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Electrostatic torsional micromirrors are widely applied in the fields of micro-optical switches, optical attenuators, optical
scanners, and optical displays. In previous lectures, most of the micromirrors were twisted along the uniaxial or biaxial direction,
which limited the range of light reflection. In this paper, a quasicrystal torsional micromirror that can be deflected in any
direction is designed and the dynamic model of the electrostatically driven micromirror is established. The static and dynamic
phenomena and pull-in characteristics are analyzed through the numerical solution of the strain gradient theory. The results of
three kinds of mirror deflection directions are compared and analyzed. The results show the significant differences in the torsion
models with different deflection axis directions. When the deflection angle along the oblique axis reaches 45°, the instability
voltage is the smallest. The pull-in instability voltage increases with the increment of phonon-phason coupling elastic modulus
and phason elastic modulus. The permittivity of quasicrystal, the strain gradient parameter, and the air damping influence the
torsion of the micromirror dynamic system. A larger pull-in instability voltage generates with the decrease of surface distributed
forces.
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1. Introduction

Microelectromechanical system (MEMS) is an independent
intelligent system, its internal structure is generally in micron
or even nanometer scale. With the rapid development of
micromachining technology, optical devices based on micro/
nanoelectromechanical systems (M/NEMS) with complex
functions and excellent performance have been widely used
in the fields of micro-nano optical switch, optical attenuator,
optical scanner, and optical display, which is called micro/
nano-opto-electromechanical system (M/NOEMS) [1]. The
electrostatic driving micromirror actuator is mainly divided
into two types: planar micromirror actuator and torsional

micromirror actuator. Planar micromirror actuator adopts
micromirror translation mode, but the driving time is rela-
tively long, and the surface roughness problem will be caused
by silicon etching process; therefore, the torsion micromirror
driver is more commonly used in micro/nano functional
devices, which uses electrostatic torsion micromirror main
plate movement, and realizes the driver function through the
rotation angle of micromirror main plate and the torque of
micro/nanobeam connected and supported at both ends [2,3].
Electrostatically driven MEMS torsional micromirrors are
widely used in various fields. Like all microdevices driven
by electrostatic force, the pull-in instability phenomenon
may happen in the MEMS torsional micromirrors [4]. At
first, the pull-in analysis developed from the perspective of
static balance. For example, early researchers carried out
theoretical analysis and experimental verification on the
static characteristics of micromirrors, which showed that the
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relationship between pull-in angle and electrode size [5].
Recently, the more precise motion controls on MEMS mi-
cromirrors were studied. To reduce the driving voltage,
Sadhukhan et al. [6] replaced the straight torsion springs with
comb structures that connect the mirror to the gimbal in the
two-axis tilt scanning micromirror. Hua et al. [7] considered the
external vibration in the motion control ofMEMSmicromirrors
and proposed a feedforward sliding mode control method.
In the study of micromirror dynamics, people realize that the

pull-in of the micromirror system is related to the typical
saddle-node bifurcation instability of a nonlinear system [8].
Therefore, on the one hand, researchers solve the static equi-
librium equation of micromirror and directly solve the dynamic
differential equation in the time domain to study the pull-in
instability of micromirror [9]. On the other hand, through the
state space analysis method, the bifurcation phenomenon of the
micromirror nonlinear system is studied, to capture the sudden
change of the global behavior of the system, and deeply un-
derstand the stability and pull-in of the system [10]. Although
the unidirectional and bidirectional of the electrostatically
driven micromirror system have been studied by the state space
and dynamic analysis method [11], the torsion direction of the
micromirror model is relatively simple.
Generally, nanomaterials and structures exhibit significant

lateral dependence, which is different from the case at the
macroscale. Therefore, several key theories consider na-
noscale characteristics. One classical theory was the nonlocal
elasticity theory that was applied to investigate the size-
dependent instability of carbon nanotubes under electrostatic
actuation [12]. In the sense of nonlocal interaction, a nonlocal
operator method for the solution of partial differential equa-
tions [13] and boundary value problems [14] was proposed by
Ren et al. The final discrete equation can be obtained based on
the functional of the nonlocal operator, which has great ad-
vantages in solving higher-order partial differential equations.
Besides, the coupled stress theory [15], the strain gradient
elastic theory [16], and the surface effect [17] have also been
successively proposed to better explain the pull instability of
nanoscale actuators. In this paper, the theory of strain gra-
dient is introduced to characterize the size effect of nano-
actuators. Because the strain gradient parameter has a
strengthening effect on the stiffness of the nanobeam in the
model, the influence of the relationship between the torsion
angle and the plate spacing on the pull-in instability of the
electrostatically driven torsion micromirror is studied in the
framework of the modified strain gradient theory. In addition
to two classical elastic parameters, the modified strain gra-
dient theory also includes three independent intrinsic length
parameters to reflect the size dependence of micro/nanos-
tructures [18-23].
Recently, quasicrystals (QCs) reinforced composites have

