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Abstract
This paper presents theoretical investigations of lattice Boltzmann method (LBM) to develop a completed LBM theory. Based 
on H-theorem with Lagrangian multiplier method, an amended theoretical equilibrium distribution function (EDF) is derived, 
which modifies the current Maxwell–Boltzmann distribution (MBD) to include the total internal energy as its parameter. This 
modification allows the three conservation laws derived directly from lattice Boltzmann equation (LBE) without additional 
small-parameter expansions adopted in references. From this amended theoretical EDF, an improved LBM is developed, 
in which the total internal energy like the mass density and mean velocity is a new macroscopic variable to be updated for 
different times and cells during simulations. The developed method provides a means to consider external forces and energy 
generation sources as generalised forces in LBM simulations. The corresponding model and implementation process of the 
improved LBM are presented with its performance theoretically investigated. Analytically hand-workable examples are 
given to illustrate its applications and to confirm its validity. The paper will excite more researchers and scientists of this 
area to numerically practice the new theory and method dealing with complex physical problems, from which it is expected 
to further advance LBM benefiting science and engineering.

Keywords  Amended MBD · Improved LBM · Macroscopic internal energy · Conservation laws from LBE · Lagrangian 
multiplier method

1  Introduction

Lattice Boltzmann method (LBM) is based on microscopic 
molecule dynamics [1–5], concerning molecule distribu-
tion in space. Boltzmann transport equation (BTE) [6–9] 
and H-theorem confirm that the equilibrium distribution 
function (EDF) is Maxwell–Boltzmann distribution (MBD) 
[7], contributed a way to understand macroscopic world 
and form a mesoscopic method dealing with macroscopic 
motions [10–12]. The solution of BTE is very difficult, and 
attempts have been made to simplify the collision term, for 
which the best-known model [13] has been implemented. 
LBM was developed from the lattice gas automata (LGA) 
[14, 15]. McNamara and Zanetti [16] contributed a historic 

contribution to replace the Boolean variable in LGA by a 
real variable, and initially created LBM. The idea of LBM is 
imaging gases/fluids as a finite number of particles with ran-
dom motions, and their exchange of momentum and energy 
achieved through particle streaming and collisions. Key 
historic publications [13–63] making LBM into new stages 
should be highlighted. The important review papers [39, 
59–81] and the influential books [82–97] have been pub-
lished. LBM is considered as an effective method to model 
some phenomena not easily macroscopically described by 
other methods [98]. It has many computer codes of LBM 
provided [85–87, 91, 99, 100].

In practical simulations based on the current LBM, it has 
been realized that it is probably most suitable for isothermal 
weakly-compressible flows. For complex flows, especially the 
ones involving high speed, large compressibility, and obvious 
energy exchanges, it has suffered from numerical problems 
on accuracy, efficiency, and stability. To solve these prob-
lems, when simulating multicomponent flows, Swift et al. 
[101, 102] added an additional term of free energy in EDF 
for the conservation of total energy, including the surface, 
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kinetic, and internal energies to be satisfied [103]. Meanwhile, 
studying thermodynamics in incompressible limit, He et al. 
[104] proposed a thermal model with an internal energy den-
sity distribution expressed by a multiplication of MBD and 
kinetic energy, so that the evolution equations of the intro-
duced energy distribution together with original BTE were 
solved to simulate temperature fields. Until now, many recent 
publications, such as Refs. [105–112], still tried to add some 
numerical techniques, such as correctly resolve energy equa-
tion, high-order lattices, double distribution functions, hybrid 
LBM with finite difference or finite volume approaches etc., 
but nobody has deeply asked if there exist some fundamen-
tal theoretical incompleteness of the current LBM model. In 
the history of science advances, to solve a difficult problem 
reported by practices, it is not only to seek some technique-
modifications on it, but also, more importantly, to check the 
original theory and physical mechanism of the problem to 
find if there is its inherent theoretical incompleteness. Based 
on this consideration, author through carefully reading the 
publications of LBM concerning its original principles and 
basic physical mechanism has found its following theoreti-
cal problems. We know that the background of LBM is the 
kinetic theory and BTE developed by studying the distribution 
of molecules of ideal dilute gases. Theoretical EDF obtained 
is MBD, in which three macroscopic variables: mass den-
sity, velocity, and temperature T with Boltzmann constant K 
are the parameters. In this EDF, the KT reflecting the bulk 
energy was derived only by the state equation of gas [6], but 
not concerning other types of energy, such as the work done 
by viscous stress and the one caused by the gradient of mass 
density. Therefore, the momentum and energy conservation 
equations derived from MBD do not include the contribution 
from the full stress tensor in continuum mechanics, and there 
is not a term in the energy conservation equation concern-
ing the contribution of external energy generation sources. 
Physical flows in continuum mechanics are governed by three 
conservation laws, of which the three variables, the mass den-
sity, velocity, and internal energy are key parameters. When 
we study macroscopic flows from a viewpoint of statistical 
mechanics, it should have a corresponding inherent theoreti-
cal EDF including these three key parameters to allow the 
three conservation laws to be derived from it. Therefore, this 
paper intends to tackle these important theoretical problems 
to develop an improved theory with amended LBM model, 
aiming for readers to follow in practical simulations to solve 
the mentioned difficulties of the current LBM.

The paper is a theoretical document written exactly based 
on the famous Boltzmann H-theorem [6] of the statistical 
mechanics, the laws of continuum mechanics [113–115], the 
energy flow theory [116–120], and the variational method in 
mathematical analysis. Section 1 from reading historical pub-
lications reveals the existing problems of LBM theory, that is 
the total internal energy is not involved in current EDF causing 

some theoretical and numerical problems. Sections 2.1–2.3 
derive the fundamental equations from continuum mechanics, 
which is used in Sect. 2.4 to develop an amended theoretical 
EDF including internal energy as a parameter, that is new con-
tribution of the paper, and Sect. 2 is a base of demonstrations 
in Sects. 3 and 4. Section 3 demonstrates three conservation 
laws directly from the amended EDF with no small parameter 
expansions adopted in references. Section 4 gives the modi-
fied LBM based on the developed EDF with mass density, 
mean velocity and internal energy as parameters to be updated 
in numerical process. The formulations on generalised forces 
contributed by external forces and energy generation sources 
are provided and the implementation process of the improved 
method with its performance study are given. Section 5 gives 
some hand-workable examples by analysis to confirm the 
valid of theory and to illustrate applications.

2 � Internal energy and amended theoretical 
EDF

To develop an amended theoretical EDF based on MBD 
function by introducing the total internal energy density 
as a macroscopic parameter, the knowledge in continuum 
mechanics including the state equation, material deriva-
tives, Cauchy tress tensor, stress power, internal mechanical 
energy and its time / space derivatives with their statistical 
averages are required, which are discussed in this section.

2.1 � Ideal gases, state equation, and average 
internal thermal energy (AITE)

For ideal gases in the volume Ω containing N molecule par-
ticles, the state pressure p is defined by the equation of state 
in association with the Boltzmann constant k in the form [6]

from which, we know that if the temperature T  is a constant, 
the particle density is a function of the volume and affects 
the state pressure per individual particle by

Physically, the dimension of the state pressure per indi-
vidual particle is the pressure over the mass density, i.e., 
N m−2∕(kg m−3) = (m∕s)2 , which is a square of the instant 
velocity, equaling the derivative of the pressure with respect 
to the mass density.

Huang [6] presented the detailed calculation of AITE 
based on EDF, and obtained the average thermal energy 
ê  of a particle

(1)p =
NkT

Ω
= nkT , n =

N

Ω

(2)p̂ =
p

n
= kT .
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where the pressure p and the temperature T  are the physi-
cally measured quantities, from which AITE of the particles 
per unit volume is

From Eq. (2) we may understand that the average inter-
nal energy, ê, as the square of averaged velocity of sound 
in the fluid.

2.2 � Cauchy tress tensor, power, and average 
internal mechanical energy (AIME)

In the continuum mechanics, using Cartesian tensor nota-
tions, see for examples, Refs. [113–115], the Cauchy stress 
tensor of fluids is given by

where p is the pressure caused by fluid flows, � is the coeffi‑
cient of viscosity, Vij is deformation rate tensor, and 

∼
�ij =

∼
�ji 

denotes a symmetrical viscous stress tensor with 
∼
�jj = 0 . 

If the fluid is incompressible, the fluid dilation vanishes, 
�vl∕�xl = Vll = 0, the stress tensor reduces to

The power of stress per unit volume is given by �ijVij, 
which is a measured quantity. The internal mechanical 
energy of the fluid per unit mass can be obtained by inte-
gration from its reference state “0” to its current state “t”

Following the discussion on AITE per unit particle 
above, we can obtain AIME �̂ per unit particle in a simi-
lar form as given in Eq. (7), i.e.,

in which �̂ has the dimension of pressure p̂ per unit particle 
shown in Eq. (6). As a result of this, AIME of the particles 
per unit volume and its time derivative can be given by

(3)p = nkT =
2

3
nê, ê =

3kT

2
,

(4)ẽ = n�e =
3nkT

2
.

(5)

�ij = −p�ij +
∼
�ij,

∼
�ij = 2�

(
Vij −

Vll�ij

3

)
,Vij =

vi,j + vj,i

2
,

(6)�ij = −p�ij + 2�Vij.

(7)� = ∫
t

0

�ij

�
Vijdt,

d�

dt
=

�ij

�
Vij.

