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The co-rotational finite element formulation is an attractive technique extending the capabilities of an existing high performing
linear element to geometrically nonlinear analysis. This paper presents a modified co-rotational framework, unified for beam,
shell, and brick elements. A unified zero-spin criterion is proposed to specify the local element frame, whose origin is always
located at the centroid. Utilizing this criterion, a spin matrix is introduced, and the local frame is invariant to the element nodal
ordering. Additionally, the projector matrix is redefined in a more intuitive way, which is the derivative of local co-rotational
element frame with respect to the global one. Furthermore, the nodal rotation is obtained with pseudo vector and instantaneous
rotation, under a high-order accurate transformation. The resulting formulations are achieved in unified expression and thus a
series of linear elements can be embedded into the framework. Several examples are presented to demonstrate the efficiency and
accuracy of the proposed framework for large displacement analysis.
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1. Introduction

Although the total and updated Lagrangian formulations are
classical methods for geometrically nonlinear analysis, these
methods require complicated element formulations and ex-
pensive calculations. The co-rotational finite element for-
mulation is a latest method for handling large rotations but
small strains. The key idea of this method is to separate
the element rigid body motion from the deformational part
of its total motion, utilizing a local frame that continuously
translates and rotates with the element. The small defor-
mation can be then captured at the level of local element
frame, whereas the geometrical nonlinearity is introduced via
the rotation of reference frame. During this generic proce-
dure, existing high performing linear elements are updated
rather than introducing new element formulations, which
shows its simplicity and efficiency.
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As its exceptional benefits for structural problems with ar-
bitrarily large rotations, the co-rotational method has gained
more extensive interest in the previous years [1-4]. Beam and
shell elements have been widely used to model various mod-
ern engineering structures, resulting in useful developments
and improvements in finite element technology for nonlin-
ear analysis [5, 6]. In 1986, Rankin and Brogan [7] first
introduced the element-independent co-rotation as a general
framework for large rotations analysis in three dimensions.
To improve the performance of the co-rotational method,
Rankin and Nour-Omid [8, 9] later proposed a projector ma-
trix with the property that a consistent internal force vector is
invariant under its action. Based on this co-rotational frame-
work, many new beam and shell elements have been de-
veloped to solve geometrically nonlinear problems [10-12].
Tang et al. [13] simplified the co-rotation algorithm and
considered the warping effect of quadrilateral shell elements.
The previous methods have almost exclusively been applied
to beams and shells partially for the reason that the rotat-
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ing local element frame is fairly straightforwards defined for
beams and shells, which is less obvious for a brick element.
Some co-rotational formulation variants were developed for
three dimensional brick elements in Refs. [14-16]. In ad-
dition, Crisfield and Motia [17] presented a unified frame-
work for solids and shells. However, they implemented a
complex formulation to determine the local element frame.
Also, the rotations are obtained by first order approximation
with less accuracy. Therefore, the main thrust in this work
is to develop a unified co-rotational framework with much
neater formulation and simpler derivation, which allows the
extension to different linear elements with different degrees
of freedom.

There are some principal features of the co-rotational
method to be outlined. The first one is the treatment of non-
commutative large nodal rotations [18]. Rankin and Brogan
used pseudo vector [7] and instantaneous rotation [8,9] to ex-
tract element rotational degrees of freedom from a new large
rotation vector. Felippa and Haugen [19] summarized vari-
ous normalizations which simplify the associated rotator and
spinor. Furthermore, Wang and Sun [20] used the quater-
nion to store and update the finite rotation during the whole
analysis thus avoiding the complicated extraction algorithm.
Several parameterizations of the large rotations are summa-
rized and compared with each other in Ref. [21]. The spe-
cific choice of the local reference frame in relation to the cur-
rent deformed element configuration is another major issue.
Rankin et al. [7-9] proposed a choice for local element frame,
by seeking to fit a plane as closely as possible to the deformed
element surface. A term involving the spin of local frame
was introduced by Crisfield and Moita [17] to make the local
frame invariant to the specified order of the element nodes,
which is desirable for extending the co-rotational approach
to large strain analyses. Rankin [22] introduced a procedure
minimizing the square of the Euclidean norm of the local
nodal displacements to obtain a formulation independent of
the nodal ordering. A so-called bisector definition was used
in Refs. [13, 23,24] to define the local element frame, allow-
ing quadrilateral shell elements invariant to nodal ordering.
Battini and Pacoste [25] showed that the aforementioned in-
variance characteristic is important for identifying the bifur-
cation points of perfectly symmetric structures.

