l

c

11
11 1 * 0

23
23 3 22 2

32
32 2 33 3

where

( )Q s x K k x s( , ) = Im sin ( )d , (58)11 0 11 11

( )

Q s x K x s

Q s x K k x s

( , ) = Re cos ( )d ,

( , ) = Im sin ( )d ,
(59)

22 0 22

23 0 23 23

( )Q s x K k x s

Q s x K x s

( , ) = Im sin ( )d ,

( , ) = Re cos ( )d ,
(60)

32 0 32 32

33 0 33

Q s x K x s

p x Q s x g s s

( , ) = Im sin ( )d ,

( ) = 1 ( , ) ( )d ,
(61)

c l

l

21 0 21

21 1

Q s x K x s

q x Q s x g s s

( , ) = Re cos ( )d ,

( ) = 1 ( , ) ( )d .
(62)

c l

l

31 0 31

31 1

The above three equations are Cauchy type singular in-
tegral equations of the first kind. p x( )c and q x( )c can be
considered as “equivalent diffusion stresses”. That is, the
stress intensity factors generated by the chemical loads are
the same as that produced by acting p x( )c and q x( )c on the
crack faces. According to the chemical loads, we know that
g s( )1 is an odd function, so that p x( )c and q x( )c are odd and
even functions, respectively.

3.3 Numerical integration method

By introducing s s l= / and x x l= / , the singular integral
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equations can be transformed into standard form
k

s x
R h s s k j

k
s x

R h s R h s R h s s

p lx
k

s x
R h s R h s R h s s

q lx x

1 + ( )d = ( 1) ,

1 + ( )+ ( )+ ( ) d

= ( ),

1 + ( ) + ( )+ ( ) d

= ( ),    < 1, (63)

1

1 11
11 1 * 0

1

1 23
23 3 21 1 22 2

1

1 32
32 2 31 1 33 3

where h s g ls( ) = ( )i i and R s x lQ ls lx( , ) = ( , )ij ij . The solu-
tions of the Cauchy singular integral equations can be ex-
pressed as [31]

h s f s
s

( ) =
1

, (64)i
i ( )

2

where f s( )i is continuous and bound in s < 1 and non-zero
at the endpoints s = 1. To guarantee the existence of Cauchy
principal value integral, the Hölder condition needs to meet

h s h x d s x s x( ) ( ) , 1,  1, (65)i i

where d is a non-negative real constant, and (0, 1] is an
exponent.
The above three Cauchy type singular integral equations

can be solved numerically by the Lobatto-Chebyshev
method, and we can finally discretize Eq. (63) into a system
of linear algebraic equations [32]:

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )

( )

k f s

s x
R f s m k j

k f s

s x
R f s

R f s R f s mp lx

k f s

s x
R f s

R f s R f s mq lx

+ = ( 1) ,

+

+ + = ,

+

+ + = ,

(66)

j

m j j

j k j

m

j j

j

m j j

j k j

m

j j

j j k

j

m j j

j k j

m

j j

j j k

=0

11 1

=0
11 1 * 0

=0

23 3

=0
21 1

22 2 23 3

=0

32 2

=0
31 1

32 2 33 3

( ) ( ) ( )f s f s f s= 0,  = 0,  = 0, (67)
j

m

j j
j

m

j j
j

m

j j
=0

1
=0

2
=0

3

where the discrete points
s j m j m
x k m k m

= cos( / ),  ( = 0, 1, , ),
= cos[(2 1) / (2 )],  ( = 1, 2, , ),

(68)j

k

with the corresponding weights given by = = 1 / 2m0 ,
= = = 1m1 1 . The above Eqs. (66) and (67) contain

m3 + 3 algebraic equations and meanwhile m3 + 3 unknown
constants ( )f s i j m ( = 1, 2, 3; = 0, 1, , )i j . As the number of
discrete points increases, the calculated results will gradually

converge. The numerical convergence appears to be very
good for small values of m, so m is taken to be 30 in this
paper.