(8)�̂ = ⟨�⟩ = 3

2
� ,

d�̂

dt
= ⟨d�

dt
⟩ = ⟨�ij

�
Vij⟩ =

⟨�ijVij⟩
n

(9)
∼
�= n�̂ =

3n

2
� ,

d
∼
�

dt
= n

d�̂

dt
= ⟨�ijVij⟩,

from which with Eq. (7), it follows that the time change rate 
of AIME of the particles per unit volume is

Here (),j equals �()∕�xj, as used in tensor analysis 
[113–115], the �ijui,j is understood as the averaged one, 
although the same stress notations are adopted.

2.3 � Material derivatives and gradient of internal 
mechanical energy per unit volume

A material point marked by its original position coordi-
nate Xj moves in the space, and it arrives the position xi at 
time t  , so that its velocity vi equals

(
�xi∕�t

)
X
 and accelera-

tion ai equals
(
�vi∕�t

)
X
 , where the subscript X implies the 

derivatives with respect to time t  are taken for the same 
material point. This time derivative is called as a material 
derivative [113–115]. In continuum mechanics, the Eulerian 
description of motion represents motion quantities in ()(xi, t) 
as functions of spatial position and time, which may be a 
scalar, vector, or tensor function. In the Eulerian description 
of motion, the material derivative is

For a set of material points in a volume Ω with its surface 
S in the space at time t  , the total quantity () of this set of 
particles is

where volume Ω is also a function of time due to the motion. 
The material derivative of the quantity I(t) is

where physically, on the right-hand side, the first integra-
tion denotes the time change rate of the quantity in the fixed 
volume, while the second one is caused by the boundary 
motion. Using the Green theorem [113–115], we can re-
write above equation as

Introducing the mass density � and the mass conservation 
equation, we obtain

(10)d
∼
�

dt
=

3nd�

2dt
= �ijui,j.

(11)
d()∕dt = �()∕�t + (dxi∕dt)X�()∕�xi = �()∕�t + vi�()∕�xi.

(12)I(t) = ∫ Ω(t)

()dΩ,

(13)
dI(t)

dt
=

d

dt∫ Ω(t)

()dΩ = ∫ Ω

�()

�t
dΩ + ∫ S

()vi�idS,

(14)

dI(t)

dt
= ∫ Ω

{
�()

�t
+

�
[
()vi

]
�xi

}
dΩ = ∫ Ω

{
�()

�t
+ ()

�vi
�xi

}
dΩ.
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2.3.1 � Gradient of internal mechanical energy per unit 
volume in equilibrium state

The gradient of the internal mechanical energy per unit vol-
ume in equilibrium state can be derived by using Fig. 1, in 
which a volume element ΔΩ closed by surface ΔS of unit 
normal vector �i pointing from inside to outside of the vol-
ume is in its equilibrium state, so that it satisfies the equi-
librium equation. 

where fi is the body force per unit volume. When the volume 
tends zero, the resultant force at a point vanishes

The change of internal energy per unit volume is calcu-
lated by the work done by the stress in the gradient ΔUi,j of 
displacement field Ui in the form

 from which, when integrated over the volume ΔΩ , and then 
using the Green theorem, it follows

Since the volume is very small, we approximate the dis-
placement as the one at the central point, therefore, based on 
Eq. (17) in equilibrium state, we obtain the gradient of the 
internal mechanical energy per unit volume as

(15)
d

dt∫ Ω

�()dΩ = ∫ Ω

�
d()

dt
dΩ.

�ij,j + fi = 0,

(16)

∫ ΔΩ

�ij,jdΩ + ∫ ΔΩ

fi dΩ = ∫ ΔS

�ij�j dS + ∫ ΔΩ

fi dΩ

= ∫ ΔS

�ij�j dS + ΔΩ fi = 0,

(17)TR = ∫ ΔS

�ij�jdS = 0.

(18)Δ(n�) = �ijΔUi,j,

(19)

∫ ΔΩ

Δ(n�)dΩ = ∫ ΔΩ

�ijΔUi,j dΩ

= ∫ ΔS

�ijΔUi�j dS − ∫ ΔΩ

�ij,jΔUi dΩ.

where we have introduced xi = Xi + Ui , and the particle dis-
placement increment ΔUi = Δxi.

2.3.2 � Time change rate of AIME per unit volume 
in equilibrium state

The time change rate of AIME per unit volume in the equi-
librium state can be derived from the principle of virtual 
power. Since the system is in equilibrium state, there is no 
power exchange with outside, so that the summation of the 
stress power and the time change rate of AIME per unit 
volume vanishes.

from which, when the Green theorem is used, it follows

Since the volume ΔΩ is arbitrary, we have.

where qj is defined as the component of averaged energy 
flow-density vector [116, 117]

2.3.3 � Equation satisfied by the internal mechanical energy 
per unit mass

The equilibrium equation of power denoted by the internal 
mechanical energy per unit mass in the equilibrium state is 
obtained by investigating Eq. (21), which, when the material 
derivative Eq. (14) is used, becomes.

∫ ΔΩ

Δ(n�) dΩ = ΔUi∫ ΔS

�ij�jdS − ∫ ΔΩ

�ij,jΔUi dΩ

= −∫ ΔΩ

�ij,jΔUi dΩ,

(20)Δ(n�) = −�ij,jΔUi,
Δ(n�)

ΔUi

= −�ij,j,
�(n�)

�xi
= −�ij,j,

(21)−∫ ΔS

�ijui�jdS =
d

dt∫ ΔΩ

∼
� dΩ = ∫ ΔΩ

3nd�

2dt
dΩ,

(22)−∫ ΔΩ

(�ijui),jdΩ = ∫ ΔΩ

3nd�

2dt
dΩ.

(23)
3nd�

2dt
= −(�ijui),j = qj,j,

(24)

∫ ΔS

�ijvi�jdŜ =
d

dt∫ ΔΩ

�dΩ

= ∫ ΔΩ

(
d�

dt
+ �vi,i

)
dΩ

= ∫ ΔΩ

(
�ij Vij

�
+ �vi,i)dΩ,

Fig. 1   Gradient of internal mechanical energy
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 where “^” is to identify the quantity involving the ones 
for unit mass only. As a result of this, and when the Green 
theorem is used, it follows.

 where dΩ̂ denotes the volume element per unit mass equal-
ing dΩ

�
. Therefore, from Eq. (25), we have

 where the mass density is replaced by the particle density n.

2.4 � Boltzmann H‑theorem and amended 
theoretical EDF

The famous MBD function was derived for ideal gases 
with its AITE in the form ẽ = 3nkT∕2 [6], therefore, the 
momentum and energy conservation equations derived 
from MBD function does not include the contribution from 
the stress tensor in continuum mechanics. As mentioned in 
introduction, for simulating complex thermodynamic and 
multicomponent flows, etc., several technique modifica-
tions [101–112] were proposed to deal with some numeri-
cal issues met in their practices, but it has not solved the 
theoretical incompleteness of the current theory.

As discussed in Sect. 2.2, we have introduced an AIME 
per unit volume and per unit particle based on the theory 
of continuous mechanics and statistical average, which are 
summarized in the forms

 where e denotes the total internal energy per unit volume, 
which consists of the kinetic one K̃ and the thermal mechani-
cal one ∼� equaling a summation of the thermal one ẽ and the 
mechanical one 

∼
�  . The hats “^” denote the corresponding 

variables per unit particle. These averaged internal energies 
are macroscopic quantities being the functions of position 
xi and time t.

Based on the developed AIME and the Boltzmann’s 
H-theorem [6], we can derive the amended theoretical EDE. 
We can conclude that EDF f0(x, v, t) in a volume Ω for a pre-
scribed density n , mean momentum nu , and energy per unit 
volume (  ne = 0.5n(u ⋅ u)+

∼
� , 

∼
�= 1.5n(KT + �) = 1.5nT) 

minimize the H functional

(25)
∫ ΔΩ

(�ijvi),jdΩ̂ = ∫ ΔΩ

(�ijvi),j
dΩ

�
= ∫ ΔΩ

(
�ijVij

�
+ �vi,i)dΩ,

(26)
�ijVij

�
+ �vi,i = −

qj,j

�
, �ijVij + n�vi,i + qj,j = 0,

e = K̃+
∼
𝜀,

∼
𝜀= ẽ+

∼
𝜓 , 𝜀̂ = ê + �𝜓 = 3T∕2,

(27)K̃ = n�K, ẽ = nê,
∼
𝜓= n�𝜓 ,

K̂ = uiui∕2, ê = 3kT∕2, �̂ = 3�∕2,

where dV = dv1dv2dv3 is the differential volume element of 
the velocity space. We require that the mass, momentum, 
and energy of this particle system in the volume Ω are con-
servative, i.e.,

which are the constrains of the H functional. Using the 
Lagrangian multiplier method [99], introducing two scalar 
multipliers �1 and �3 , and a vector �2 to release the vari-
ational constrains in Eq. (29) of the functional in Eq. (28), 
we obtain the new functional

The variation of the functional H̃ gives

from which, when 𝛿H̃ equals 0, it yields the constrain condi-
tions in Eq. (29) and the equation

The solution of Eq. (31) is EDF satisfying the conserva-
tive constrains in Eq. (29), which is

(28)H(t) = ∬ f (x, v, t)lg
[
f (x, v, t)

]
dΩdV ,

(29)

nΩ = ∬ f (x, v, t)dΩdV ,

nuΩ = ∬ vf (x, v, t)dΩdV ,

neΩ = ∬ 0.5(v ⋅ v)f (x, v, t)dΩdV ,

(30)

H̃
(
f , 𝜆1,�2, 𝜆3

)
= ∬ f (x, v, t)lg

[
f (x, v, t)

]
dΩdV

− 𝜆1

[
nΩ −∬ f (x, v, t)dΩdV

]

− �2 ⋅

[
nu� −∬ vf (x, v, t)dΩdV

]

− �3

[
neΩ −∬ 0.5(v ⋅ v)f (x, v, t)dΩdV

]
.