In this paper, we develop a unified co-rotational framework
for beams, shells, and bricks in geometrically nonlinear anal-
ysis. The local frame is specified utilizing a unified zero-spin
criterion instead of an arbitrary choice or a complex formula-
tion independent of the nodal ordering. One modification is
carried out on the definition of projector, which arises natu-
rally from the derivative of local co-rotational element frame
with respect to the global degrees of freedom. A spin matrix
dependent on the choice of local element frame is introduced

into the projector. As a general framework with simple ex-
pression, the pseudo vector is used to describe the large nodal
rotations, avoiding special procedure for different types of el-
ements. The instantaneous spin variable is used to yield the
internal forces with high-order accuracy. To demonstrate the
efficiency and accuracy of the proposed framework, several
numerical examples using different elements for geometri-
cally nonlinear analysis are tested, and compared with the
results of other available solutions in references.

The outline of this paper is as follows. The element kine-
matics is described in the next section. In Sect. 3, the unified
co-rotational framework is formulated. Several modifications
are introduced into the present work, making formulations
unified to employ different linear elements. In Sect. 4, a cou-
ple of numerical examples are given to verify the efficiency
and accuracy of the co-rotational framework. Finally, based
on the numerical results, conclusions are drawn in Sect. 5.

2. Element kinematics

A simple element undergoing a motion from its initial config-
uration to the current one is depicted in Fig. 1. This motion
can be split into two parts, the first part is a rigid transla-
tion and rotation from its initial configuration to the rotated
one, and the second part is a local deformation of the rotated
configuration. Thus, rotated configuration is taken as the ref-
erence of element computation, whereas for total Lagrangian
the reference is the initial configuration and for updated La-
grangian it is the converged solution of the previous incre-
ment step. The deformation with respect to the reference
configuration is assumed to remain small in the co-rotational
method.

As shown in Fig. 1, X,Y,Z refer to global rectangular
coordinate system. An orthogonal triad E0 with the compo-
nents of ei0(i = 1, 2, 3) defines the orientation of local ele-
ment frame in the initial configuration. The point C is cho-
sen to be the origin of local element frame, with the position
vector Xg

0 in the global coordinates.
The translation of a typical point P with position vector Xg

Figure 1 Element kinematics and coordinate systems.
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in the global coordinates is denoted by ug. The superscript g
denotes the quantities in global coordinate system. The po-
sition vector of this point in current configuration is written
as

xg = Xg + ug, (1)

similarly for the origin point

xg
0 = Xg

0 + ug
0, (2)

where ug
0 denotes the translation of the origin point C.

The preceding local frame defined on each element is used
to measure its pure deformation. The local frame in the cur-
rent configuration is defined by E with the components of
ei(i = 1, 2, 3), and will be determined in Sect 3.1. The posi-
tion vector of point P in the local frame is

xe = ET(xg − xg
0), (3)

where the superscript e denotes the quantities in local ele-
ment frame.

Substituting Eqs. (1) and (2) into Eq. (3), the local defor-
mational displacement of this typical point P can be written
as

ūe = ET(Xg + ug − Xg
0 − ug

0) − Xe, (4)

where Xe is always the undeformed coordinates in local el-
ement frame, the superposed bar denotes a deformational
quantity that is small in magnitude compared with its cor-
responding global quantity.

The global rotation of the typical point P is characterized
by orthogonal matrix Tg. This rotation matrix can be ex-
pressed by corresponding pseudo vector θg with the expo-
nential map

Tg = espin(θg), (5)

where the notation spin(·) represents a skew-symmetric spin
matrix as a function of the pseudo vector. Throughout the
paper, we use S to represent the skew-symmetric matrix only
for brevity.