4. Field quantities near the crack

To characterize the stress field near the crack tip, the stress
intensity factors (SIFs) are defined as

K x x l

K x x l

= lim ( , 0) 2 ( ) ,

= lim ( , 0) 2 ( ) ,
(69)x l

y

x l
xy

I

II

+

+

where = +y y y
I II and = +xy xy xy

I II. y
I is non-singular, and

according to Eq. (63),

x
k

s x
R

f s

s

R f s
s

R f s
s

s

( , 0) = 1 +
( )

1

+
1

+
1

d . (70)

y
II

1

1 23
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21
1( )

2 22
2 ( )
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Moreover, y
s is used to represent the singular part of y

II, so
we get

x k f s
s x s

slim ( , 0) = lim
( ) 1

1
d , (71)

x l
y
s

x

23

1 1

1 3

2+ +

and then transform the formula as follows:

x k f s f x
s x s

s

k f x
s x s

s

lim ( , 0) = lim
( ) ( ) 1

1
d

lim
( ) 1

1
d . (72)
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1 3 3
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1 1

1 3
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+ +
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According to Eq. (65), the first term of the above formula
is non-singular, so it can be disregarded. For the second term,
the following integral formula is employed:

s x s
s

x
x1 1 1

1
d = 1

1
,  > 1. (73)

1

1

2 2

Combined with Eq. (69), we finally getK k f l= (1)I 23 3 .

Similarly, we can get K k f l= (1)II 32 2 .
With the help of Eqs. (18) and (33), the chemical potential

difference on the crack plane in the original problem is
µ x

µ x K g s x s s

( , 0)

= ( , 0) 1 ( ) ( )sin ( )d d , (74)
l

l

±

I
0 41

±
1

where K ( )41
± are expressions in terms of . Combined with

Eq. (66), it can be further expressed as

( ) ( )µ lx µ lx m R s x f s( , 0) = ( , 0) 1 , , (75)
j

m

j j j
± I

=0
41
±

1

where R s x l K l x s( , ) = ( )sin ( )d41
±

0 41
± . According to
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Eqs. (57) and (66), the equivalent diffusion stresses on the
crack faces can be calculated numerically as

( )

( )

p lx l
m Q ls lx f s

q lx l
m Q ls lx f s

( ) = ( , ) ,

( ) = ( , ) .
(76)

c
j

m

j j

c
j

m

j j

=0
21 1

=0
31 1

5. Numerical results and discussion

5.1 Chemical potential and equivalent diffusion
stresses distribution

In this section, the effects of flux conductivity and geometric
parameters on the distribution of chemical potential and
equivalent diffusion stresses on the crack plane are studied.
For the convenience of comparison, the following normal-
ized chemical potential and concentration are used

µ x µ x µ x
l j

c x N c x c x
l j

( , 0) = ( ,0) ( ,0)
 ,

( , 0) = ( ,0) ( ,0)
 .

(77)
±

± I

0

± ± I

0

Based on Eq. (8), we can define a parameter with the same
dimension as stress K j l N= 3 /c0 0 . Then the normalized
equivalent diffusion stresses are defined as

p x p x q x q x( ) = ,  ( ) = . (78)c
c
c c

c
c

( )

0

( )

0

The material parameters [23,33] used for the numerical
calculations are given in Table 1.
Next, we present the numerical results for a special case

with a = b = l. The normalized chemical potentials at the
midpoint and tip of the crack under different flux con-
ductivities k * are shown in Fig. 3. The chemical potentials on
the upper and lower crack faces are the same when the flux
conductivity k = 1* . That is, the fully permeable crack im-
plies that a crack has no impact on the diffusion process. For
other cases (k [0, 1)* ), there is a chemical potential jump
on the crack face, especially at the crack tip. The influence of
flux conductivity on the chemical potential of the crack face
is linear, and the smaller the flux conductivity, the greater the
chemical potential change on the crack face.
According to Eq. (57), the influence of flux conductivity