attracted enormous interest from researchers since QCs as
promising reinforcement have excellent electro-mechanical

and physical behaviors with low density [24]. Furthermore,
conductivity, lightweight, low fabrication cost, and fine
stretch ability enable QCs to have great potential in the ap-
plication of nano-electromechanical devices [25]. Fournée et
al. [26] studied metal films grown on QC substrates and
concluded that quantum size effects are common on quasi-
crystalline substrates. Inoue et al. [27] found that the hard-
ness, Young’s modulus, fatigue strength, and tensile strength
of Al-based nanocrystalline alloys were higher than those of
traditional Al-based alloys. Moreover, based on the nonlocal
strain gradient theory, Zhang et al. [28] studied the static
bending deformation of a functionally graded multilayered
nanoplate made of piezoelectric QC materials. Li et al. [29]
analyzed the static bending deformation of multilayered QC
nanoplates under surface loadings using the modified couple
stress theory. With the increasing development of nanofab-
rication techniques, more and more QCs based M/NEMS
devices will be fabricated and ameliorated for meeting future
versatile demands. Therefore, it is significant to investigate
the pull-in instability of QC torsional micromirror con-
sidering scale and surface effects further.
This paper will explore the pull-in instability of a multi-

directional QC torsion micromirror actuator. Firstly, the
static and dynamic model of the torsional micromirror sys-
tem with a QC circular main plate is established based on the
modified strain gradient theory. The relationship between the
torsional angle, the torsion direction, and the pull-in in-
stability voltage of the micromirror is discussed. The effects
of QC material parameters and geometric parameters on the
pull-in instability are given. Secondly, the influence of the
strain gradient parameter-induced additional stiffness and air
damping on the pull-in instability is studied. Finally, the
effects of van der Waals moment and thermal Casimir mo-
ment on the pull-in instability voltage are revealed.

2. Basic equations

To study the influence of the relative relationship between
torsion angle and plate spacing based on the modified strain
gradient theory on the nonlinear coupling effect of forces,
while verifying the main plate of micromirror with the rec-
tangular electrostatic field in the literature, the structure of
the main plate is extended to circular. Figure 1 shows the
main view and details of the whole mirror system. The outer
ring rotates the whole circular plate structure around the
horizontal axis or other axes under the electrostatic force
from the base electrode in Fig. 1a. The two inner springs
along the vertical axis connect the inner round plate to the
outer combination of beams. The two outer springs along the
vertical axis connect the outer beam to the fixed support. In
the top view of the circular plate (Fig. 1b), the radius of the
circular plate is R. The inner and outer lengths of the beams
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are L1 and L2, respectively. The distance from the fixed
support to the square frame of the beam is L3. The bottom
view of the circular plate is shown in Fig. 1c. In the top view
of the substrate (Fig. 1d), the distance from the center of the
plate to the head and end of rectangle electrodes are a1 and
a2. The width of the rectangle electrode is b. The structure
thickness is H. The width and thickness of each spring beam
are h1 and h2 respectively. In this paper, the spring height
equals H. The angle between the circular plate and the fixed
electrode plane is θ. Figure 2 displays the torsional micro-
mirror model considering the effect of torsion bending
coupling deformation. The initial gap between the circular
plate and the substrate is g0 and the deformation of the plate
is δ. The structure is connected with external voltage Ve.
Applying the voltage between the main plate and electrode

creates the attraction between them and causes the plate to
turn toward the electrode based on Coulomb’s law. To de-
velop the governing equations of the problem, vertical dis-
placements of the plate and axial displacements of the
torsional beam are assumed to be infinitesimal so that the
pull-in instability occurs. It is acceptable for this assumption
to create an error of lower than 1% in the investigation of
MEMS [30]. The ratio of circular plate thickness to the ra-
dius and the ratio of elastic displacement to the torsional
amplitude are so small that the angle θ can be used as the
angle between the circular plate and the fixed electrode plane
[11]. For this model, it is possible that in torsional MEMS in
absence of applied voltage pull-in instability still occurs
owing to the existence of intermolecular forces such as the
Casimir force. So the amount of gap between the main plate
and the underside electrode is significant for prevention from
pull-in. Meanwhile, the electric field distribution needs to be
standardized on the electrical substrate. The value of the
applied voltage should also be accurately controlled to
achieve pull-in instability.
For the electrostatically driven torsion micromirror with a

