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We take an adaptive leaky integrate-and-fire neuron model to explore the effect of non-Poisson neurotransmitter on stochastic
resonance and its signal-to-noise ratio (SNR) gain. Event triggered algorithm is adopted to speed up the simulating process. It is
revealed that both the output SNR and the SNR gain can be monotonically improved when increasing the shape parameter for
Gamma distribution. Particularly, for large signal coupling strength, the 1:1 stochastic phase locking induced by Gamma noise is
responsible for the frequency matching stochastic resonance, and the output signal-to-noise ratio can surpass the input signal-to-
noise ratio, which is significantly different with Poisson case, while for extremely weak signal coupling strength, the SNR gain
peak, which is far larger than unity, is due to noise induced resonance. The observations are meaningful in understanding the
neural processing mechanisms from a more realistic viewpoint of synaptic modeling.
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1. Introduction

Stochastic resonance is an unconventional phenomenon
where weak coherent signal can be enhanced through oper-
ating with noise in certain circumstances [1-3], and whether
the output signal-to-noise ratio (SNR) can surpass the input
SNR at the optimal noise level has special significance in
signal processing [4-6]. Experimental or theoretical re-
searches on stochastic resonance have shown that noise can
be utilized not only by peripheral nervous systems but also
by central nervous systems. For central nervous systems,
signal and noise are both coded and transmitted from the
presynaptic neuron to postsynaptic neuron through action
potential, namely a stereotypical electrical pulse [7,8]. Due
to the random release of neurotransmitters, trains of action
potential often show apparent randomness, and Poisson point
process, with exponentially-distributed interarrival time, is
usually chosen as the basic mathematical description of the
arriving synaptic input [9,10], and in this circumstance, it has

been confirmed that the SNR gain larger than one can exist
with a leaky integrate-and-fire neuron model [11].
Nevertheless, abundant experimental or computational

evidence from variability of spike trains shows that the Fano
factor for the spike counts dramatically deviating from
one [12-16], which means that Poisson point process tends to
too coarse to be a realistic approximation. For example, re-
cordings from anesthetized cat [14] revealed the Fano factor
for high variability at visual cortical level can be far larger
than unity, while the Fano factor for low variability in retinal,
thalamic, and some cortical neurons can be much less than
one. The auto-correlation analysis [17,18] for the neuronal
spike trains also suggested that the neurons are more likely to
fire in a non-Poisson manner. These contradictions suggest
that when modeling the synaptic input it should be worthy to
adopt more realistic stochastic point processes such as
Gamma renewal point process [19,20].
In fact, stochastic point process is also known as shot

noise, which is not only common in neural transmitter re-
lease [19,21,22] but also ubiquitous physics and engineering
problems [23-25]. The Gamma renewal point process (also
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named Gamma noise) is one of the most important forms,
and it is referred to as the type of stochastic point process
with inter-arrival interval obeying Gamma distribution.
Note that Gamma distribution has two parameters: shape

parameter and scale parameter, the corresponding Fano
factor asymptotically approaches the reciprocal of the shape
parameter, thus Gamma renewal process is capable of de-
scribing the arriving spike trains with variability ranging
within a wide range. To our best knowledge, Gamma renewal
process has drawn intensive attention from continuous ap-
proximation of synaptic input [19], spike sequence proces-
sing [26], fitting of interspike interval histogram [27], and
formation of spiral wave [28], but how the Gamma noise
affects the phenomenon of SR and its SNR is still unknown.
This motivates us to examine the phenomenon of stochastic
resonance and its SNR using the integrate-and-fire neuron
model that transmits Gamma renewal point process.
The paper is organized as follows. In Sect. 2, adaptive

leaky integrate-and-fire neuron model with the Gamma sy-
naptic input is explained in detail. In Sect. 3, the phenom-
enon of stochastic resonance induced by Gamma synaptic
input is explored and its SNR gain is clarified. Particularly,
for large signal coupling strength, the output SNR can sur-
pass the input SNR through frequency matching which is
significantly different with Poisson case. Finally, conclu-
sions are drawn in Sect. 4.