The updating procedure from rotation θ1 to θ2 can be writ-
ten as

T(θ2) = T(∆θ)T(θ1), (6)

where ∆θ is the rotation increment, T(·) denotes the rotation
matrix of one pseudo vector, with the exponential map ex-
pression Eq. (5).

To derive the local deformational rotation, we first assume
that a triad is attached to arbitrary point, such as the point P in
the initial configuration, which is coincident with the initial

local element frame E0. Therefore, this triad in the current
configuration is expressed as

T = TgE0. (7)

This triad can be obtained in another way that the current
local element frame E is rotated with a small rotation matrix
T̄g in global coordinate system, such that

T = T̄gE, (8)

where the rotation matrix T̄g is defined by the local small
rotation matrix T̄e

T̄g = ET̄eET. (9)

Considering Eqs. (7)-(9), the local deformational rotation
can be written in the form of rotation matrix

T̄e = ETTgE0. (10)

And the corresponding local rotation θ̄e can be obtained with
the exponential map

T̄e = espin(θ̄e). (11)

In accordance with Eqs. (4), (10) and (11), for a given set
of global degrees of freedom, the degrees of freedom in the
local element frame are obtained.

3. Modified co-rotational formulation

In this section, several improvements are introduced into the
co-rotational formulation. These modifications lead to a uni-
fied formulation with higher numerical accuracy and compu-
tational efficiency for different elements.

The first modification is the specific choice of local ele-
ment frame. Most work [7, 8, 17] adopt either an arbitrary
choice or a complex formulation independent of the nodal
ordering. A unified zero-spin criterion is proposed to choose
the local element frame in present work. Consequently, the
expression is unified for shell and brick elements. Using this
criterion, the invariance characteristic to nodal ordering is
achieved in a relatively simple manner.

The second modification concerns the projector matrix re-
defined in a more intuitive way. The variation of rotation ma-
trix is expressed with instantaneous rotation variable, avoid-
ing low-order approximation for the local rotation. During
the derivation, all terms are retained, and a spin matrix is
introduced, resulting in a unified formulation for different el-
ements.

Finally, the consistent internal force and tangent stiffness
are given according to these modifications. The local defor-
mational rotation differs from the instantaneous rotation vari-
able, thus a relatively important transformation matrix is used
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to express the relationship. It is shown that different linear el-
ements can be easily embedded into these formulations.

3.1 Unified zero-spin criterion

The local element frame shown in Fig. 1 is bound to the cur-
rent deformed element configuration, and its special choice is
a major issue of the co-rotational method. Zero-spin criterion
is a better principle than an arbitrary choice of such a local
element frame. However, most of the common procedures
such as Refs. [17, 25] need to determine an in-plane rotation
quantity of the local element frame by means of trigonomet-
ric function for shell elements, which makes such the option
tedious and non-universal. In this work, a unified zero-spin
criterion based on the polar decomposition method is pro-
posed to address the selection with common use for 2D plate
shells and 3D continua. Following this technique, the local
spin at the element centroid in a current configuration is en-
forced to be zero, holding the local element frame invariant
to the nodal ordering.

A convention in this paper that differs from the previous
methods is that the origin of local frame is not placed at some
element node but its centroid. This modification is consis-
tent with the best fit criterion proposed by De Veubeke [26].
In viewpoint of numerical analysis, the deformation gradient
approximation at the centroid of an element is optimally ac-
curate. In Sect. 3.2, the derivatives of displacements at the
origin are used to derive the formulation of projector. Thus
such choice of the origin will also improve the numerical ac-
curacy of the projector mapping displacements in each ele-
ment from global frame to local one.

The criterion for choosing the local frame is that the local
spin at the element centroid should be zero. For 3D continua,
this criterion can be expressed as

∂ūe
2

∂Xe
1
−
∂ūe

1

∂Xe
2
= 0, (12)

∂ūe
2

∂Xe
3
−
∂ūe

3

∂Xe
2
= 0, (13)

∂ūe
3

∂Xe
1
−
∂ūe

1

∂Xe
3
= 0, (14)

where ūe
i (i = 1, 2, 3) are components of local translations,

and Xe
i (i = 1, 2, 3) are components of undeformed local co-

ordinates. For 2D plate shell, this criterion can be simplified
as
∂ūe

2

∂Xe
1
−
∂ūe

1

∂Xe
2
= 0. (15)

Figure 2 shows the process of polar decomposition, which
is given as

F = RU, (16)

where U denotes the symmetric right stretch matrix, and R is
the rotation matrix.