on the singular integral equation only exists at the right side
and is linear, so the influence on the chemical potential and
the stress is linear. Therefore, in the following analysis, we

only need to consider the case of k = 0* . Then the diffusion
flux on the crack face in subproblem II is j D j=y m 0.
Figures 4 and 5 present the distributions of chemical po-

tential and concentration along the crack plane y = 0 under
chemical loading with different layer thicknesses. As shown
in Fig. 4, the normalized chemical potential on the upper
crack face is greatly affected and gradually increases as the
upper layer thickness increases, but the normalized chemical
potential on the lower crack face is slightly affected. Under
chemical loading, the concentration has a similar distribution
to the chemical potential, as shown in Fig. 5. As the layer
thickness increases, the normalized concentration on crack
face increases.
Figure 6 gives the distribution of equivalent diffusion

stresses along the crack plane y = 0 with different upper
layer thicknesses for a fixed a l/ = 1. The equivalent diffu-
sion normal stress and shear stress are even function and odd

Table 1 Values of material parameters

Material parameters Notation Value

Lame constant (GPa) λ 1.154
Shear modulus (GPa) G 0.769

Coefficient of chemical expansion (m3/mol) η 10−6

Chemistry modulus (J m3/mol2) N 1.5

Figure 3 Effects of flux conductivity k* on the chemical potentials at the
midpoint and tip of the crack (a = b = l).

Figure 4 The distribution of chemical potential along the crack plane
with different upper layer thickness b l/ =0.2, 1, 5 for a fixed a l/ = 1.
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function, respectively, as can be seen in Fig. 6. The
equivalent diffusion shear stress is greater than the equiva-
lent diffusion normal stress. The equivalent shear stress in-
creases with respect to the upper layer thickness.

5.2 Stress singularity under chemo-mechanical loading

The normalized stress intensity factors (NSIF) are defined as

K K
l

K K
l

= ,  = . (79)
c c

I
I

0
II

II

0

Assuming that the crack propagation direction is along the
x-axis, the normalized energy release rate (NERR) can be
obtained as

G K K= + . (80)c I
2

II
2

In this section, the effects of loads and geometric para-
meters on the NSIF and NERR under chemical and me-

chanical loads are studied. Based on the above analysis of
chemical potential, some special cases of crack face stresses
p x( ) and q x( ) in subproblem II are explored:
(1) Case of pure chemical loading: p x q x( ) = ( ) = 0
When the crack face normal stress and shear stress are

zero, the stress intensity factors induced by pure chemical
loading ( j D j=y m 0) are studied. Figure 7 shows the effects
of crack geometric location on the stress intensity factors
with different strip thicknesses a b l+ = 2 and a b l+ = 20 . In
general, the chemical load induces both mode I and mode II
SIFs. However, when a b= , KI is zero but KII is non-zero.
This indicates that the chemical load only results in mode II
SIF when the crack is in the mid-plane of the strip.
As the upper layer thickness gradually increases, KI de-

creases and changes from positive to negative values, andKII

increases first and then decreases. The negativeKI means that
it is possible to have crack face interference [29], and the
corresponding solutions given are not valid. In such cases,
the contact of the crack faces would occur, so that the normal
stress near the crack tip is negative and the crack face is in a
state of compression together with in-plane shear. The ne-
gative and positiveKII means that the shear stress at the crack
tip can change direction in some cases.
It can be seen thatKI andKII show odd symmetry and even

symmetry with respect to the mid-plane of the strip, re-
spectively. The absolute value of the stress intensity factors
in the case of a b l+ = 20 is smaller than those in the case of
a b l+ = 2 . This indicates that the strip thickness has a great
effect on SIFs, and an increase in thickness leads to a de-
crease in the magnitude of SIFs induced by chemical load-
ing.
(2) Case with crack face normal stress: p x k( ) = c0 0,

q x( ) = 0

Figure 5 The distribution of concentration along the crack plane with
different layer thickness a b= =0.2l, l, 5l.