(31)

𝛿H̃ = ∬ 𝛿f
[
1 + lg f + 𝜆1 + �2 ⋅ v + 0.5𝜆3(v ⋅ v)

]
dΩdV

− 𝛿𝜆1

[
nΩ −∬ f (x, v, t)dΩdV

]

− ��
2

⋅

[
nuΩ −∬ vf (x, v, t)dΩdV

]

− ��
3

[
neΩ −∬ 0.5(v ⋅ v)f (x, v, t)dΩdV

]
,

1 + lg f + λ1 + �2 ⋅ v + 0.5λ3(v ⋅ v) = 0.

(32)

f0 = exp

[
−1 − �1 +

�2 ⋅ �2

2�3
−

�3
2

(
�2

�3
+ v

)
⋅

(
�2

�3
+ v

)]
,
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where, we have introduced the equality

We consider a new set of Lagrangian multipliers d, �, � 
from which the EDF is represented in the standard form

 which satisfies the conservative laws

Since the distribution is homogeneous, and it does not 
involve the spatial variables, the space integration gives the 
total volume Ω in front of integration on velocity space. Solving 
Eq. (35) with Eq. (34), we can obtain the tree parameters. Here, 
the main contribution of this paper is that the internal mechani-
cal energy is introduced in the energy conservation equation, 
based which the improved theoretical EDF derived as follows.

Using the Gaussian integrals and doing the mathematical 
works as deriving MBD function [6], from Eq. (35), we obtain

 and especially the one for the energy conservation involv-
ing �

Substituting the parameters obtained by Eqs. (36) and (37) 
into Eq. (34) gives the new amended EDF as

(33)

�2 ⋅ v + 0.5�3(v ⋅ v) = −
�2 ⋅ �2

2�3
+

�3
2

(
�2

�3
+ v

)
⋅

(
�2

�3
+ v

)
.

(34)f0 = dexp

[
−
(v − �) ⋅ (v − �)

�

]
,

nΩ = ∬ f0dΩdV = Ω∬ f0dV ,

(35)nuΩ = ∬ v f0 dΩdV = Ω∬ v f 0 dV ,

0.5n[u ⋅ u + 3(kT + �)]Ω = ∬ 0.5v ⋅ v f0 dΩdV

= Ω ∫ 0.5v ⋅ v f 0 dV .

(36)n = ∫ f0dV = d(π�)3∕2, d =
n

(π�)3∕2
,

nu = ∫ (�−�)f 0dV + ∫ �f 0dV = 0 + n�, � = u,

0.5n[u ⋅ u + 3 (kT + �)] = ∫ 0.5v ⋅ v f0 dV

= ∫ 0.5 (v − �) ⋅ (v − �) f 0 dV + 0.5nv ⋅ v,

(37)

3n(kT + �) =
n

(π�)3∕2
×
3�(��)3∕2

2
=

3�n

2
, � = 2(kT + �).

Using this amended EDF and the tensor notations 
[113–115], we have the following integration formulations

Using the notation kT + � = T for the mechanical energy 
included, it is not difficult to demonstrate that

3 � Conservation laws

Here, we examine if the developed amended EDF satisfying 
BTE, it can be used to obtain the macroscopic conservation 
laws, which has not been fully addressed by using MBD 
function. If the answer is positive, this amended EDF will 
provide the basis to construct an improved LBM scheme to 
simulate various complex physical problems dominated by 
the changes of internal energy. This is because the general 
concepts in BTE are not only applicable for dilute gases, but 
also for much denser fluids.

3.1 � Conservation theorem in a differential form

The EDF f (x, v, t) satisfies a partial differential equation

(38)f0 =
n

[2π(kT + �)]3∕2
exp

[
−
(v − u) ⋅ (v − u)

2(kT + �)

]
.

∫ f0dV = n,∫ f0(vi − ui)dV = 0,

(39)

∫ f0
(
vi − ui

)(
vj − uj

)
dV = n(kT + �)�ij,

∫ f0
(
vi − ui

)(
vj − uj

)(
vl − ul

)
dV = 0,

∫ f0
(
vi − ui

)(
vj − uj

)
(v − u) ⋅ (v − u)dV

= 5n(kT + �)2�ij

(40)
∫ f0dV = n, ∫ f0vidV = nui, ∫ f0vivjdV = nT�ij + nuiuj,

∫ f0vivjvldV = nT(ul�ij + ui�lj + uj�il) + nuiujul,

∫ f0vivjvlvldV = 5nT
2
�ij + nT

(
7uiuj + ulul�ij

)
+ nuiujulul.

(41)

[
�

�t
+ v ⋅

�

�x
+ F̂v ⋅

�

�v
+ �̂K

�

�(0.5v ⋅ v)

]
f

=

(
�f

�t

)

C

, F̂v =
dv

dt
, �̂K =

d

dt

(
v ⋅ v

2

)
=

dK̂

dt
.
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Here, a new term on the change of kinetic energy energy 
v⋅v

2
= K̂ introduced, since the amended should be amended 

EDF includes the internal energy as marcroscopic parameter, 
and its change effect needs to be explored, which is a new 
contribution of the paper.

The instant time change rate of the streaming velocity 
gives the instant acceleration per unit particle, i.e. the instant 
force F̂v per unit partice, while the time change rate of the 
kinetic energy per unit partice gives the insatnt energy change 
rate �̂K  . Obvously, The instnat values of the force F̂v and the 
energy change rate �̂K involve not only the internal motion 
variables, such as instant stress and streaming velcocity, but 
also the external quantities, such as the body force and the 
external energy source per unit mass. However, in the equili-
birum state, the internal contributions to them are canceled 
each other according to the Newton’s second law, so that in 
the averaged equilibrium state governed by BTE, the following 
external force F̂ and external energy gereration rate �̂ are the 
averaged ones, i.e.,

respectively represnting the external body force and the 
external energy gneration rate per unit particle, which are 
assumed being independent of the streaming process, but 
the macroscopic quantities, possible functions of the time, 
space position and macroscopic velocity prescribed by the 
problems.

The right-hand side of Eq. (41) represents the un-balance 
part caused by collision in the system. We consider a con-
served property �(x, v) with its finite value at any point of 
space, so that it is independent of time t. Multiplying Eq. (41) 
by this property, and then integrating the resultant equation 
over the phase space, we obtain

 of which, the total collision term on the right-hand side 
vanishes, since the total system in the space is momentum 
conservative, although the collision term (�f∕�t)C at a local 
point in the space is not zero. Equation (43) is re-written  
as

(42)⟨n�̂�⟩ = n�̂, ⟨nF̂v⟩ = nF̂,

∫ Ω

[{
∫

V

�(x, v)

[
�

�t
+ v ⋅

�

�x
+ F̂v ⋅

�

�v
+ �̂K

�

�(0.5v ⋅ v)

]
fdV

}]
dΩ

(43)= ∫ Ω

[
∫ V

�(x, v)

(
�f

�t

)

C

dV

]
dΩ,

(44)∫ Ω

⎧⎪⎨⎪⎩
∫ V

⎡⎢⎢⎢⎣

�(f�)

�t
+

�
�
vi f�

�
�xi

− f
�
�
vi �

�
�xi

+
�
�
F̂iv f�

�

�vi
− F̂ivf

��

�vi
− f�

�F̂iv

�vi
+

�
�
�̂K f�

�

�
�
0.5vi vi

� − �̂Kf
��

�
�
0.5vi vi

� − f�
��̂K

�
�
0.5vi vi

�
⎤⎥⎥⎥⎦
dV

⎫⎪⎬⎪⎭
dΩ = 0.

Using the Green theorem in the velocity space [113–115], 
we can transform the volume integration in the infinite veloc-
ity space V into a surface integration on its boundary S of unit 
normal vector �i at infinity, i.e.,

 since the EDF f tends to0 when vitends to∞ on the infinte 
boundary S . Furthermore, the integration on the infinite vol-

ume V  , ∫
V

�
(
�̂Kf�

)

�(0.5vivi)
dV = 0, can be demonstrated as follows. 

Referring Fig. 2, on the shpere surface of radius r  , the 
kinetic energy is a constant K̂ = 0.5vivi , so that along an 
arbitrary radial direction r  , the differential element 
dK̂ = d(0.5vivi) , implying the K̂ is taken as a cordinate to 
denote the corresponding sphere. dK̂ = d

(
0.5v2

1

)
= dK̂1 can 

be regarded as a special case, if the direction r is chosen as 
the direction of velocity cordinate v1 in the vellocity space. 
Therefore, we can use the Green theorem and the property 
of EDF vanishing at infinite to calculate the integration 

Defining the average value of variable A(x, v, t) as

(45)∫
V

�
(
F̂ivf�

)

�vi
dV = ∫

S

F̂ivf��idS = 0,

(46)

∫
V

�
(
�̂Kf�

)

�
(
0.5vi vi

)dV = ∫
V

�
(
�̂Kf�

)

�K̂
dV

= ∫
V

�
(
�̂Kf�

)

�K̂1

dV = ∫
S

�̂Kf��1 dS = 0.

(47)⟨A⟩ = A =
∫ fAdV

∫ fdV
=

∫ fAdV

n
.