Compared Fig. 1 with Fig. 2, it is noted that the defor-
mation is equivalent. The former figure represents a rota-
tion followed by a stretch while the later illustrates a process
whereby the element is strained and later rotated. It is obvi-
ous that the local stretch matrix in the rotated coordinates R
is symmetric, that means the local spin at the centroid is zero.
Thus we can find the local frame in Fig. 1 by computing the
rotation matrix from deformation gradient.

The previous polar decomposition is implemented to the
deformation gradient in global system, and the rotation ma-
trix can be presented as the orientation of local element frame
directly. In order to apply this method to the plate shell
and three-dimensional brick elements in a unified way, the
present criterion takes a two-step procedure shown in Fig. 3
to specify the local element frame.

As a start, we can simply choose the initial local frame El

whose origin is placed at the centroid in current configura-
tion. The definition of this initial local frame for different
elements is shown in Appendix. The initial local element
frame is obviously variant to the nodal ordering and needs to
be modified.

After making the first choice of local element frame, the
small local nodal displacement dl can be calculated accord-
ing to Eq. (4). Thus the vector form of local displacement

Figure 2 Polar decomposition.

Figure 3 Two-step procedure to specify the local element frame.
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gradient at the element center is then obtained

v(Jc) =
{
∂ul

∂Xe

}
c
= Bdl, (17)

where v(·) represents transforming the matrix into a vector
form, Jc is the local displacement gradient, ul represents local
displacement of any point with initial local coordinates Xe in
the element, subscript c denotes this displacement gradient
is calculated at the centroid. Matrix B is constant obtained
from conventional interpolation, independent on a particular
class of element with the same connectivity. And thus the for-
mulation is more appropriate for lower-order elements. For
instance, to an eight noded brick element, the matrix B can
be constructed by

B =
[
B1 · · · B8

]
, (18)

Bi =



∂Ni

∂Xe
1

0 0
∂Ni

∂Xe
2

∂Ni

∂Xe
3

0 0 0 0

0
∂Ni

∂Xe
2

0 0 0
∂Ni

∂Xe
1

∂Ni

∂Xe
3

0 0

0 0
∂Ni

∂Xe
3

0 0 0 0
∂Ni

∂Xe
1

∂Ni

∂Xe
2


,

(19)

where Ni(i = 1, · · · , 8) are shape functions, Xe
i (i = 1, 2, 3)

are components of initial local coordinates.
For 2D plate shells, the local displacement gradient should

be augmented to a 3 × 3 matrix

Jc3×3 =

Jc2×2 02×1

01×2 I1×1

 . (20)

Hence, the deformation gradient of the centroid is com-
puted as

Fc = I + Jc. (21)

Then the polar decomposition is applied to the local defor-
mation gradient shown in Eq. (16) and the rotation matrix is
obtained. This rotation matrix rotates the initial local element
frame into a new frame. After this procedure, the local spin
at the centroid is zero. Accordingly, the new local element
frame is obtained

E = REl. (22)

The local displacements and rotation matrix now can be
re-computed using the new local frame. When warping oc-
curs in a quadrilateral flat shell element, this phenomenon is
regarded as eccentricity and the local displacement vectors
are modified according to the Ref. [13].

3.2 Derivation of the projector

A projector matrix is redefined in the present work, related
to the derivative of local co-rotational element frame with re-
spect to the global degrees of freedom. The common formu-
lation is simplified by assuming that the finite elements are
invariant under pure translation, but all the terms are retained
in the present derivation. Instantaneous rotation variable is
introduced to obtain the variation of a rotation matrix, being
of a simple expression with higher accuracy. In particular, a
spin matrix is introduced into the projector derivation.