2. Adaptive integrate-and-fire model and
Gamma shot noise

Without loss of generality, let us consider an adaptive leaky
integrate-and-fire neuron model, which is a typical mod-
ification to contain the adaptive effect of the activation of
adaptation ion currents, such as Ca2+-activated K+ current
and Na+-activated K+ current in time scales from 10 ms to
1 s [29,30]. The adaptive model has dynamic rather than
constant threshold and has been successfully applied to re-
produce the response dynamics of individual neurons to
odorant fluctuations [31].
LetV t( ) and t( ) be the membrane potential and the spike

threshold, respectively, then the governing equations are
given by

( )t V t V t V w S t

w t V t t

t t t V t V

d
d ( ) = ( ) + ( )

+ ( ), ( ) < ( ),
d
d ( ) = ( ) + , ( ) = ,

(1)
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where Vr represents reversal potential, Vth is the constant
threshold in the classical integrate-and-fire neuron model, m
and are the decay constants for the membrane potential
and the dynamical threshold, and t0 is the initial time. Once

the membrane potential V t( ) crosses the threshold t( ) from
below, an action potential is discharged, the membrane po-
tential is immediately reset to the resting potential V0, i.e.,
V t V( ) =+ 0 and the spike threshold increases instantly by a
step , i.e., t t( ) = ( ) ++ , and then the membrane
potential and the spike threshold restart evolution following
Eq. (1). It is worthy to emphasize that when = 0 mV Eq.
(1) degenerates to a leaky integrate-and-fire model with
constant threshold. Since the spike timing carries more
coding information than the realistic evolution of membrane
potential, the output spike train y t t t( ) = ( )n n with tn

standing for the nth discharge instant is taken as the output of
the leaky neuron as usual and Dirac delta function ( ) to
denote an instant voltage impulse.
It is reasonable to assume that the neuron receives both

periodic and random input simultaneously in periodic en-
vironment such as periodic visual stimuli [32] or auditory
stimuli [33,34]. Hence, in Eq. (1), S t t nT( ) = ( )n s is the
coherent synaptic input of period Ts and coupling strengthws.

t t t( ) = ( )k k is Gamma point process, which describes
the random synaptic input with tk being the arrival instant of
the kth impulse from the presynaptic neurons, and w is the
coupling strength. That is, the interval T between the ad-
jacent synaptic input follows the Gamma distribution, whose

probability density function is f t t t( ) = ( ) e ( 0)t1

with and being shape parameter (dimensionless) and
scale parameter (in Hz units), respectively as shown in Fig.
1a. The corresponding time series are displayed in Fig. 1b-d
with a time window 0.01 s. According to Theorem 1 (see
Appendix 1), substituting the Laplace transformation
f s s( ) = [ / ( + )] into Eq. (A9) yields the resultant re-
newal strength function

( )
m s f s f s

s
( ) = ( ) = ( ( )) =

+
.

n
n
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And then with E T( ) = / available, the spectral density
of the equilibrium Gamma renewal point process t( ) for
each f 0 reads

f

f f

( )

= 2 1 +
( + 2 i )

+
( 2 i )

. (2)

The power spectral densities of Gamma synaptic input
which have the same parameters as Fig. 1 are displayed in
Fig. 2.
In the investigation of stochastic resonance, the coherent

synaptic input can be cataloged into subthreshold if it cannot
emit action potential by itself; otherwise, it is superthreshold.
Here we emphasize that conventionally it tends to believe
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that the subthreshold signal is useless, and it is stochastic
resonance that totally changes this obsolete point, since the
information carried by subthreshold signal can be trans-
mitted to the other neurons under the assistance of noise
ubiquitous in nervous systems, as confirmed by many bio-
physical experiments [1]. Here we remark that the upper
bound of subthreshold signal coupling strength for Eq. (1) is
the same as that for the constant threshold model [9], i.e.,

( )w V T= 1 exp / ,s m s mth

when the resting potential V0 vanishes, since the threshold
always stays Vth before the first spike is emitted. That is,
when w w<s s, the coherent input signal fails to emit any
action potential by itself and thus noise becomes an indis-
pensable factor for neural transmission. Biologically, the
voltage of the pyramidal neuron will enhance 0.2-6 mV
when the presynaptic spike arrives [35,36], which means that
ws and w should be taken values within [0.2, 6] m to be
consistent with the biophysical observation.
In this paper, we fix = 20 msm , = 100 ms, = 2 mV,

V V= =0 mVr 0 [31], T = 200 mss , and the simulation time span
T = 2 × 10 ms6 , unless otherwise stated. Note that the noise
intensity of Gamma renewal point process, namely the arri-
val frequency of the incoming spikes, can be obtained by the
shape parameter and the scale parameters as / . When
the frequency is low, to avoid the huge amount of simulation
time cost by Euler-Maruyama scheme, we present a four-step
event triggered algorithm as shown in Appendix 2. Our nu-
merical experience indeed shows that the event triggered
algorithm is much more effective in the case of weak noise.