Figure 6 The distribution of the equivalent diffusion normal stress ( )p lxc
and shear stress ( )q lxc on the crack face with different upper layer thick-
ness b l/ =0.1, 0.2, 0.5 for a fixed a l/ = 1.

Figure 7 Effects of crack geometric location on stress intensity factors
induced by chemical loading.
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The crack face shear stress is zero, and the normal stress is
uniformly distributed as p x k( ) = c0 0, where k0 is the load
factor and represents the magnitude relationship between
chemical loads and mechanical loads. The crack tip stress
field is mainly affected by the chemical loads for the case of
small k0 . However, it is mainly affected by the mechanical

loads for large k0 , and it is affected by both chemical and
mechanical loads for other cases.
The effects of the crack face normal stress on stress in-

tensity factors for a fixed a l/ = 1 are given in Fig. 8a. For the
case b l/ = 0.2, KI and KII linearly increase and decrease
respectively as k0 increases. This is, the normal stress can
induce both mode I and mode II SIFs in general. However,
for the special case a b= , KI increases linearly as k0 in-
creases, but KII is not affected. This indicates that when the
crack is in the mid-plane of the strip, the normal stress only
results in mode I SIF.
Illustrated in Fig. 8a, as the upper layer thickness in-

creases, the slope of the solid lineKI gradually decreases and
approaches the dot-dashed line, which has the expression
K k=I 0, and this is consistent with the mode I crack problem

in linear elastic fracture mechanics (LEFM). As shown in
Fig. 8b, the energy release rate is not symmetrically dis-
tributed in the case b l/ = 0.2, but symmetrically distributed
in the special case a b= . The smaller the upper layer
thickness, the greater the energy release rate. This indicates
that the crack geometric location has a great effect on the
energy release rate: the NERR increases rather rapidly as the
crack approaches the strip surface.
(3) Case with crack face shear stress: p x( ) = 0, q x k( ) = c0 0
The crack face normal stress is zero, and the shear stress is

uniformly distributed as q x k( ) = c0 0, where k0 is the load
factor. The effects of the crack face shear stress on stress
intensity factors are given in Fig. 9a. For the case b l/ = 0.2,
both KI and KII linearly increase with respect to k0. That is,
the shear stress can affect both mode I and mode II SIFs.
However, for the special case a b= , KI remains zero, but KII

linearly increases as k0 increases. This indicates that the
shear stress only results in mode II SIF when the crack is in
the mid-plane of the strip.
As the upper layer thickness increases, the slope of the

dashed line KII gradually decreases and approaches the dot-
dashed line, which has the expression K k=II 0, and this is

Figure 8 Effects of the crack face normal stress on a stress intensity
factors and b energy release rate.

Figure 9 Effects of the crack face shear stress on a stress intensity factors
and b energy release rate.
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consistent with the mode II crack problem in LEFM. The
energy release rate is not symmetrically distributed for both
the case b l/ = 0.2 and a b= , as shown in Fig. 9b. The
smaller the upper layer thickness, the greater the energy re-
lease rate.
In summary, the stress field near the crack tip is affected by

the chemical loads, mechanical loads (normal stress or shear
stress), and geometric configuration, thus the stress singu-
larity at the crack tip is usually a mixture of mode I and mode
II types. The numerical results reveal that the SIFs can be
either positive or negative depending on the combination of
the chemical and mechanical loads. For a certain load factor,
mode II (or mode I) SIF could be zero, that is, only a pure
mode I (or mode II) SIF is generated.
(4) A limit case: a b=
When the geometric size a b= increases gradually, we

studied the change of stress intensity factors induced by four
crack face loads in subproblem II: (i) chemical load
j D j=y m 0, (ii) constant normal stress p x( ) = c0, (iii) con-
stant shear stress q x( ) = c0, (iv) shear stress q x x( ) = c0 .
As the geometric size a b= , numerical results show

that KII induced by the chemical load approaches to zero.
Therefore, the other non-zero stress intensity factors ap-
proach a limit value respectively, as shown in Fig. 10:

K p x
K q x
K q x x

1,              for  ( ) = ,
1,             for  ( ) = ,
0.5,          for  ( ) = .