We start with an assumption that the typical node has a
virtual displacement vector δug in global coordinate system.
The corresponding small deformation in the local element
frame can be obtained by differentiating Eq. (4)

δūe = δET(Xg + ug − Xg
0 − ug

0) + ET(δug − δug
0). (23)

The variation of an orthogonal matrix in the above equa-
tion can be written in terms of the instantaneous axis of rota-
tion

δE = S(δωg
E)E, (24)

where δωg
E is the instantaneous axis of rotation for E in

global coordinate system.
With the aid of Eq. (24) and its property, we can simplify

Eq. (23) as follows:

δūe = ETS(∆xg)δωg
E + ET(δug − δug

0), (25)

where ∆xg is the difference of current global position vector
between the typical node and the origin that

∆xg = xg − xg
0. (26)

In addition to the translational degrees of freedom, some
works assume that the local rotation is reasonably small and
can be obtained with low-order approximation. The variation
of the rotation is then given by each component in an over-
simplified way. In this work, an instantaneous rotation is in-
troduced to yield a simple expression for the rotation with
high accuracy.

The projector involved rotational part can be derived by
taking the variation of Eq. (10):

S(δω̄e)T̄e = −ETS(δωg
E)TgE0 + ETS(δωg)TgE0, (27)

where δω̄e and δωg are the instantaneous rotation axes in the
local element frame and the global coordinates, respectively.

Substituting Eq. (10) into Eq. (27), the later equation can
be written as

S(δω̄e) = −ETS(δωg
E)E + ETS(δωg)E. (28)
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According to the transformations of a vector and a tensor
between the global coordinate system and the local coordi-
nates that

re = ETrg, S(re) = ETS(rg)E, (29)

Eq. (28) can be written in terms of the instantaneous rotation
axis

δω̄e = ETδωg − ETδωg
E . (30)

For a certain element with N nodes, the projector is rede-
fined as

P =
δv̄e

δvg , (31)

where δv̄e and δvg are the node variables in the local ele-
ment frame and the global coordinate system, respectively,
in forms

δv̄e =
{
δūe

1 δω̄
e
1 · · · δūe

N δω̄
e
N

}T
, (32)

δvg =
{
δug

1 δω
g
1 · · · δu

g
N δω

g
N

}T
. (33)

The Eqs. (25) and (30) describe the first derivatives of
local degrees of freedom with respect to global ones at the
typical point. Thus the relation for all nodes can be written
as

δv̄e =



ETS(∆xg
1)

−ET

...

ETS(∆xg
N)

−ET


δωg

E + diag
(
ET
)

(δvg − δug
0). (34)

Rankin and Nour-Omid [8, 9] simplify Eq. (34) by omit-
ting the term δug

0, assuming that the finite elements are invari-
ant under pure translation as required by the finite element
patch test. Also, they use an element node rather than the
centroid as the origin in local element frame. In the present
work, the origin is placed at the element centroid for the con-
venience of unified derivation for brick element, and all terms
are retained. Hence, Eq. (34) can be further written as

δv̄e =



ETS(∆xg
1)

−ET

...

ETS(∆xg
N)

−ET


δωg

E + diag
(
ET
)
δvg − Nδvg, (35)

where

N =
[
N̄TE 0 · · · N̄TE 0

]T
, (36)

N̄ =
1
N

[
I 0 · · · I 0

]
, (37)

and I is an identity matrix.
The instantaneous axis of rotation δωg

E in Eq. (35) is de-
pendent on the choice of local element frame. We introduce a
spin matrix that relates the instantaneous axis of rotation for
local frame to the global displacements. The spin matrix en-
sures that the local spin at the centroid is always zero during
any possible increment of motion. Accordingly,

δωg
E = Vδvg, (38)

where V is the spin matrix, the detailed expressions for dif-
ferent elements can be seen in Appendix.

Using the expression for δωg
E in terms of δvg, the deriva-

tive of local degrees of freedom is written as

δv̄e = (zTV + diag
(
ET
)
− N)δvg, (39)

where

z =
[
z1 · · · zN

]
, (40)

zi =

[(
ETS(∆xg

i )
)T −E

]
. (41)

According to the Eq. (31), the projector P is obtained

P = zTV + diag
(
ET
)
− N. (42)

3.3 Internal force and tangent stiffness

In order to implement the Newton-Raphson method to solve
nonlinear problems, a consistent linearization is introduced
to derive the internal force and tangent stiffness.