QC main plate, the electric field force acting on the differ-
ential element on the main plate can be obtained by the
following relation [11,31]:

F V b
g r

rd = ( + )
2( sin )

d , (1)elec
0 1 e

2

0
2

where ε0 = 8.854 × 10−12 C2/(N m2) is the permittivity of
vacuum and ε1 is the permittivity in the phason field from the
epilayer of QC surface [31], δ is the displacement of the main
plate of the micromirror, r is the radial component of a cir-

Figure 1 A schematic view of the round, double-gimbaled system, showing the various relevant parameters: a the main view of the system; b the top view
of the circular plate; c the bottom view of the circular plate; d the top view of the substrate.

Figure 2 Schematic diagram of electrostatic torsional mirror with model
considering coupled torsion and bending effects.
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cular main plate in polar coordinates. At the same time, the
electric field moment of the differential unit on the main
plate of the micromirror can be obtained by the following
relation:

M V b
g r

r rd = ( + )
2( sin )

d . (2)elec
0 1 e

2

0
2

The total electric field force acting on the main plate of the
micromirror can be obtained by integrating the elements:

F F

V b

g a g a

= d

=
( + )

2sin
1

2 sin

1

2 sin
. (3)

a

a
elec /2

/2
elec

0 1 e
2

0
2

0
1

1

2

Then the total electrostatic driving moment of the micro-
mirror main plate about the rotation axis can be obtained by
integrating the whole main plate:

M M

V b

g a g a

g a

g a

= d

=
( + )

2sin
1

2 sin

1

2 sin

+ln 2 sin

2 sin
. (4)

a

a
elec /2

/2
elec

0 1 e
2

0
2

0
1

0
2

0
1

1

2

When the direction of electric field moment is counter-
clockwise rotation along the middle L axis, the plate rotates
counterclockwise in Fig. 2. Considering that the micromirror
has a small torsion angle θ ˂ 5° and sinθ ≈ θ, the total electric
field force acting on the main plate of the micromirror and
the moment caused by the electric field force can be further
simplified:

F V b
g a g a= ( + )

2
1

2

1

2
, (5)elec

0 1 e
2

0
2

0
1

M V b
g a g a

g a

g a

= ( + )
2

1

2

1

2

+ln 2

2
. (6)
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0
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Considering the moment to the micromirror main plate
caused by thermal fluctuation Casimir force, based on the
Plasma theoretical model [30,32], the expressions of thermal
fluctuation Casimir force on the unit area of the left and right
sides of the micromirror circular main plate can be obtained
respectively, i.e.,

F c
g r

g r k T
c

k T
g r

r r

F c
g r

g r k T
c

k T
g r

r r

d =
240( sin sin )

1 + 1
3

2( sin sin ) + (3)
4 ( sin sin )

d d ,

d =
240( + sin sin )

1 + 1
3

2( + sin sin ) + (3)
4 ( + sin sin )

d d ,

(7)
CT

CT

L 2
0

0
4

0 B

0

4
B

2
0

3

R 2
0

0
4

0 B

0

4
B

2
0

3

where φ represents the circumferential component of a cir-
cular main plate in polar coordinates, ħ = 1.055 × 10−34 Js is
the Plank’s constant divided by 2π and c0 = 3.0 × 108 m/s is
the speed of light. kB = 1.38 × 10−23 is the Boltzmann con-
stant, T is the thermal environment temperature and ζ(3) =
1.212 is the Riemann zeta function. It should be pointed out

that when T → 0, Eq. (7) degenerates to the expression of
quantum wave Casimir force without considering the influ-
ence of finite temperature. Therefore, the moment caused by
thermal fluctuation Casimir force per unit area can be ex-
pressed as:

M c
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g r k T
c

k T
g r

r r

M c
g r
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3
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4 ( sin sin )
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0
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4
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Furthermore, the resultant moment caused by thermal
Casimir force can be obtained by integrating the semicircular

areas of the two sides of the main plate:
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The left and right Casimir moments ( Md CT
L and Md CT