Fig. 2   Sphere surface of radius r on which the kinetic energy is con-
stant
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When substituting Eq. (47) into Eq. (44), and considering 
Eqs. (45) and (46), it follows

where we have completed the integration in the momentum 
space and noticed that n⟨A⟩ = ⟨nA⟩ , since n is independent 
of v.

Equation (48) is the general conservation theorem in an 
integration form, in which there is no restrictions on the size 
Ω . When we choose a small deferential volume Ω , we obtain 
the conservation theorem in the differential form

and furthermore

since in the equilibrium state, the external force F̂v and the 
external energy generation rate �̂K are independent of the 
streaming velocity v.

3.2 � Conservation laws

Taking a different property � , from Eq. (50), we can obtain 
its corresponding conservation law as follows.

3.2.1 � Mass conservation

Letting � equalsm , which is the constant particle mass, we 
obtain the mass conservation law

where we have used the integration formulations of EDF 
given in Eqs. (39) and (40). Since m is a constant, we obtain

(48)
∫ Ω

�
�⟨n�⟩
�t

+
�⟨nvi�⟩
�xi

− ⟨nvi ���xi ⟩ − ⟨nF̂iv

��

�vi
⟩

−⟨n��F̂iv

�vi
⟩ −⟨n�̂K ��

�
�
0.5vivi

� ⟩ − ⟨n� ��̂K

�
�
0.5vivi

� ⟩
�
dΩ = 0,

(49)

�⟨n�⟩
�t

+
�⟨nvi�⟩
�xi

− ⟨nvi ���xi ⟩ − ⟨nF̂iv

��

�vi
⟩

− ⟨n��F̂iv

�vi
⟩ − ⟨n�̂K ��

�
�
0.5vivi

�⟩ − ⟨n� ��̂K

�
�
0.5vivi

�⟩ = 0,

(50)

�⟨n�⟩
�t

+
�⟨nvi�⟩
�xi

− ⟨nvi ���xi ⟩ − ⟨nF̂iv

��

�vi
⟩ − ⟨n�̂K ��

�
�
0.5vivi

�⟩ = 0,

(51)
�⟨nm⟩
�t

+
�⟨nvim⟩

�xi
= 0,

�(nm)

�t
+

�
�
nuim

�
�xi

= 0,

(52)�n

�t
+

�
(
nui

)
�xi

= 0.

3.3 � Momentum conservation

Letting � equals mvj , from Eq. (50), we obtain

of which,

due to, as mentioned, the partial derivative of velocity vi 
with respect to coordinate xi vanishes. Furthermore, from 
Eqs. (64) and (65), it follows

When substituting Eq. (54) into Eq. (53), and using the 
related integration formulations, we obtain

where  we  have  u sed  Eq .   (42 )  t o  ob t a in 
⟨nF̂jK⟩ + ⟨nF̂iv�ij⟩ = ⟨nF̂jT⟩ = nF̂j.

When the mass conservation Eq. (51) is introduced into 
Eq. (56), we obtain its first two terms

which gives

that is the momentum conservation law for fluids. In this 
equation, on the right-hand side, the first term �(nkT)∕�xj 
denotes the contribution from thermal pressure p̂ = nkT  
given in Eq. (1), the second term �(n�)∕�xj is the contribu-
tion from the stress tensor as shown in Eq. (20). Therefore, 
we obtain

(53)

�⟨nvj⟩
�t

+
�⟨nvivj⟩
�xi

− ⟨nvi
�vj

�xi
⟩ − ⟨nF̂iv�ij⟩ − ⟨n�̂ �vj

�
�
0.5vivi

�⟩ = 0,

(54)

⟨nvi
𝜕vj

𝜕xi
⟩ = 0, ⟨n�𝜗 𝜕vj

𝜕
�
0.5vivi

�⟩ = ⟨nd�K
dt

𝜕vj

𝜕�K
⟩ = ⟨nv̇j⟩ = ⟨n�FjK⟩,

(55)
⟨vivj⟩ = ⟨(vi − ui)(vj − uj)⟩ + ⟨vj⟩ui + ⟨vi⟩uj − uiuj = pij + uiuj,

pij = ⟨(vi − ui)(vj − uj)⟩ = (kT + �)�ij.

(56)
�(nuj)

�t
+

�(nuiuj)

�xi
+

�(nkT)

�xj
+

�(n�)

�xj
− nF̂j = 0,

(57)

�(nuj)

�t
+

�(nuiuj)

�xi
= uj

[
�n

�t
+

�
(
nui

)
�xi

]
+ n

(
�uj

�t
+ ui

�uj

�xi

)
,

(58)n

(
�uj

�t
+ ui

�uj

�xi

)
= n

duj

dt
= −

�(nkT)

�xj
−

�(n�)

�xj
+ nF̂j,

(59)n
duj

dt
= −

�p̂

�xj
+ �ji,i + nF̂j.
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3.4 � Energy conservation

Mechanical energy conservation  When we do not interest in 
thermal effects, the term �p̂∕�xj equals 0 , so that we have the 
momentum conservation Eq. (59) for mechanical systems. 
Multiplying uj on both sides of the mechanical momentum 
equation, we obtain

that is

from which, when Eq. (10) is used for AIME of the same 
mass per unit volume, it yields

Here qi is the energy-flow density vector, of which the 
positive value implies the energy flowing from the inside 
to outside of the volume. Physically, Eq. (62) is the conser-
vation law of mechanical energy, also called as the energy 
flow equilibrium equation, and energy flow density vector is 
included [116–118], which represents that the summation of 
the time change rate of kinetic and mechanic-internal energy 
equals a summation of the power of the body force nF̂j per 
volume and the power flowing into the body from outside.

Total energy conservation  To derive the total energy con-
servation, we take � = mvjvj∕2 in Eq. (50) and obtain

where due to the same reason for Eq. (54), we have

When substituting Eq. (64) into Eq. (63), and using the 
result obtained by Eq. (3.1.2), we have

it follows

(60)n
d(0.5ujuj)

dt
= �ji,iuj + nF̂juj,

(61)
n
d(0.5ujuj)

dt
= (uj�ji),i − �jiVji + nF̂juj = −qi,i − �jiVji + nF̂juj,

(62)n
d(0.5ujuj)

dt
+

3nd�

2dt
= −qi,i + nF̂juj.

(63)

�⟨nvjvj⟩
2�t

+
�⟨nvivjvj⟩

2�xi
− ⟨nvi

�
�
vjvj

�
2�xi

⟩

− ⟨nF̂iv

�
�
vjvj

�
2�vi

⟩ − ⟨n�̂K
�
�
vjvj

�

2�
�
0.5vivi

�⟩ = 0,

(64)
⟨nvi

𝜕
�
vjvj

�
2𝜕xi

⟩ = 0, ⟨n�Fiv

𝜕
�
vjvj

�
2𝜕vi

⟩

= ⟨nv̇ivvj𝛿ij⟩ = ⟨n d

dt
[(v

i
vi)v∕2]⟩ = ⟨n�𝜗v⟩.

(65)⟨n�̂v⟩ + ⟨n�̂K
�
�
vjvj

�

2�
�
0.5vivi

�⟩ = ⟨n�̂T⟩ = nF̂juj + n�̂,

Using Gaussian integrations [99], we obtain

by which, the first two terms on the left-hand side in Eq. (66) 
become

where the mass conservation Eq. (51) has been used. Fur-
thermore, defining

and considering

obtained from Eqs. (20) and  (26), we can arrange Eq. (66) 
as

When the conservation of mechanical energy in Eq. (62) 
is introduced into Eq.  (71), and considering Eqs.  (10) 
and  (23) averagely give qi,i = �ijVij , we obtain the thermal 
energy conservation equation.

Physically, on the right-hand side of this equation, the 
first term denotes the thermal energy flow, the second term 
is the tress power, which transforms into thermal energy due 
to viscosity, and the third one is the energy generation from 
the external energy source.

It has been noted that the conservation laws derived 
from BTE by introducing the second order terms of par-
tial derivatives of velocity with respect to xi [99]. Also, as 
reported in many references, by using the Chapman-Enskog 
expansions, a multi-scaling expansion [18], to express EDF 
and its derivatives in the forms of small parameter � , the 
conservation laws are derived. Here, based on the amended 

(66)
�⟨nvjvj⟩
2�t

+
�⟨nvivjvj⟩

2�xi
− nF̂juj − n�̂ = 0.

(67)
⟨vjvj⟩ = 3(kT + �) + ujuj, ⟨vivjvj⟩ = 5(kT + �)ui + uiujuj,

(68)

nd
[
3(kT+�)

2
+

ujuj

2

]

dt
+

[
3(kT + �)

2
+

ujuj

2

][
�n

�t
+

�
(
nui

)
�xi

]

+

�
[
n(kT + �)ui

]
�xi

=

nd
[
3(kT+�)

2
+

ujuj

2

]

dt
+

�
[
n(kT + �)ui

]
�xi

,

(69)
�
[
n(kT)ui

]
�xi

= hi,i

(70)

�
[
n(�)ui

]
�xi

=
�(n�)

�xi
ui + n�

�ui
�xi

= −�ij,jui + n�
�ui
�xi

= qj,j + �ijui,j + n�
�ui
�xi

= 0,

(71)

nd(3kT∕2)

dt
+

nd(ujuj∕2)

dt
+

3nd�

2dt
+ hi,i − nF̂juj − n�̂ = 0.