(81)
c

c

c

I 0

II 0

II 0

These results are consistent with the SIFs of mode I and
mode II crack in LEFM, which validate the theoretical deri-
vation and the numerical calculation procedure in this paper.

6. Summary and conclusions

This paper studies a plane crack problem in a strip subjected
to chemo-mechanical loading under steady state diffusion.

Using the Fourier transform and dislocation density func-
tions, the crack problem is reduced to a set of singular in-
tegral equations, which are solved numerically by the
Lobatto-Chebyshev method. By analyzing the chemical po-
tential distribution and stress field near the crack, the fol-
lowing conclusions can be drawn. The influence of flux
conductivity on the chemical potential of the crack face is
linear, and there is a change of chemical potential on the
crack face in general. Affected by the chemical loads, me-
chanical loads (normal stress or shear stress), and geometric
configuration, the stress singularity at the crack tip is usually
a mixture of mode I and mode II types. The crack geometric
location has a great effect on the stress intensity factors and
energy release rate. As the strip thickness gradually in-
creases, the stress intensity factors approach the classical
results in LEFM.
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化学-力学荷载下平面裂纹问题的断裂分析
时俊涛, 仲 政

摘要 基于线性的化学弹性模型, 本文给出了化学-力学荷载下平面裂纹问题的断裂分析. 引入流通系数来描述裂纹缺陷对扩散过

程的影响. 利用傅里叶变换和位错密度函数, 裂纹问题被归结为一组奇异积分方程, 采用Lobatto-Chebyshev方法对其进行数值求解.
通过参数研究揭示了流通系数、几何构型、化学和力学载荷对裂纹尖端场的影响. 数值结果表明, 裂纹尖端的应力奇异性通常表

现为I型和II型的混合.

421439-12J. Shi, et al. Acta Mech. Sin., Vol. 38, 421439 (2022)

https://doi.org/10.1016/j.ijsolstr.2014.08.015
https://doi.org/10.1016/j.ijsolstr.2020.12.014
https://doi.org/10.1007/s10008-006-0095-1
https://doi.org/10.1016/j.ijsolstr.2014.11.025
https://doi.org/10.1098/rspa.2015.0366
https://doi.org/10.1007/s10409-019-00871-0
https://doi.org/10.1007/s00161-016-0511-4
https://doi.org/10.1007/s11433-017-9044-9
https://doi.org/10.1007/s11433-017-9044-9
https://doi.org/10.1016/j.jmps.2017.06.013
https://doi.org/10.1016/j.jmps.2017.06.013
https://doi.org/10.1016/j.commatsci.2020.110189
https://doi.org/10.1016/j.jmps.2014.06.007
https://doi.org/10.1016/j.jmps.2014.06.007
https://doi.org/10.1016/j.jmps.2017.07.001
https://doi.org/10.1039/c2sm25467k
https://doi.org/10.1016/j.mechmat.2020.103320
https://doi.org/10.1016/S0013-7944(97)00137-9
https://doi.org/10.1007/s10704-010-9503-8
https://doi.org/10.1007/BF00033720
https://doi.org/10.1016/j.jpowsour.2015.09.033

	Fracture analysis of a plane crack problem under chemo-mechanical loading 
	1.��� Introduction
	2.��� Problem formulation
	2.1��� Governing equations
	2.2��� Superposition principle

	3.��� Subproblem II: loads on the crack face
	3.1��� General solutions
	3.2��� Singular integral equations
	3.3��� Numerical integration method

	4.��� Field quantities near the crack
	5.��� Numerical results and discussion
	5.1��� Chemical potential and equivalent diffusion stresses distribution
	5.2��� Stress singularity under chemo-mechanical loading

	6.��� Summary and conclusions