R )
rotate counterclockwise and clockwise along the middle L
axis in Fig. 2, respectively. The resultant moment of the two
rotates counterclockwise along the middle L axis because the
Casimir force is negatively correlated with the spacing be-
tween the two interfaces, as shown in Eq. (9). Then, the
symbolic definite integral of Eq. (9) is calculated and the
corresponding mathematical simplification is carried out:

M c R

g R
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The expression of van der Waals force on the unit area of
the left and right sides of the circular main plate of the mi-
cromirror are

F A
g r

r r

F A
g r

r r

d =
6 ( sin sin )

d d ,

d =
6 ( + sin sin )

d d ,
(11)
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L

0
3
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0
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where A= 15.2 × 10−20 is the Hamaker constant. The rotation
moment of the micromirror main plate caused by van der
Waals force per unit area can be expressed as:
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Then the resultant van der Waals moment acting on the
main plate of the micromirror can be obtained by integrating
the area of the circular main plate and making corresponding
mathematical simplification:
M

A g R g R g

g R
= 12

2( ) +3( ) 2( )
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.
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Similar to the resultant Casimir moment, the resultant van
der Waals moment of the two rotates counterclockwise along
the middle L axis in Fig. 2. For the micro/nano electronic
devices that cannot be vacuum packaged, the devices work
under different environmental pressures. If there is a thin
layer of air between the micromirror main plate and the fixed
electrode, the squeeze film damping effect will be produced
due to the movement of the micromirror main plate and the
extrusion of the middle air layer [33,34]. According to the
Reynolds equation, the expression of the film damping force
on the left and right half of the unit area of the circular main
plate is [35]

F t
u

C
g r

r r

F t
u

C
g r

r r

d d
d =

( sin sin )
d d ,   

d d
d =

( + sin sin )
d d ,

(14)
d

sq
L

d

0
3

sq
R

0
3

where t represents the time of model motion and u = R·θ. For
the rigid rotating micromirror main plate, the film damping
coefficient Cd can be determined by the moment and tor-
sional angle speed caused by the film damping force on the
circular main plate.
The expression (14) of the film damping coefficient is

treated by the approximate relationship of the small torsion
angle of the micromirror main plate, and the first three terms
are expanded by the Taylor series to obtain the simplified
analytical expression of the film damping coefficient, that is

C C R
g

R
g

R
g= 4

3 + 16
5 + 32

7 + ... . (15)sq d
3

0
3

2 2

0
2

4 4

0
4

3. Analytical solutions

The electrostatic, van der Waals, and Casimir forces as the
distributed forces on the bottom surface of the circular plate
are considered. For an electrostatically driven micromirror
system with a circular main plate, the equilibrium equation
of rigid rotation under the combined action of film damping,
electrostatic, van der Waals, and Casimir moments, and
elastic torques become:

521390-5Y. Z. Huang, et al. Acta Mech. Sin., Vol. 38, 521390 (2022)



I t C C t M M M n M n M+ ( + ) + 2 + 4 (1 ) = 0, (16)q
2

2 vq sq elas1 elas2 elec vdW CT

where, Iq is the moment of inertia of the micromirror circular
main plate rotating around the central axis, and I R= / 4q

4 .
Cvq and Csq are the structural damping coefficient and the
pressed film damping coefficient respectively. It is a static
behavior when the applied voltage is below the pull-in value,
while the instability of the micromirror happens after
breaking through this value.
Due to the strengthening effect of strain gradient parameter

on the stiffness of micron beam, the influence relationship
between torsional angle and plate spacing on the pull-in in-
stability of electrostatically driven torsional micromirror is
considered based on the modified strain gradient theory. Ac-
cording to the modified strain gradient theory [20] and the
strain gradient warpage function [36] in the literatures, the total
torques causing the torsional deformation of the rectangular
section nanobeam can be expressed in the following form:

M G
L J J

M G
L J J

= ( + ) ,     

= ( + )2,
(17)

elas1 1 0 S

elas2 2 0 S

where J0 is the polar moment of inertia of the nanobeam
rotation, JS is the additional polar moment of inertia with the
size effect caused by the strain gradient parameter. For mi-
cron beams with the rectangular section, the following re-

lationship is satisfied:

J AL x
y

y
x

A= 3 + d , (18)i i AS
2

where A is the cross-sectional area of the beam, x and y are
the two coordinate axes in the horizontal direction with the
origin at the center of the plate circle, and ψ is the strain
function. It should be noted that the additional polar moment
of inertia JS includes the Saint Venant torsion function re-
flecting the cross-section warpage and the intrinsic length
parameter reflecting the size dependence [36]. The shear
modulus is expressed as:

G E
v

iE jR kK
v= 2(1 + ) = + +

2(1 + ) , (19)c 1 1

is the shear modulus of the beam [25]. The elastic moduli E
includes phonon elastic moduli Ec, the phason elastic moduli
K1, and the phonon-phason coupling elastic modulus R1. The
sum of the three coefficients i, j, and k is 1. The directions of
moments for squeeze film damping and the torque for tor-
sional deformation are clockwise along the middle L axis.
Before the pull-in instability, the micromirror system is in

equilibrium under the combined action of internal elastic
strain torques, external film damping moment, and moments
caused by micro distributed force. Therefore, the equilibrium
equation is given

I t C C t M M M n M n M+ ( + ) + 2 + 4 (1 ) = 0. (20)q CT
2

2 vq sq elas1 elas2 elec vdW

When n = 0, the van der Waals force is considered; when n
= 1, thermal Casimir force is considered in the micromirror
system, which depends on the size range of plate spacing in
the actual design. For the circular main plate micromirror

system, Eqs. (6), (10), (13), (14), and (17) are substituted into
Eq. (20) to obtain the dimensionless equilibrium equation of
the micromirror system considering the micro distributed
force, that is

( )

C C GJ J
J

g L L
aL L

V ba
g

n

n n

+ + 4
3+16

5 +32
7 +2 1 + ( + ) ( + )

2
1

1
1

1
1 + ln 1

1 (1 ) 2(1 ) + 3 2
(1 )

1

2
(1 )

+
(1 + )

+ 2 = 0, (21)

vq sq
S e

tt

tt tt

2

2
2 4

0 0
0 1 2

1 2
0 1

2 2

0
2 2

1
1 2

1
1 1

1 2
1 1

3
1

2 3/2 2

1
2 3/2

4

1
2 5/2

5
3

1
1/2

2

1
3/2

where the corresponding dimensionless variables are defined as follows:
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J J
J d g

R d

V Lg
GJ d

t G
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k T R L
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where d and denote the dimensionless plate spacing and
torsion angle respectively,Cvq andCsq are the dimensionless
structural damping coefficient and the pressed film damping
coefficient respectively. Because the plate spacing is far less
than the radius of the circular main plate, that is, g0/R << 1,
the variation range of the torsion angle is very small. The
dimensionless maximum torsion angle satisfies the relation

max= d. The physical meaning of the dimensionless plate
spacing d is the ratio of the spacing between the torsion
micromirror main plate and the bottom fixed plate to the
radius of the circular main plate. Δ1 = δ / R is the static
displacement for the bending deformation under electrostatic
force, and it can be solved by removing the time and torsion
terms from the governing equation.
The applied voltage Ve can be expressed from Eq. (21).

When the applied voltage increases, the torsion angle of the
micromirror main plate increases, and the side of the mi-
cromirror main plate first tends to be close to the bottom
fixed plate; the design problem caused by this phenomenon
is that the distance between the main plate and the fixed plate
of the micromirror needs to be set reasonably in order to
avoid the pull-in instability within the allowable torsion

angle of the micromirror. Therefore, the pull-in torsional
angle PIof the micromirror can be derived from Eq. (21) as:

V ( )=0. (23)e PI

PI

Equation (23) is a partial differential equation to be solved.
The traditional numerical methods are based on the mesh
discretization mostly such as the finite element method and
the finite difference method. Recently, neural networks [37-
40] have become promising alternatives to the solution of
partial differential equations due to the flexibility to define
their structure and important progress in the architecture, as
well as the efficiency of the algorithms to realize them.
However, it is a little complex to solve the problems via the
approaches above. Here the partial differential equation is
solved by using intrinsic functions in MATLAB. Then, the
pull-in instability voltageVe

PI is obtained from Eqs. (21) and
(23).
Figure 3 shows the schematic diagram of the circular plate

rotating along the inner axis, along the outer axis, and along
the oblique axis under the action of the electrostatic force in
different areas. The oblique axis rotation is that the electro-
static force in two areas acts at the same time, and their sizes
can be adjusted according to needs. As shown in Fig. 3, the
deflection of the circular plate in any direction in the plane
can be realized by adjusting the electrostatic force region, so
as to achieve the goal of deflecting the light in any direction
of the micromirror and improving the flexibility of the mi-
cromirror. Equations (20) and (21) are the equations of
motion rotating along the inner axis. Similarly, we can derive
the following dynamic equations (24) and (25) along the
outer axis and Eqs. (26) and (27) along the oblique axis:

I t C C t M M M n M n M+ ( + ) + 2 + 4 (1 ) = 0, (24)q vq sq CT
2

2 elas3 elas4 elec vdW

Figure 3 A schematic view of the circular plate rotating along a the inner axis, b the outer axis, and c the oblique axis under the action of the electrostatic
force in different areas.
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where Melas3, Melas4, Melas5, Melas6, and Melas7 denote the total
torques causing the torsional deformation of the rectangular
section nanobeam. Δ2 and Δ3 are the static bending de-
formation of the plate rotating along the outer and oblique
axes respectively. To calculate the displacement and torsion
angle of the micromirror, the simultaneous equations (25)
and (27) can be solved, respectively. When the pull-in torsion
angle is determined by the equation, similarly, the corre-
sponding voltage is determined in the equation.

4. Numerical examples

4.1 Validation of the proposed model with simulations

After the theoretical derivation, the instability of the model is
investigated in this section. The geometric and material
constants are shown in Table 1 [10]. Using MATLAB, the
tilting angle, the related voltage, and velocity of rotation for
instability of the micromirror system are calculated. A useful
sensitivity analysis toolbox composed of a set of MATLAB
functions for uncertainty analysis was provided by Vu-Bac et
al. [41]. The programming skills about input parameters for

the uncertainty analysis in the MATLAB code [41] are
chosen as the reference of our code in the numerical calcu-
lations. To validate the results, the proposed model is com-
pared with the finite element simulation (FES) results. The
reference results are obtained by constructing a three-
dimensional (3D) finite element model in ABAQUS, which
is referred to as the 3D solid FES model. In this model, the
material properties are the same as those in the examples of
the analytical solution, and the 8-node brick element C3D8R
is used for the structure. The static analysis of the solution is
performed by a load-displacement algorithm (GENERAL) in
ABAQUS. Figure 4 shows the stresses and displacement of
the macro reference model analyzed by FES. The simulation
results of three axial deflections show that the deflection
along the oblique axis is the largest, the deflection along the
inner axis is the second, and the deflection along the outer
axis is the smallest.
Figure 5 presents the results of the present model and the

FES results. The variation of tilting angle versus voltage is
plotted in Fig. 5a that increasing in applied voltage increases
the tilting angle of the micromirror until the pull-in in-
stability occurs in pull-in voltage and torsion angle finally.
As shown, there is a significant difference between the tor-
sion models with different directions of deflection axis (the
inner, outer, and oblique axes) that increasing voltage to pull-
in instability conditions, the difference increases continually.
Therefore as mentioned previously, it should be applied with
more proper electrostatic distribution to obtain the required
deflection direction and get more accurate responses. The
variation of maximum displacement versus voltage is plotted

Table 1 Geometrical and material parameters of the combination struc-
ture of beam and plate

Geometrical parameters QC material parameters

H = 20 μm, R = 200 μm, a = 200 μm,
b = a/2, g0 = H, a1 = a, a1 = 3a/2,
L = b/2, L1 = b/2, L2 = 1.2R, L3 = L1,
h1 = 10 μm, h2 = h1

E = 197.5 × 109 N/m2,
K1 = 122 × 109 N/m2,
R1 = 17.7 × 109 N/m2,
ν = 0.25
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in Fig. 5b. According to this figure, increasing applied vol-
tage causes an increasing displacement of the system. Like
tilting angle, this increase continues until pull-in instability

occurs in pull-in voltage and displacement. Based on Fig. 5,
obtained results from the present model are highly close to
FES results. Therefore proposed model can predict pull-in
angle, displacement, and voltage in pull-in conditions with
very good accuracy. In addition, compared with the me-
chanical behavior of Al-based nano QC materials in the
previous literature [26], it is found that the numerical results
of this model are in line with the reality, that is, the obtained
displacements in results are feasible from a qualitative point
of view.

4.2 Dynamic response of the system

In this section, different influences on the dynamic response
of electrostatic torsional micromirror are investigated. Fig-
ures 6a, b show the effect of elastic moduli on the relation-
ship between the dimensionless torsion angle and applied
voltage of the micromirror system. It should be pointed out
that the lower half of the relationship curve between torsion
angle and applied voltage reflects the actual pull-in in-
stability process, while the upper half satisfies the micro-
mirror equilibrium equation, but it has no physical
significance. As shown in Fig. 6, the pull-in instability vol-
tage increases with the increase of phonon-phason coupling
elastic modulus and phason elastic modulus. However, the
position of the pull-in buckling torsional angle Θ = 0.5 does
not change significantly. This shows that the smaller elastic
constants in the phason field make the micromirror more
prone to instability. Figures 6c, d compare the curves of

Figure 4 The static behaviors of macro reference model analyzed by finite element simulation: stress amplitude for rotating along a the inner axis, b the
outer axis, and c the oblique axis; displacement amplitude for rotating along d the inner axis, e the outer axis, and f the oblique axis.