(72)
nd(3kT∕2)

dt
= −hi,i + qi,i + n�̂ = −hi,i + �ijVij + n�̂.
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EDF, we can directly derive the conservation laws without 
additional higher order derivatives of the velocities, or the 
Chapman-Enskog expansions. It is more important, by add-
ing the terms of the partial derivatives of EDF with respect 
to the streaming velocity and the instant kinetic energy, the 
resultant energy conservation equation includes the external 
energy generation source in it, which has not found in the 
current publications. The introduced internal mechanical 
energy in EDF involves the gradient of the velocity, which 
was not considered in the Boltzmann’s theory for dilute ideal 
gases. The amended theoretical EDF provides a complete 
theory on LBM.

4 � Improved lattice Boltzmann method

The Sects. 2 and 3 confirm the following key points: (1) 
the amended EDF satisfies the Boltzmann’s H-theorem and 
the three conservation laws in continuum mechanics, so 
that it is the theoretical solution of BTE; (2) in EDF, there 
are three macroscopic parameters, i.e., mass density, mean 
velocity, and internal energy, which respectively are func-
tions of time and space point, therefore at different points in 
the time–space frame, the corresponding EDFs generally are 
different; (3) if we know the three macroscopic parameters 
at a point in the time–space frame, we will know the corre-
sponding EDF at the same point, the solution at this point of 
BTE; (4) in a reverse case, if we obtain the solution of BTE 
at a point, we will know the corresponding EDF, so that the 
three macroscopic parameters of continuum mechanics can 
be derived from the moment equations.

The aim of LBM is to obtain the solution of BTE at every 
point in the time–space frame, then to obtain the macro-
scopic parameters which are the solution of the problems in 
continuum mechanics. To reach this aim, the discrete BTE 
is necessary. Here, based on the amended EDF, we develop 
an improved LBM, of which the main improvement is the 
total internal energy as a macroscopic parameter required to 
be updated in each time step.

4.1 � Discrete lattice Boltzmann equation (LBE)

It has been shown that discrete LBE can be obtained from 
the continuous BTE, see for examples, Refs. [29–32]. For a 
single particle I, the Bhatnagar-Gross-Krook (BGK) form of 
the continuous BTE [13, 34, 35] can be modified as

(73)

[
𝜕

𝜕t
+ vi

𝜕

𝜕xi
+ v̇i

𝜕

𝜕vi
+ �𝜗K

𝜕

𝜕(0.5v ⋅ v)

]
fI = −

1

𝜏

(
fI − f I

0

)
,

in which, a new term involving energy as shown in Eq. (41) 
is added, and the amended EDF f I

0
 for 3-D case is given in 

Eq. (38), when using the total internal energy per unit par-
ticle �̂  defined in Eq. (27), it is

which is the function of the particle streaming velocity vi 
and the three macroscopic variables: mass density � , mean 
velocity ui , and internal energy �̂  . The energy parameter 
including the thermal and mechanical ones is defined as

which is applied to the ideal gases/fluids, the non-thermal 
viscous fluids, and the thermal viscous fluids, respectively. 
The dimension of the internal energy per unit particle / mass 
is Nm∕kg = (ms−1)

2 , so that the ratio of the kinetic energy 
over the internal energy, 0.5u ⋅ u∕�̂  , is non-dimensional 
parameter. For example, in the ideal gas case, we have

 where we have used Eq. (1) for the definition of the gas 
pressure, the relationship between the dynamic pressure p̂ 
and the sound speed C for the barotropic fluid is p̂ = �C2 
[113–115], and M is the Mach number.

Making a time integration of Eq. (73) from time t  to 
t + �t = t + 1 , we obtain the change of the EDF from the 
original equilibrium state (xi, vi, t) to its state (xi + ei

I
, vi, t + 1) 

due to the velocity change ei
I
 , therefore we have

Here, v̇I denotes the particle acceleration or the particle 
force per unit mass, that is assumed as a constant during 
the small time-period �t . The velocities ei

I
 at the nodes I are 

referred as the microscopic velocities. The force FI consists 
of the particle internal interaction force and the possible 
external force acted at the particle. If there is no external 
forces, the internal interaction forces between the two par-
ticles satisfy the third Newton’s law, so that its summation 

(74)

f I
0

(
�, �̂, ui, vi

)
=

�

(4π�̂∕3)
3∕2

exp

[
−
3(vi − ui)(vi − ui)

4�̂

]
,

(75)

�̂ = 3T∕2 =

⎧
⎪⎨⎪⎩

3kT∕2, for ideal gases and fluids,

3�∕2, for non-thermal viscous fluids,

3(kT + �)∕2, for thermal viscous fluids,

(76)

3u ⋅ u

2�̂
=

3�u ⋅ u

3�kT
=

p̂u ⋅ u∕C2

p̂
= M2,M =

u

C
=

u√
kT

,

(77)

fI
(
xi + ei

I
, vi, t + 1

)
− fI

(
xi, vi, t

)
= −

1

�f

(
fI − f I

0

)
− FI − Θ̂I ,

(78)
𝜏f =

𝜏

𝛿t
, v̇i × 𝛿t

𝜕fI
𝜕vi

= FI =
�Fi
I

𝜕fI
𝜕vi

,

�Fi
I
= v̇I ,

�𝜗K × 𝛿t
𝜕fI

𝜕(0.5v ⋅ v)
= �ΘI , 𝛿t = 1.
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over the total particles vanishes. Also, the term Θ̂I is the 
contribution from energy generation rate �̂K  , which van-
ishes if no external energy generation source in the problem.

Using Eqs.  (39) and (40) divided by the summations 
over particle I with velocity vIj replaced by the velocities 
e
j

I
 , and n = �, as well as noting �fI∕�(0.5v ⋅ v) = −1.5fI∕�̂  

and �fI∕�vi = −1.5fI
�
vi − ui

�
∕�̂ = −3fI

�
vi − ui

�
∕
√
2�̂  , the 

following moment equations can be obtained:

It should be noticed that the force F̃j and the energy genera-
tion rate 

∼

� respectively are the external force and the external 
energy generation rate per unit mass of the medium, since the 
internal interaction between the two particles are governed by 
the third Newton’s law, so that the summations cancel them.

The exponential function can be represented in the power 
series

(79)
∑
I

FI = ∫ V

F̂i

�f

�vi
dV = 0,

∑
I

Θ̂I = ∫ V

�̂K
�fI

�(0.5v ⋅ v)
dV = −∫ V

3�̂KfI

2�̂
dV = −

3�
∼

�

2�̂
,

(80)
∑
I

FIe
j

I
= ∫ V

�Fi

𝜕f

𝜕vi
e
j

I
dV = −

3𝜌F̃j

2�𝜀
,

∑
I

Θ̂Ie
j

I
= ∫ V

�̂K
�fI

�(0.5v ⋅ v)
e
j

I
dV = −∫ V

3�̂KfI

2�̂
e
j

I
dV = −

3�
∼

�

2�̂
uj,

(81)
∑
I

FIe
j

I
er
I
= ∫ V

�Fi

𝜕f

𝜕vi
e
j

I
er
I
dV = −

3𝜌

2�𝜀
(F̃jur + F̃ruj),

∑
I

Θ̂Ie
j

I
er
I
= ∫ V

�̂K
�fI

�(0.5v ⋅ v)
e
j

I
er
I
dV = −

3�
∼

�

2�̂
(
2�̂

3
�jr + uruj),

(82)

∑
I

FIe
j

I
er
I
el
I
= ∫ V

�Fi

𝜕f

𝜕vi
e
j

I
er
I
el
I
dV

= −
3𝜌

2�𝜀

[
F̃j

(
T𝛿rl + urul

)
+ F̃r

(
T𝛿jl + ujul

)
+ F̃l

(
T𝛿rj + uruj

)]

∑
I

Θ̂Ie
j

I
er
I
el
I
= ∫ V

�̂K
�fI

�(0.5v ⋅ v)
e
j

I
er
I
el
I
dV

= −�
∼

�
[(

uj�rl + ur�jl + ul�jr

)
+

3

2�̂
ujulur

]
.

(83)ex = 1 + x +
x2

2!
+

x3

3!
+⋯ ,

of which, the radius of convergence is infinite. Approximat-
ing to the second order of u∕

√
2�̂  , we have

from which, Eq. (74) can be approximated as

in which, u denotes the non-dimensional macroscopic veloc-
ity, vI = vI∕

√
2�̂  is a non-dimensional microscopic velocity 

at node I, and the non-dimensional weight wI absorbs the rest 
coefficient. The weight can be determined by the set of 
velocities of the scheme based on the moment equations. It 
should notice that 

�√
2�̂
�−3

 of dimension 
(
ms−1

)−3 is used 
for the volume element dV  of the velocity space being non-
dimensional one. Therefore, we may write Eqs. (39) and (40) 
in the following forms by means of non-dimensional 
velocities:

and

(84)

e
−

3(v−u)⋅(v−u)

4�̂ = e
−

3v⋅v

4�̂ e
6v⋅u−3u⋅u

4�̂ = e
−

3v⋅v

4�̂

[
1 +

3v ⋅ u

2�̂
+

9(v ⋅ u)2

8�̂
2

−
3u ⋅ u

4�̂

]

(85)

f I
0

�
�, �̂, ui, vI

�
=

f
I

0�√
2�̂
�3

,

f
I

0
= �wI

�
1 + 3v

I
⋅ u +

9
�
v
I
⋅ u

�2
2

−
3u ⋅ u

2

�
,u =

u√
2�̂

,

(86)zero order
∑
I

f
I

0
= �,

1st order
∑
I

f
I

0
(v

j

I
− uj) = 0,

2nd order
∑
I

f
I

0

(
v
j

I
− uj

)(
v
k

I
− uk

)
= ��jk∕3,

3rd order
∑
I

f
I

0

(
v
j

I
− uj

)(
v
k

I
− uk

)(
v
l

I
− ul

)
= 0,

4th order
∑
I

f
I

0

(
v
j

I
− uj

)(
v
k

I
− uk

)(
v
l

I
− ul

)(
v
l

I
− ul

)
= 5��jk∕9,

(87)zero order
∑
I

f
I

0
= �,

1st order
∑
I

f
I

0
v
i

I
= �ui,

2nd order
∑
I

f
I

0
v
i

I
v
j

I
= �(�ij∕3 + uiuj),
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It may be necessary to mention that according to the ten-
sor rule [113–115], we have

so that from Eq. (40), the energy conservation equations are

In the history, the approximated form of the original EDF 
with the n-dimensional and b-velocities (DnQb) models was 
developed by Qian et al. [25, 26, 63]. Here, the number n = 1, 
2, 3 denotes the dimension of problem, while b indicates the 
node number of the scheme. To obtain the weights wI  , He 
and Luo [30] used a third Hermite formula to approximate 
the integrals of the moment equation, and Abe [29] assumed 
wI having a simple truncated functional form based on eI  . 
More generally, the Gaussian quadrature can be adopted to 
determine the weights for the exact values of the moment 
integrals [88], which is supported by the fundamental theo-
rem [89].