Normally, the internal force is defined as the derivative of
strain energy with respect to the displacement parameters. In
the local element frame, the local displacement is defined as

d̄e =
[
ūe

1 θ̄
e
1 · · · ūe

N θ̄
e
N

]T
, (43)

where ūe
i is the local translation of node i, and θ̄e

i is the local
rotation of node i.

The derivative of local rotation δθ̄e in Eq. (43) is of a
different nature from the instantaneous rotation δω̄e. Such
difference arises from the non-additive rotation increment in
large rotation analysis, shown as

T̄e(θ̄e + δθ̄e) = T̄e(δω̄e)T̄e(θ̄e). (44)

And the relationship between derivative of local rotation
and instantaneous axis of rotation is given as [9, 19]

∂θ̄e

∂ω̄e = I − 1
2

S(θ̄e) + ηS2(θ̄e), (45)

https://www.sciengine.com/doi/10.1007/s10409-021-09081-b
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where

η =
1 − 1

2 θ̄
ecot( 1

2 θ̄
e)

θ̄e
, θ̄e = |θ̄e|. (46)

Then the derivative of local displacement δd̄e can be writ-
ten as

δd̄e = Hδv̄e, (47)

where

H = diag
[
I H1 · · · I HN

]
, (48)

Hi =
∂θ̄i

∂ω̄i
. (49)

Thus the relationship between the local displacement and
global degrees of freedom can be expressed using the projec-
tor

δd̄e = HPδvg. (50)

Felippa and Haugen [19] point out that the H matrix has
relative importance for tangent stiffness without the refined-
mesh-limit assumption.

Under small deformation assumption in the co-rotational
coordinate system, the local internal force can be given by
the conventional linear relationship

f̄e = Kld̄e, (51)

where Kl is the linear stiffness matrix.
Using the principle of virtual work, the global internal

force is transformed from the local one

fg = PTHTf̄e. (52)

Therefore, the consistent tangent stiffness, which is de-
fined as the variation of the internal forces with respect to
global degrees of freedom, can be obtained by taking the vari-
ation of fg in Eq. (52)

δfg = PTHTδf̄e + δPTHT f̄e + PTδHT f̄e

= (KM +KP +Kθ)δvg

= Kgδvg.

(53)

The expression of the consistent tangent stiffness Kg leads
to three terms: the material stiffness KM , the projection ge-
ometric stiffness KP, and the moment-correction geometric
stiffness Kθ. The detailed expressions of each term are de-
rived in Appendix. Nour-Omid and Rankin [9] have proven
that the excellent quadratic convergence can be expected
when the symmetric part of the tangent stiffness matrix is
used in the Newton-Raphson method for solving nonlinear
equations.

According to the description of the proposed unified co-
rotational framework in Sect. 2 and this section, the compu-
tational procedure relating to element quantities for geomet-
rically nonlinear analysis can be summarized as follows.

(1) For a current configuration, use unified zero-spin cri-
terion described in Sect. 3.1 to determine the local co-
rotational coordinate system;

(2) Compute the local displacement vector according to
Eqs. (4), (10) and (11). The displacement d̄e is assumed to
be small in the local frame, thus the local internal force f̄ecan
be obtained by Eq. (51);

(3) In the global coordinate system, the global internal
force f̄g is computed using Eq. (52), and the consistent tan-
gent stiffness Kg is divided into three terms as expressed by
Eq. (53).

4. Numerical examples

In this section, several numerical examples are presented to
demonstrate the accuracy and efficiency of the proposed co-
rotational framework. In the present work, one beam ele-
ment, three different shell elements, and a hexahedral ele-
ment are employed in the framework for nonlinear structural
analysis.

4.1 Forty-five degree curved beam

The forty-five degree curved beam involving a genuinely
three-dimensional response has been tested in much work
[27-30]. The geometry and material properties are shown
in Fig. 4. The beam has a uniform and unit square cross-
section. The beam is clamped at one end and subjected to a
concentrated force at the free end. It is modeled with eight
Timoshenko beam elements [20].