Figure 5 Comparison of torsions in three directions (the inner, outer, and
oblique axes) using FES and present model for macro mirror: a curve for
torsion angle Θ; b curve for maximum displacement Δ.
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torsion angle versus applied voltage under different deflec-
tion directions and ratios of width to thickness of the beam.
When the deflection angle reaches 45°, as it deflects along
the inclined 45° axis, the pull-in voltage is the minimum.
This shows that the deflection in the oblique direction makes
the micromirror more prone to instability. The dimensionless
pull-in tilting angle and voltage reach the minimum when the
strain gradient parameter-induced additional stiffness Js/J0
equals one in Fig. 6d. This means that with the increase of the
torsional stiffness ratio, the pull-in instability voltage of QC
micromirror increases.
Dimensionless variations of tilting angle Θ and velocity of

rotation ξ versus dimensionless time τ are plotted in Fig. 7. It
is evident from these figures that the system has oscillatory
motion at a voltage less than the pull-in voltage and will
eventually approach a specified quantity with the presence of
the extruded air damping so that in this case the torsion angle
will approach a non-zero quantity and the rotation speed will
approach a zero quantity. If the applied voltage increases
slightly, the system will have voltage instability because the
voltage is greater than the pull voltage. During this time, the
system becomes non-oscillating and tends to be infinite.
Variations of normalized tilting angle versus dimension-

less time with different strain gradient parameter-induced
additional stiffness are illustrated in Fig. 7a. It is observed
that the oscillation becomes more severe when strain gra-

Figure 6 Influences of a phonon-phason coupling elastic modulus R1 and b phason elastic modulus K1, and influences of c horizontal deflection angle φ and
d strain gradient parameter-induced additional stiffness Js/J0 on the dimensionless pull-in tilting angle Θ and voltage β, respectively.

Figure 7 Comparison of time history curves of a the tilting angle Θ with
different strain gradient parameter-induced additional stiffness Js/J0 and b
the velocity of rotation ξ with different damping effects Cvq and Csq, re-
spectively.
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dient parameter-induced additional stiffness increases, in-
dicating that the strain gradient parameters have a significant
effect on the deflection process. Moreover, with the variation
of the magnitude of the torsion angle, the position of stable
and unstable equilibrium points is changed through the size
effect caused by the strain gradient parameter. This effect
decreases the stable equilibrium point and increases the un-
stable equilibrium point of the system. So the importance of
considering size effect on analyzing micromirror behavior
appears exactly. Figure 7b shows the effect of damping
dissipation Cvq and Csqon the curve of torsional velocity
versus time of the micromirror dynamic system. The results
show that when the damping effect is considered, the tor-
sional speed of the micromirror decreases with time. Due to
the constant loss of energy of the micromirror system, if
there is no new electric energy compensation, the dynamic
system will eventually stop moving. When the damping
coefficient is increased, the attenuation of torsional velocity
is accelerated, and the energy dissipation of the micromirror
system is also more significant so that the system stops
moving in a shorter time. This indicates that the existence of
air damping accelerates the energy dissipation of the mi-
cromirror system, and has a significant influence on the
torsional velocity and torsional angle amplitude.
Figure 8 shows the effect of QC permittivity on the max-

imum torsional angle Θm of the micromirror system during

the movement in Fig. 7. As can be seen from Fig. 8, the effect
of capacitance caused by the epilayer of QC surface sig-
nificantly increases the value of torsion angle of the micro-
mirror, which can be reflected in Eq. (1). Figure 8a also
shows the effect of the damping coefficient on the torsional
angle. The maximum torsional angle decreases with the in-
crement of the coefficient, which reflects the blocking effect
of air damping on the motion. In addition, the influence of
parameters λ of the fixed electrode position and width on the
torsion angle is shown in Fig. 8b. The results show that the
torsion angle decreases with the increasing parameters. With
the increase of the parameters, the closer the electrode po-
sition is to the rotation axis, the smaller the deflection
bending moment.
Figure 9 compares the influence of the damping effect on

the planar phase diagram characteristics of the micromirror
system when the applied voltage is 0.5 and the plate spacing
is still greater than the pull-in instability displacement. Ac-
cording to the results of Fig. 9a without considering the in-
fluence of damping effect, when the applied voltage has not
reached the pull-in instability voltage and the plate spacing is
greater than the pull-in instability displacement, there are
two equilibrium points in the micromirror dynamic system,
one is a stable center P and the other is an unstable saddle
point Q; there are periodic orbits around the stable center P,
and homoclinic orbits originate and terminate at the saddle