It should be noticed that the moment equations in 
Eqs. (86) and  (87) do not include the force effect given in 
Eq. (76). If there are no external forces, these moment equa-
tions are valid, but if there exist some external forces, the 
force effect in Eq. (76) must be included.

4.2 � Schemes of LBM

Using the approximate EDF in Eq. (85), i.e.,

the following schemes of LBM can be established in the 
DnQb forms.

3rd order
∑
I

f
I

0
v
i

I
v
j

I
v
l

I
= �(ul�ij + ui�lj + uj�il)∕3 + �uiujul,

4th order
∑
I

v
i

I
v
j

I
v
l

I
v
l

I
=

5��ij

9
+

�
(
7uiuj + ulul�ij

)
3

+ �uiujulul.

(88)�ii =

⎧
⎪⎨⎪⎩

1, 1 − D case,

2, 2 − D case,

3, 3 − D case,

(89)

�
I

f
I

0
vi
I
v
i

I
=

⎧
⎪⎨⎪⎩

�(2�̂∕3 + uiui), 1 − D case,

�(4�̂∕3 + uiui), 2 − D case,

�(6�̂∕3 + uiui), 3 − D case

�
I

f
I

0
v
i

I
v
i

I
=

⎧⎪⎨⎪⎩

�(1∕3 + uiui), 1 − D case,

�(2∕3 + uiui), 2 − D case,

�(3∕3 + uiui), 3 − D case.

(90)f
I

0
= �wI

[
1 + 3v

I
⋅ u +

9
(
v
I
⋅ u

)2
2

−
3u ⋅ u

2

]
,

4.2.1 � 1‑D scheme D1Q3

For D1Q3, we choose three nodes ( −1, 0, 1) with the corre-
sponding velocity ( −c, 0, c) , so that from Eq. (90), it follows

Considering the symmetry of node locations, we have no 
reason more favor one of them, so that to choose the same 
weights at the two side nodes, w1 = w−1, then from the first 
two moment equations in Eq. (15), we obtain the weights 
w1 = w−1 = 1∕6 and w0 = 4∕6.

4.2.2 � 2‑D scheme D2Q9

For 2-D problem, we choose 9 nodes scheme shown by 
Fig. 3(a), with the velocities and the weights at the nodes 
have been given in many publications, such as Refs. [25, 26, 
29, 30, 63, 88, 99], which are

4.2.3 � 3‑D schemes D3Q19

For 3-D problems, D3Q19 scheme chooses the 19 nodes as 
shown by Fig. 3(b). The velocities and the weights at the 
nodes have been presented in the wide publications, which are

f −1
0

= �w−1

�
1 +

−3cu

c2
+

9(cu)2

2c4
−

3u2

2c2

�
, c =

√
2�̂,

(91)f 0
0
= �w0(1 −

3u2

2c2
),

f 1
0
= �w1

[
1 +

3cu

c2
+

9(cu)2

2c4
−

3u2

2c2

]
.

v0 = 0,w0 = 4∕9

(92)vI =
(
cos

I − 1

2
π, sin

I − 1

2
π
)
c,wI = 1∕9, I = 1 − 4,

vI =
√
2
�
cos

2I − 9

2
π, sin

2I − 9

2
π
�
c,wI = 1∕36, I = 5 − 8.

v0 = 0,w0 = 1∕3,

vI =
(
cos

I − 1

2
π, sin

I − 1

2
π, 0

)
c,wI = 1∕18, I = 1 − 4,

(93)vI = (0, 0, cos(I − 5)π)c,wI = 1∕18, I = 5, 6,

vI =
√
2
�
cos

2I − 13

2
π, sin

2I − 13

2
π, 0

�
c,wI = 1∕36, I = 7 − 10,
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4.3 � Generalised forces

In the publications, some force models have been proposed. 
For example, reference [48] suggested an acceleration model 
to denote a fore 

where a denotes the macroscopic acceleration of the particle, 
while Ref. [49] proposed a physical force model to distribute 
the physical force on the cell particles using distribution 
function in the form

 where F is the physical force vector defined by

Here �0 is the chemical potential of the bulk energy of 
fluid, and � denotes a gradient parameter relating the inter-
face thickness of two-phase fluids.

In this developed method of the paper, the introduced 
terms of external force and energy generation resources are 
defined in Eqs. (76) and  (78) and the corresponding moment 
equations describe by Eqs. (79)–(82). Therefore, there is no 
need to use any above force models proposed in the litera-
tures. Based on the moment Eqs. (79)–(82) and using non-
dimensional streaming velocities vI =

vI√
2�̂

 and uI =
uI√
2�̂

 , we 

vI =
√
2
�
cos

2I − 21

2
π, 0, sin

2I − 21

2
π
�
c,wI = 1∕36, I = 11 − 14,

vI =
√
2
�
0, cos

2I − 29

2
π, sin

2I − 29

2
π
�
c,wI = 1∕36, I = 15 − 18.

(94)FI = −
(
1 −

1

2�

) (vI − u) ⋅ a

C2
S

f0,

(95)FI = wI

[
v
I

C2
S

+

(
v
I
⋅ u

)
v
I

C4
S

−
u

C2
S

]
⋅ F,

(96)F = ∇�C2
S
− �∇

(
�0 − �∇2�

)
.

define the following three generalised forces contributed by 
the external force and energy generation source for the three 
conservation equations used in Sect. 4.4, which are 

where superscripts m, v, and e respectively represent mass, 
momentum, and energy, Fj =

F̃j√
2�𝜀

 and � =
∼

�

2�̂
 respectively 

denote the non-dimensional external force and energy gen-
eration source intensity per unit mass of the material. For 
the force and energy generation source at a time or space 
point, they can be denoted using Delta function, for example, 
a force applied at point xa and at time tb can be denoted as

4.4 � Implementation

For programing, LBM equation with its characteristic time 
� concerning viscosity ν of the fluid to be chosen by the 
problems, can be generally written as

(97)F
m
=
∑
I

FI +
∑
I

Θ̂I = −
3�

∼

�

2�̂
= −3��,

(98)

F
v

j
=
�
I

FIv
j

I
+
�
I

�ΘIv
j

I
= −

3𝜌F̃j√
2�𝜀

−
3𝜌

∼

𝜗

2�𝜀
uj = −3𝜌(Fj + 𝜗uj),

(99)

F
e

jr
=
∑
I

FIv
j

I
v
r

I
+
∑
I

Θ̂Iv
j

I
v
r

I

= −3�

[(
Fjur + Fruj

)
− �

(
�jr

3
+ uruj

)]
,

(100)Fj =
F̃j𝛿(x − xa, t − tb)√

2�𝜀
.

(101)

f I
(
xi + vi

I
, t + 1

)
− f I

(
xi, t

)
= −

1

�

(
f I − f

I

0

)
− FI − Θ̂I ,

Fig. 3   a D2Q9 scheme for 2-D 
problems and b D3Q19 scheme 
for 3-D problems [100]
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where FI and Θ̂I denote the force and energy change rate, 
including the internal and external ones, per unit mass at 
point I. For example, the kinematic viscosity has been used 
in the literatures, i.e.,

In the implementation processes published in most liter-
atures, the collision step is before the streaming one. It has 
been noticed that in some publications, such as Ref. [41], the 
streaming step is arranged before the collision step, which 
are: (a) streaming move x to x + vI to obtain a distribution 
function f

∗

I
 , then update the macroscopic parameters and the 

equilibrium distribution function using the moment equa-
tions; (b) replacing f I by f

∗

I
 in Eq. (101) to collision to obtain 

f I
(
x + vI, t + 1

)
 . The details of this process are described as 

follows.
Streaming step to obtain the distribution function by 

using Eq. (90), i.e.,

Macroscopic variables update calculations based on f
(∗)

I
 

and the following conservation laws with no external force 
included:

where d̃ = 1, 2, 3 is dimension number.
Equilibrium distribution function based on macroscopic 

variables (*) is defined as

Collision step to obtain the distribution function

(102)� =
2� − 1

6

(Δx)2

Δt
=

2� − 1

6
C2Δt.

(103)

f
I
= �wI

�
1 + 3v

I
⋅ u +

9

�
�
�
⋅ �

�
2

2

−
3u ⋅ u

2

�
, u =

u√
2�̂

,

vI =
v
I√
2�̂

, f I
�
x + v

I
, t
�
= f

(∗)

I
.

mass density
∑
I

f
(∗)

I
= �(∗),

(104)velocity
∑
I

f
(∗)

I
v
i

I
= (�ui)

(∗)
,

internal energy
∑
I

f
(∗)

I
v
i

I
v
j

I
= (

�ij

3
� + �uiuj)

(∗)

,

∑
I

f
(∗)

I
v
i

I
v
i

I
= (

d̃

3
𝜌 + 𝜌uiui)

(∗)

,

(105)f
I

0

(
x + vI, t

)
= f

I(∗)

0
.