Table 1 compares the present solution with those given by
other authors for the tip deflections at loads of 300 and 600.

cross-section
P=600

P=450

P=300

P

Figure 4 Forty-five degree curved beam.

https://www.sciengine.com/doi/10.1007/s10409-021-09081-b
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Table 1 Tip deflections of various methods

Method
P=300 P=600

u v w u v w

Simo et al. [27] –11.51 39.50 –6.8 –23.51 53.40 –13.40

Bathe et al. [28] –11.87 40.08 –6.97 –23.48 53.37 –13.51

Crisfield [29] –12.18 40.53 –7.1 –23.87 53.71 –13.68

Ibrahimbegović et al. [30] – – – –23.70 53.50 –13.67

B31 in ABAQUS –12.13 40.43 –7.10 –23.78 53.58 –13.62

Present –12.14 40.47 –7.15 –23.78 53.65 –13.70

It can be seen that all methods obtain similar results and the
framework proposed in the present paper is of high accuracy.

To compare with the iterative performances in other meth-
ods, we apply a sequence of three load increments of mag-
nitude 300, 150, and 150 to the free end. Results are sum-
marized in Table 2. It can be seen that the present solution
achieves the converged results with less iterations. In addi-
tion, the present method can obtain the ultimate solution us-
ing one increment with 6 iterations, while ABAQUS cannot
converge using a single increment.

4.2 Cantilever subjected to end moment

Figure 5a shows a cantilever beam subjected to end moment
M at its tip. This is a classic example to exam the perfor-
mance of an element undergoing large rotations.

Under the applied moment, the tip displacements are com-
puted by the following analytical formulas:

θ =
ML
EI
,w =

L
θ

(1 − cosθ), u = −
(
L − L
θ

sinθ
)
. (54)

In this example, the moment is 2πEI/L leading the beam
rolling up into a complete circle. The beam is modeled with
16 triangular flat shell elements OTS3 [31]. Figure 5b shows
the deformed configurations at some load increments. The
results are attained using 16 increments with 158 iterations.
Sze et al. [32] yields similar results using 16 × 1 S4R ele-
ments and 80 increments. The load-displacement curves at
the free end are plotted in Fig. 5c, demonstrating that the
present results are in good agreement with the exact solu-
tions.

Table 2 Iterative performances (number of iterations)

Method
Load level

300 450 600

Simo et al. [27] 13 8 6

Bathe et al. [28] 60 equal increments

Crisfield [29] 9 5 3

ABAQUS 12 28

Present 6 6 5

4.3 Hemispherical shell subjected to alternating radial
forces

Figure 6a shows a hemispherical shell with an 18◦ circular
cutout at its pole. This shell is loaded by two pairs of in-
ward and outward normal forces. Due to symmetry, only
one quarter of the shell is modeled, with 16 × 16 four-node
quadrilateral shell elements.

In this problem, we obtain the results using QTS4 [10] in
14 increments with 111 iterations. Sze et al. [32] obtained
the reasonably accurate predictions using S4R element, with
27 increments and 136 iterations. Figure 6b shows the load-
displacement curves. For a better insight into the size of
deformation, the deformed configuration from two points of
view is depicted in Fig. 6c. This hemispherical shell is a
well-known example to test shell elements dealing with the
warping problem that relatively large warping occurs during
the analysis [13]. The numerical results are a little bit dif-
ferent from the reference solutions when the deformations
become very large at the last equilibrium. According to Ref.
[13], we modify QTS4 linear stiffness matrix with warping
effect (mQTS4 in Fig. 6b) and the performance is improved.
For the radial displacement at point A, the largest relative dif-
ference between mQTS4 and S4R is 0.60%, while that be-
tween QTS4 and S4R is 2.08%. The results show that the
proposed co-rotational framework is efficient when warping
occurs in quadrilateral shell elements.

4.4 Pinched cylindrical shell mounted over rigid di-
aphragms

A pinched cylindrical shell mounted over rigid diaphragms
is portrayed in Fig. 7a. The cylinder is loaded by a pair of
diametrically opposite point forces at the top and bottom at
the midsection. Owing to symmetry, one-eighth of the cylin-
der is modeled with a 40 × 40 uniform mesh. The modified
QTS4 used in the previous example is employed. The re-
sults of Ref. [32] are used as a reference for comparison.
The load-displacement curves are given in Fig. 7b, and good
agreement with the reference results is observed. The de-
formed configuration is given in Fig. 7c.