Figure 8 Influence of QC permittivity ε1 on the maximum torsion angle
Θm with different a damping effects Cvq( = Csq) and b parameters of outer
electrode position and width λ = b/a1.

Figure 9 Comparison of the phase portrait on the phase plane: a without
damping effects (Cvq=Csq= 0 ) and b with damping effects (Cvq=Csq= 0.05).
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point Q. When the damping effect is considered, the mi-
cromirror dynamic system still has two equilibrium points
but becomes a stable focus P and an unstable saddle point Q.
There are asymptotically spiral orbits around the stable focus
P, and the heteroclinic orbits of the system diverge after
passing through the saddle point Q due to the damping dis-
sipation. It can be seen that the damping effect obviously
changes the basic characteristics of the planar phase diagram
of the micromirror system, and has an important impact on
the stability of the dynamic system.
The surface forces distributed on the bottom surface of the

circular plate include electrostatic, van der Waals, and Ca-
simir forces. The influences of van der Waals moment and
thermal Casimir moment on the pull-in instability voltage are
shown in Fig. 10a, b, where α3 and α4 represent the coeffi-
cients in front of the expressions of van der Waals and Ca-
simir forces, respectively. With the increase of micro-
distribution moment, the pull-in instability voltage of mi-
cromirror decreases, and the influence of thermal Casimir
moment on the pull-in instability parameters is more ob-
vious. In addition, the micromirror instability occurs later
with the increase of the initial gap in Fig. 10, which corre-
sponds to the larger electrostatic load. This shows that the
pull-in instability of the QC plate is affected by the micro-
distributed forces on the surface.

5. Conclusions

Dynamic response and stability of electrostatic QC torsional
micromirror under distributed forces and squeeze film air
damping considering size effect in strain gradient theory are
studied in this paper. A micromirror system model of rec-
tangular mainboard considering the torsion bending coupling
deformation of the beam is established, and the effects of
structural parameters on the pull-in instability torsion angle,
displacement, and voltage are analyzed. The following re-
sults are achieved:
(1) There are significant differences in torsion models with

different deflection axis directions. Therefore, appropriate
electrostatic distribution should be used to obtain the re-
quired deflection direction and more accurate responses.
When the deflection angle along the oblique axis reaches
45°, the instability voltage is the smallest and the deflection
is the largest.
(2) The pull-in instability voltage increases with the in-

crease of phonon-phason coupling elastic modulus and
phason elastic modulus. Also, the pull-in instability voltage
becomes larger with the increase of the initial gap and the
decrease of surface distributed forces.
(3) The permittivity of quasicrystal and the strain gradient

parameter have significant effects on the deflection process.
The damping effect also affects the torsional speed of the

micromirror dynamic system. When the damping coefficient
increases, the attenuation of torsional velocity is accelerated,
which makes the system stop moving in a short time.
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基于应变梯度理论的准晶扭转微镜驱动器的稳定性分析
黄允祗, 冯淼林, 陈秀华

摘要 静电扭转微镜广泛应用于微米光开关、光衰减器、光学扫描仪和光学显示器等领域. 过去微镜镜面主要沿单轴或双轴方向

偏转, 从而限制了入镜光线的反射范围. 本文通过建立圆形静电驱动微镜的动力学模型, 设计了一种可任意方向偏转的准晶微镜驱

动器. 然后基于应变梯度理论进行数值求解, 分析了其静态和动态现象以及吸合失稳特性, 并比较了反射镜面在三种偏转方向下的

结果. 研究表明, 镜面沿着不同方向偏转的结果存在显著差异. 当沿斜轴的偏转角度达到45°时, 吸合失稳电压值最小. 失稳电压还随

着准晶的声子场-相位子场耦合弹性模量和相位子场弹性模量的增加而增加. 准晶的介电常数、应变梯度参数和空气阻尼都会影响

到微镜动态系统的扭转. 此外, 微镜表面分布力的减小也会导致更大的吸合失稳电压.
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