3. Stochastic resonance and its SNR gain

Subthreshold signal itself alone cannot be transmitted, but it
becomes transmissible under the assistance of noise as
shown in Fig. 3. From the picture, it is clear that the
(Gamma) noise assisted firing might randomly occur at some
integer multiple of the signal period Ts, that is, the output

Figure 1 An intuitive demonstration of Gamma renewal point process. a shows the probability density curves of Gamma distribution with different
parameters and b-d display the time series of Gamma renewal point process which correspond to the green, red, and black curves of a in order. In particular,
the sample c is the conventional Poisson point process.

Figure 2 Power spectral density of equilibrium Gamma renewal point
process with upward arrow indicating the infinite spike spectral line at zero
frequency. The curves demonstrate that the theoretical power spectral
density (blue solid) and the simulated counterparts (red dashed line) agree
well with each other under all the cases: a = 2, = 2 Hz, b

= 1, = 1 Hz, and c = 0.5, = 0.5 Hz.
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spike train carries the characteristic of the weak subthreshold
stimulus. Thus, Gamma noise plays a positive role in neural
transmission, while the phenomenon of stochastic resonance
to be explored below further demonstrates that such trans-
mission can be optimally maximized at suitable noise in-
tensity. Note that for Gamma renewal point process of shape
parameter and scale parameter , although the noise in-
tensity of Gamma noise is / , the resultant Fano factor is
1 / . Thus we explore the effect of Gamma noise on sto-
chastic resonance for the varying , and for each we adjust
the noise intensity by changing the scale parameter .
The SNR is one of the most frequently used indices for

quantifying the phenomenon of stochastic resonance, and the
bell-shape curve of the output SNR via noise intensity sig-
nifies the occurrence of stochastic resonance. Following
Refs. [7,11,14], the output SNR can be defined as

( ) ( )R P T N T= 1 / / 1 / , (3)s sout out out

where P f( )out denotes the power spectral density of the noisy
output spike train. The numerator represents its periodic
signal component, and the denominator denotes the power
spectral density of noise at the frequency of the periodic
component. The noise power spectral density N T(1 / )sout is
estimated by averaging 40 spectral lines P f( )out around the
fundamental frequency but not including P T(1 / )sout . Simi-
larly, for the noisy synaptic input w S t w t( ) + ( )s , the input

SNR is defined as

R P T
N T

w
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P T
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(1 / ) , (4)s

s
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s
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where P f( )in , P f( )S , and P f( ) are the power spectral density
of the noisy input spike train, coherent signal S t( ), and
Gamma input t( ). The noise component N T(1 / )sin can be

acquired by two methods. The first one is to multiplyw 2 and

P T(1 / )s which is obtained by Eq. (2) analytically. The
second one is to directly calculate it in the same way as that
for N T(1 / )sout numerically. We emphasize that the two
methods are consistent, as confirmed in Fig. 2. Further, ac-
cording to Eqs. (3) and (4), the SNR gain is given by
G R R= / . (5)out in

On the other hand, we adopt the average firing rate to
provide an explanation of stochastic resonance from physical
mechanism. The average firing rate is defined as

r y t t T= ( ) d / , (6)
T

0 span
span

which equals to the reciprocal of mean interspike interval
(when the refractory period is omitted). As is known, the
output SNR can describe the involving coherence to some
extent, while the average firing rate is totally a rate coding
tool [36,37]. Although the average firing rate cannot reflect
the temporal pattern, it can be used to explain the physical

Figure 3 The evolution of periodic impulsive input, membrane potential, and output spike train. a presents the periodic input; b exhibits the potential
variationV t( ) when ignoring the noise, c exhibits the potential variation with Gamma noise, and d shows the corresponding output train. The red curves in b
and c denote the threshold. The parameters are w w w= = 0.5s s, = 10, and = 1 Hz.
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mechanism of stochastic resonance from phase locking or
deterministic resonance. Hence, we combine these indices to
have an in-depth understanding on the effect of stochastic
resonance induced by Gamma noise.
Figure 4 shows the evolution of the SNR (3), the SNR gain

(5), and the firing rate (6) via noise intensity under different
shape parameter . The non-monotonic SNR curves in Fig.
4a, d, and g identify the characteristic of stochastic re-
sonance: the peak of the output SNR curve becomes higher
as the shape parameter increases. This observation means
the less Fano factor, the higher SNR. For example, if we take
the output SNR of the Poisson noise case ( = 1) as the
benchmark, when Gamma case becomes Erlang manner with