Final macroscopic variables calculations based on the dis-
tribution function f

(�+1)

I
 and the conservation laws including 

the generalised external force effect given in Eqs. (97)–(99), 
i.e.,

mass:  
∑

I f
(�+1)

I
= �(�+1) −

�
F
m
�(�)

,

internal energy:

Here the values at the original position (x, t) marked by (�) , 
since generalised forces in Eqs. (97) and (98) are the ones at 
(�) , which involves the physical macroscopic quantities only.

4.5 � Matrix equations for implementation process

4.5.1 � Implementation steps in matrix form

To investigate the performance of a scheme, it is conveni-
ence to adopt the matrix notations to express the implementa-
tion processes. For a convenience of notations, we identify 
the quantities at the position (x, t), the middle position after 
streaming 

(
x + vI , t

)
 and the last position 

(
x + vI , t + 1

)
 by the 

super-indexes (�), (∗), and (� + 1) , respectively. Therefore, the 
implementation process in matrix form is as follows.

Streaming  The distribution function vector f
(∗)

 at the 
space–time position 

(
x + vI , t

)
 is obtained, which is based on 

the macroscopic variable vector U
(�)

 consisting of the mass 
density, momentum, and total internal energy �̂  of the fluid 
at the position (x, t) and through the streaming operation by 
means of the following streaming matrix S,

where the streaming velocity vI is defined as

(106)f I
(
x + vI, t + 1

)
= f

(∗)

I
+

1

�

[
f
I(∗)

0
− f

(∗)

I

]
= f

(�+1)

I

(107)Velocity ∶
∑
I

f
(�+1)

I
v
i

I
= (�ui)

(�+1)
− (F

v

i
)
(�)
,

∑
I

f
(�+1)

I
v
i

I
v
j

I
= (

�ij

3
� + �uiuj)

(�+1)

− (F
e

ij
)
(�)
,

∑
I

f
(𝜗+1)

I
v
i

I
v
i

I
= (

d̃

3
𝜌 + 𝜌uiui)

(𝜗+1)

− (F
e

ij
)
(𝜗)
.

(108)f

(∗)
= S�̂

(�)
U

(�)
,

S = wV,V =

⎡⎢⎢⎢⎢⎣

1 0 0 1

1 v
i

1
v
i

1
v
j

1
1

⋮ ⋮ ⋮ ⋮

1 v
i

N
v
i

N
v
j

N
1

⎤⎥⎥⎥⎥⎦
, f =

⎡⎢⎢⎢⎢⎣

f
0

f
1

⋮

f
N

⎤⎥⎥⎥⎥⎦
,��

(𝜗)
=

⎡⎢⎢⎢⎢⎣

1 0 0

0 3 0
−3𝛿ij

2
0

9

2
1

2
d̃ 0

−3

2
𝛿ij

⎤⎥⎥⎥⎥⎦
,

U
(�)

=

⎡⎢⎢⎣

�

�ui

�(
�ij

3
+ uiuj)

⎤
⎥⎥⎦
, ui =

ui√
2�̂

,w =

⎡⎢⎢⎢⎣

w0 0 0 0

0 w1 0 0

0 0 ⋱ 0

0 0 0 wN

⎤⎥⎥⎥⎦
,
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from which it follows that

Updated calculations  The macroscopic displacement 
vector U

(∗)
 and internal energy �̂(∗) at position 

(
x + vI , t

)
 is 

calculated, which is based on the obtained distribution func-
tion vector f

(∗)
 and through a conservation transformation by 

means of the following conservation matrix 
∼

V,

The row equations of the matrix shown in Eq. (111) can 
be respectively written as

which, when Eqs. (108)–(110) are substituted, respectively 
yields the following conservation laws of mass, momentum, 
and energy,

From the momentum equation, we obtain

which, when substituted into the energy equation, gives

(109)vi
0
= 0, v

i

I
=

vi
I√
2�̂

, I = 1, 2,⋯ ,N,

(110)f
I(∗)

= LI �̂
(�)
U

(�)
, LI = wI

[
1 v

i

I
v
i

I
v
j

I
1
]
.

(111)
∼

V f
(∗)

= U
(∗)
,

∼

V=

⎡
⎢⎢⎣

1 1 ⋯ 1

0 v
i

1
⋯ v

i

N

0 v
i

1
v
j

1
⋯ v

i

N
v
j

N

⎤
⎥⎥⎦
.

(112)

N�
I=0

f
I(∗)

= �(∗),

N�
I=0

vi
I√

2�̂(∗)
f
I(∗)

= (�ui)
(∗)
,

�N

I=0

vi
I
v
j

I

2�̂(∗)
f
I(∗)

= (�uiuj)
(∗)

+
�ij

3

�

(∗)

,

(113)�(∗) = L��̂
(�)
U

(�)
, L� =

∑
N

I=0
LI ,

(�ui)
(∗)

=
1√
2�̂(∗)

Lp�̂
(�)
U

(�)
, Lp =

�N

I=0
vi
I
LI ,

1

2�𝜀(∗)
Le��

(𝜗)
U

(𝜗)
=
(
𝜌uiui

)(∗)
+

d̃

3
𝜌(∗),Le =

∑N

I=0
vi
I
vi
I
L
I
.

(114)2�̂(∗)(�uiui)
(∗)

=
U

T
�̂
T
L
T

p
L
p
�̂
(�)
U

(�)

�(∗)
,

(115)

2

3
�𝜀(∗)d̃ =

Le��
(𝜗)
U

(𝜗)

𝜌(∗)
−

U

T
��
T
L

T

p
L
p
��
(𝜗)
U

(𝜗)

𝜌(∗)𝜌
(∗)

=
U

T
��
T
E��

(𝜗)
U

(𝜗)

U

T
��
T
H��U

,

E = L
T
𝜌
L
e
− L

T

p
L

p
,H = L

T
𝜌
L
𝜌
.

This equation provides a transformation to obtain the 
internal energy �̂(∗) from the original variables before the 
streaming.

From the macroscopic variable vectors obtained by 
Eq. (111), the equilibrium distribution function f

(∗)

0
 can be 

derived by using Eq. (108) as

Collision: From the results obtained by Eqs.  (108) 
and (116), the distribution function f

(�+1)
 at position (

x + vI , t + 1
)
 can be obtained by the following collision 

calculation.

Further-updated macroscopic variables: Using Eq. (111) 
and replacing the distribution function f

(∗)
 by the f

(�+1)
 at 

position 
(
x + vI , t + 1

)
 , and including the external forces 

given in Eqs. (97)-(99), we obtain the macroscopic variables 
at position 

(
� + �I , t + 1

)
 as

4.6 � Integrated transformation equation

The integrated transformation equation of LBM can be 
derived by combining the equations of each step given 
in Sect. 4.5.1. Substituting Eq. (117) into Eq. (118), we 
obtain

 from which, when Eqs. (4.5.1) and (116) are substituted, 
it follows

(116)f

(∗)

0
= S�̂

(∗)
∼

V f

(∗)
,
[
f

(∗)

0

]T
=
[
f
0

0
f
1

0
⋯ f

N

0

]
.

(117)f
(�+1)

=
(
� − 1

�

)
f
(∗)

+
1

�
f
(∗)

0
.

(118)

∼

V f

(�+1)
= U

(�+1)
+ F

(�)
,U

(�+1)
=

∼

V f

(�+1)
− F

(�)
, F

(�)
=

⎡
⎢⎢⎢⎣

(F
m
)
(�)

(F
v

i
)
(�)

(F
e

ij
)
(�)

⎤
⎥⎥⎥⎦
.

(119)U
(�+1)

=
∼

V
[(

� − 1

�

)
f
(∗)

+
1

�
f
(∗)

0

]
− F

(�)
,

(120)U

(�+1)
= ŜU

(�)
− F

(�)
,

(121)Ŝ =
[(

� − 1

�

)
V̂ +

1

�
V̂V̂

]
, V̂ =

∼

V S�̂
(�)
,
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in which the �̂(∗) used in Eq. (113) can be approximated by 
its original values �̂(�) , so that it is updated by

After the detailed investigations on the matrices E
(�) and 

H
(�) , we have found that the former has a factor 2 �̂(�) , but the 

later does not involve �̂(�) , therefore we can write

where � is called as the ratio of internal energy change from 
the step (�) to (� + 1).

4.7 � Performance investigations

4.7.1 � Characteristic matrix

The performance of the scheme is governed by the matrix Ŝ , 
which is essentially determined by the matrix V̂ combining the 
streaming matrix shown in Eq. (4.5.1) and the updated matrix ∼

V shown in Eq. (111) of the scheme. Therefore, this matrix is 
called as the characteristic matrix of the scheme. Using Eqs. 
(4.5.1), (111), and (121), we can obtain the matrix

of which, during the matrix multiplications, we have intro-
duced the following definitions

(122)

2

3
�𝜀(𝜗+1)d̃ =

[
U

(𝜗)
]T
E

(𝜗)
U

(𝜗)
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U

(𝜗)
]T
H

(𝜗)
U

(𝜗)
,E

(𝜗)
=
(
��
T
E��

)(𝜗)

,H
(𝜗)

=
(
��
T
H��

)(𝜗)

.