4.5 Cantilever subjected to end shear force

A cantilever subjected to end shear is shown in Fig. 8a. In
the present method, we employ a symmetric hexahedral el-
ement S-MEM8S [33] into the co-rotational framework for
analysis. The deformed configuration is displayed in Fig.
8b. For comparison purpose, this problem is also solved by
ABAQUS C3D8I element and NASTRAN HEXA element.
Sze et al. [32] solved this problem employing a mesh for
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Figure 5 Cantilever beam subjected to end moment: a geometry and material properties; b deformed configurations colored by the magnitude of displacement
vector; c load-displacement curves at the end.
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Figure 6 Hemispherical shell subjected to radial forces: a geometry and material properties; b load-displacement curves at points A and B; c deformed
configuration colored by the radial displacement.
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−

a b

c

Figure 7 Pinched cylindrical shell mounted over rigid diaphragms: a geometry and material properties; b Load-displacement curves at points A and B; c
deformed configuration colored by the magnitude of displacement vector.

a b

c d

Figure 8 Cantilever subjected to end shear force: a geometry and material properties; b deformed configuration colored by the vertical displacement; c load
versus horizontal displacement curves; d load versus vertical displacement curves.
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S4R element . The employed mesh for the present method is
8 × 1 and for others is 16 × 1.

The results are attained using 9 increments with 43 iter-
ations in the present method, 10 increments with 45 itera-
tions in ABAQUS and 10 equal increments in NASTRAN.
Sze et al. [32] used 15 increments and 90 iterations to ob-
tain the results. Figure 8c and d plot the load against vertical
and horizontal tip defections. It can be seen that the present
co-rotational framework has excellent accuracy for brick el-
ements. In the present method, we can also take only one
increment with 7 iterations to attain the converged solutions.
However, ABAQUS cannot converge in one increment, and
NASTRAN leads to a less accurate result.

5. Conclusion

This paper presents a modified unified co-rotational frame-
work for geometrically nonlinear analysis. Firstly, a unified
zero-spin criterion for different elements is proposed to pro-
vide a local element frame that is invariant to the nodal or-
dering. The local element frame is chosen by means of po-
lar decomposition, and its origin is placed at the centroid.
Secondly, we redefine the projector matrix in a more intu-
itive way. A spin matrix is introduced into the derivation of
projector. Thirdly, the pseudo vector and instantaneous ro-
tation are used to deal with the accurate rotational degrees
of freedom for large rotations. Within the new framework,
the formulations are unified to apply linear elements for non-
linear problems. Several examples are presented in this pa-
per, demonstrating the accuracy of the proposed co-rotational
framework for a range of different types of elements.

This work was supported by the National Natural Science Foundation
of China (Grant Nos. 11972297 and 11972300) and the Fundamen-
tal Research Funds for the Central Universities of China (Grant No.
G2019KY05203).
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用用用于于于梁梁梁、、、板板板壳壳壳、、、体体体单单单元元元几几几何何何非非非线线线性性性分分分析析析的的的改改改进进进的的的统统统一一一共共共旋旋旋框框框架架架

戎宇飞,孙秦,梁珂
摘要 共旋方法是一种近年来受到广泛关注的技术,其可将现有的高性能线性单元扩展用于几何非线性分析.本文提出了一种改进

的梁、板壳、体单元统一的共旋框架. 提出了统一零自旋准则来确定原点始终位于单元质心的共旋坐标系.通过引入自旋矩阵,共旋

坐标系与单元节点顺序无关.基于共旋坐标系与全局坐标系中变量的关系,更加直观地定义了投影矩阵. 同时,单元转动通过伪矢量与

瞬时旋转轴之间的高阶转换获得. 本文给出了统一的表达式,以便于将一系列线性单元应用于求解框架. 给出了几个大位移分析数值

算例,结果表明本文改进的方法具有较高的效率和求解精度.
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