= 10, the output SNR at the optimal noise intensity attains
1.69 times. Moreover, the SNR gain at the optimal noise
intensity shows a similar trend: the less Fano factor, the
higher SNR gain, although the SNR gain can surpass one
only when alpha is larger enough. Surprisingly, the SNR gain
in Fig. 4b and e does not show a peak at the optimal noise
intensity as that in Fig. 4h, and in fact, the SNR gain
monotonically grows as the noise intensity increases. These
behaviors together with the observation in Ref. [11] imply
that Eq. (1) is actually a signal amplifier when the Fano
factor is smaller than one. By further checking the evolution
of firing rate as shown in Fig. 4c, f, and i, we find that the
average firing rates are quite similar for the Poisson case and

Gamma case. Therefore, according to the principle of energy
minimization [38,39], Gamma synaptic input with a large
alpha is more suitable for neuron transmission supposing that
the energy demand for a single spike is constant.
To deepen the above observation and discussion which

have exhibited the influence of Gamma noise on signal
transmission, we fix = 10 but take ws and w tunable.
Figure 5 shows that the output SNR can be boosted by in-
creasing the signal coherent coupling strength or decreasing
the noise coupling strength. However, the SNR gain curves
no longer display a monotonic trend for the varying ws and
w . Therefore, in order to obtain a comprehensive under-
standing on the variation of SNR gain, we draw the pseudo
color image of SNR gain at the occurrence of SR
within a range of physiologically meaningful parameters,
w w w w× = [0.1, 0.6] × [0.1, 0.6]s s s in Fig. 6a. Obviously,
there are two SNR gain peaks. The one is near point A,
representing an extremely weak ws but strong w area. The
other one is near point B, representing a larger.
The aforementioned two peaks also appear in the case of

Poisson noise case [11]. It can be found that the physical
mechanisms underlying the two peaks are different. In fact,
by checking the average firing rate at the optimal noise in-
tensity, we find that for a larger coherent coupling ws, the
average firing rate at the best noise intensity is around 5 Hz

Figure 4 SNR (left), the corresponding gain (middle), and the corresponding firing rate (right) versus noise intensity with = 0.5 a-c, = 1 d-f, and
= 10 g-i. The coupling strengths are w w w= = 0.3s s. The vertical dotted line denotes optimal noise intensity parameter, which clearly shows: the larger the

alpha, the higher the optimal noise level.
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Figure 5 Dependence of the output SNR a, b and SNR gain c, d on noise intensity with = 10. The parameters for the first column are w w= 0.3s s and
w w= 0.3 s (blue), w w= 0.4 s (red), w w= 0.5 s (green). The parameters for the second column are w w= 0.3 s, w w= 0.1s s (blue), w w= 0.3s s (red), w w= 0.5s s
(green). The vertical dotted line denotes optimal noise intensity parameter.

Figure 6 a Pseudo color image of SNR gain at the occurrence of SR for the varying ws and w with = 10. The red dashed curve is the contour line at which
SNR gain equals to unity. It shows that both the central region and the bottom right region have the local SNR gain peak and the peak values are larger than
unity. b Dependence of the firing rate on noise intensity for the varying w w= 0.1s s, w w= 0.6 s (blue), w w= 0.3s s, w w= 0.3 s (red), and w w= 0.5s s,

w w= 0.3 s (green). The blue, red, and green curves correspond to points A, B, and C in a, respectively. The vertical dotted line denotes optimal noise
intensity parameter, and the horizontal dotted line denotes the frequency of the input signal.
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as shown in Fig. 6b (red and green curves), thus it is con-
sistent with frequency of the input signal, i.e.,
r F T= = 1 / sinput , which means that the phenomenon of sto-
chastic resonance in this case is caused by a stochastic phase
lock similar frequency-matching mechanism [11,40]. At this
moment, although the role of the synaptic noise is necessary,
the event ofV t( ) reaching the threshold is dominated by the
coherent signal, thus the peak of SNR gain moves to the
center area of the considered range, namely point B
w w w w( , ) = (0.3 , 0.3 )s s s . However, for an extremely weakws

but strong w , this kind of frequency-matching relationship
disappears, and thus the phenomenon of SR should owe to
noise-induced resonance, as observed from Fig. 6b (blue
curve). In this case, whether V t( ) can reach the spike
threshold is nearly completely dominated by the synaptic
noise. The noise energy converts heavily into the power
component of the output at the signal frequency T1 / s,
causing the significant rise of SNR gain to occur. At last, we
emphasize that not only in the area near A but also near B,
the SNR gain can be larger than one due to the more gen-
erality of Gamma distribution, which is significantly differ-
ent from the Poisson case [11]. Therefore, our observation in
this paper actually illustrates the variety of Gamma noise
induced stochastic resonance.
Finally, the influence of decay constants m on both SNR

and SNR gain is further investigated. Other parameters are
selected near point B in Fig. 6 where the SNR gain is sig-
nificantly different for Poisson type and Gamma type sy-
naptic input. Figure 7 shows that the SNRs are almost same at
the optimal noise intensity, but SNR gain will monotonically
decrease with the increasing m. The underlying reason can
be found from the frequency-matching mechanism. Ac-
cording to Eq. (1), the membrane potential V t( ) decays at a
rate of texp( / )m . Thus, the higher m is, the slower the
attenuation speed of the voltage is, which results in the rise of
firing rate. Based on the frequency-matching mechanism, the
optimal noise intensity whose corresponding firing rate
reaches T1 / swill shift to the left as shown in Fig. 7a, d, and g,
and the input SNR will increase accordingly. Therefore, the
SNR gain will monotonically decrease eventually.

4. Conclusion

We have explored the cooperative dynamics of the Gamma
renewal neurotransmitter release and the subthreshold peri-
odic impulse input in an adaptive integrate-and-fire neuron
model by event triggered simulation algorithm. In order to
obtain an explicit expression for the input SNR, we revisited
the spectral property of an equilibrium Gamma renewal point
process. In the sense that the input SNR and the output SNR

Figure 7 SNR (left), the corresponding gain (middle), and the corresponding firing rate (right) versus noise intensity with = 10 msm a-c, = 20 msm d-f,
and = 30 msm g-i. The coupling strengths are w w w= = 0.3s s and the shape parameter is = 10. The vertical dotted line denotes optimal noise intensity
parameter, which clearly shows: the larger m, the smaller the SNR gain.
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are both calculated consistently with a high accuracy, the
phenomenon of stochastic resonance induced by Gamma
noise is disclosed, and the SNR gain is exhibited.
From our investigation, it is found again that there are two

kinds of physical mechanisms responsible for the stochastic
resonance, the noise-induced resonance, and the stochastic
phase-locking similar frequency-matching resonance. Parti-
cularly, we found that reducing the Fano factor or increasing
the shape parameter contributes to a better SNR gain and the
SNR gain at the optimal noise intensity can exceed one
eventually. For a large, there are two SNR gain peaks which
correspond to the aforementioned two kinds of physical
mechanisms, respectively. One of them is located at ex-
tremely weak signal coherent coupling but strong noise
coupling region, namely, the other one is near. Using the
frequency-matching mechanism, we explain the phenomen-
on that the SNR gain will monotonically increase with the
decreasing decay constant m. These findings discover that
the neuron indeed becomes a signal amplifier with Gamma
renewal neurotransmitter release and thus are meaningful for
both biological modeling research and artificial neural net-
work design. In future, we will consider the stochastic re-
sonance behavior in the neural network under gamma
synaptic input, mainly focusing on the effects of both net-
work structure and gamma shot noise on SNR and SNR gain,
and design the corresponding applications based on the dy-
namical studies.

This work was supported by the Non-Poisson Modeling of Neuron Synaptic
Input and Critical Dynamics for Cortical Networks (Grant No. 11772241 ).
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伽马更新突触输入作用下自适应神经元模型的信噪比增益
康艳梅, 付宇轩, 陈亚倩

摘要 我们采用自适应漏电积分-放电模型来研究非泊松递质对随机共振及其信噪比增益的影响, 并运用事件驱动算法加速模拟过

程. 研究结果表明, 输出信噪比和信噪比增益都会随着伽马分布的形状参数的增加而增加. 特别地, 当输入信号幅值较大时, 由

Gamma噪声诱导的1:1随机锁像揭示出此时发生的是满足频率匹配关系的随机共振现象, 并且输出信噪比可以超过输入信噪比, 这
与Poisson情形显著不同; 而当输入信号幅值极弱时, 信噪比增益会远远大于1, 这是由于发生了噪声诱导的随机共振现象. 这些观察

结果对于从更现实的突触建模角度理解神经信息处理机制是有意义的.
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