(123)

E
(𝜗)

= 2�𝜀(𝜗)
∼

E
(𝜗)

, 𝛾2 =
3

d̃

[
U

(𝜗)
]T∼

E
(𝜗)

U
(𝜗)

[
U

(𝜗)
]T
H

(𝜗)
U

(𝜗)
, 𝛾 =

√
�𝜀(𝜗+1)

�𝜀(𝜗)
,

(124)

�V =
∼

V S��
(𝜗)

=

⎡⎢⎢⎣

1 1 ⋯ 1

0 v
r

1
⋯ v

r

N

0 v
r

1
v
s

1
⋯ v

r

N
v
s

N

⎤
⎥⎥⎦
w

⎡
⎢⎢⎢⎢⎣

1 0 0 1

1 v
i

1
v
i

1
v
j

1
1

⋮ ⋮ ⋮ ⋮

1 v
i

N
v
i

N
v
j

N
1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0

0 3 0
−3𝛿ij

2
0

9

2
1

2
d̃ 0

−3

2
𝛿ij

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎣

1 1 ⋯ 1

0 v
r

1
⋯ v

r

N

0 v
r

1
v
s

1
⋯ v

r

N
v
s

N

⎤⎥⎥⎦
w

⎡
⎢⎢⎢⎢⎢⎣

1 +
d̃

2
0 −

3

2
𝛿ij

1 +
d̃

2
−

3

2
v
i

1
v
j

1
𝛿ij 3v

i

1

9

2
v
i

1
v
j

1
−

3

2
𝛿ij

⋮ ⋮ ⋮

1 +
d̃

2
−

3

2
v
i

N
v
j

N
𝛿ij 3v

i

N

9

2
v
i

N
v
j

N
−

3

2
𝛿ij

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

�
1 +

d̃

2

�
−

3

2
kij𝛿ij 3pi

9

2
kij −

3

2
𝛿ij

pr(1 +
d̃

2
) −

3

2
krij𝛿ij 3kri

9

2
k
rij
−

3

2
pr𝛿ij

krs(1 +
d̃

2
) −

3

2
krsij𝛿ij 3k

rsi 9

2
k̃rsij −

3

2
krs𝛿ij

⎤
⎥⎥⎥⎥⎦
,

∑N

I=0
wI = 1,

∑N

I=0
wIv

i

I
= pi,

∑N

I=0
wIv

i

I
v
j

I
= kij,

∑N

I=0
wIv

r

I
v
s

I
= krs,

As discussed before, geometrically, the weights of the 
schemes DnQb are center-symmetrical with the center 
streaming velocities vi

0
= 0, but the streaming velocities at 

non-central nodes are anti-center-symmetrical. As a result of 
this, we have pi = 0 = k

rij
 , so that the characteristic matrix 

in Eq. (124) reduces to

For different definitions of streaming velocity, the values 
of above terms are given as follows:

where � i
I
 denotes the unit directional vector at point I. It 

should be noted that for case (a), the change of internal 
energy 2�̂  is included in the matrix V̂  . Therefore, for the 
problems that involves the internal energy changes not 
neglected, the matrix V̂ should be updated for each cell. In 
the case (b), the internal energy is shown in the equation, 
and it can be directly updated, if necessary, in simulations.

4.8 � Eigenvalues of characteristic matrix

For 3-D problems, the displacement vector defined is a 
10-row vector: 1 mass density, 3 velocity components, and 
6 components of symmetrical tensor uiuj , so that the charac-
teristic matrix in Eq. (126) is a 10 × 10 matrix, and for 1-D 
and 2-D problems they are respectively a 3 × 3 and a 6 × 6 
matrix. Generally, the eigenvalue analysis of the matrix with 
higher order than 3 × 3 cannot be done by hand, but for the 
type of matrix in Eq. (126) can be analyzed as follows.

(125)
∑N

I=0
wIv

r

I
v
i

I
v
j

I
= k

rij
,
∑N

I=0
wIv

r

I
v
s

I
v
i

I
v
j

I
= k̃rsij.

(126)V̂ =

⎡⎢⎢⎣

V̂1 0 V̂13

0 V̂2 0

V̂31 0 V̂3

⎤⎥⎥⎦
,

�V
1

=

(
1 +

d̃

2

)
−

3

2

kij𝛿ij, �V2

= 3kri, �V
3

=
9

2

k̃rsij −
3

2

krs𝛿ij, �V13

=
9

2

kij −
3

2

𝛿ij,

�V
31

= krs(1 +
d̃

2

) −
3

2

krsij𝛿ij.

(127)

(a) vi
I
=

√
2�̂� i

I
, kij =

�N

I=0
wI�

i
I
�
j

I
,

krs =
�N

I=0
wI�

r
I
�s
I
, kri =

�N

I=0
wI�

r
I
� i
I
,

krsij =
�N

I=0
wI�

r
I
�s
I
� i
I
�
j

I
,

(128)

(b) vi
I
= � i

I
, kij =

∑N

I=0
wI

� i
I
�
j

I

2�̂
, krs =

∑N

I=0
wI

�r
I
�s
I

2�̂
,

kri =
∑N

I=0
wI

�r
I
� i
I

2�̂
, krsij =

∑N

I=0
wI

�r
I
�s
I
� i
I
�
j

I

4�̂2
,
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In 3-D case, the displacement vector and the characteris-
tic matrix in Eq. (126) can be respectively written as

We can write the characteristic matrix in a block form

where each block matrix consists of the elements at the 
corresponding positions identified by the line and row sub-
scripts in the matrix V̂ in Eq. (129). The characteristic equa-
tion for the eigenvalues of the matrix V̂ is given as

Using the Schur’s determinant identity [121], the deter-
minant in Eq. (131) is calculated as

or

From this result, the solutions of Eq.  (4.6.8) can be 
obtained by vanishing one of the following two lower order 
determinants,

This analysis provides a means to derive the eigenvalues 
of the characteristic matrix to analyze the performance of a 

(129)U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�u1
�u2
�u3

�
�

1

3
+ u1u1

�

�u1u2
�u1u3

�
�

1

3
+ u2u2

�

�u2u3

�
�

1

3
+ u3u3

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V̂1 0 0 0 V̂11
13

2V̂12
13

2V̂13
13

V̂22
13

2V̂23
13

V̂33
13

0 V̂11
2

V̂12
2

V̂13
2

0 0 0 0 0 0

0 V̂21
2

V̂22
2

V̂23
2

0 0 0 0 0 0

0 V̂31
2

V̂32
2

V̂33
2

0 0 0 0 0 0

V̂11
31

0 0 0 V̂1111
3

2V̂1112
3

2V̂1113
3

V̂1122
3

2V̂1123
3

V̂1133
3

V̂12
31

0 0 0 V̂1211
3

2V̂1212
3

2V̂1213
3

V̂1222
3

2V̂1223
3

V̂1233
3

V̂13
31

0 0 0 V̂1311
3

2V̂1312
3

2V̂1313
3

V̂1322
3

2V̂1323
3

V̂1333
3

V̂22
31

0 0 0 V̂2211
3

2V̂2212
3

2V̂2213
3

V̂2222
3

2V̂2223
3

V̂2233
3

V̂23
31

0 0 0 V̂2311
3

2V̂2312
3

2V̂2313
3

V̂2322
3

2V̂2323
3

V̂2333
3

V̂33
31

0 0 0 V̂3311
3

2V̂3312
3

2V̂3313
3

V̂3322
3

2V̂3323
3

V̂3333
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(130)V̂ =

[
A4×4 B4×6

C6×4 D6×6

]
,

(131)
|||V̂ − �I10×10

||| =
|||||
A4×4 − �I4×4 B4×6

C6×4 D6×6 − �I6×6

|||||
= 0.

(132)

||A4×4 − �I4×4
|| ≠ 0,

|||V̂ − �I10×10
||| = ||A4×4 − �I4×4

||
||||
∼

D6×6

||||,

∼

D6×6 = D6×6 − �I6×6 − C6×4

(
A4×4 − �I4×4

)−1
B4×6,

(133)

||D6×6 − �I6×6
|| ≠ 0,

|||V̂ − �I10×10
||| = ||D6×6 − �I6×6

||
||||
∼

A4×4

||||,

∼

A4×4 = A4×4 − �I4×4 − B4×6

(
D6×6 − �I6×6

)−1
C6×4.

(134)
||||
∼

A4×4

|||| = 0,
||||
∼

D6×6

|||| = 0.

scheme. However, although the two determinant equations 
are different orders, the derived algebraic equation with 

same order of eigenvalue �, so that it will not reduce the 
calculation tasks. It should be noted that eigenvalues of the 
characteristic matrix are the function of the internal energy 
of each simulation transformation.

4.9 � Performance analysis based on eigenvalues 
of characteristic matrix

The matrix V̂ is real matrix, of which the eigenvalues can 
be real or complex. If there exists a complex eigenvalue, 
its conjugate complex is also a complex eigenvalue of the 
matrix.

Eigenvalues and eigenvectors with their orthogonality 
The eigenvalues and the corresponding eigenvectors are 
governed by the following eigenvalue equation

Generally, we can represent the eigenvalue equation in 
the matrix form

where �I and � I denote the Ith eigenvalues and the corre-
sponding eigenvectors. If the eigenvalues are different, the 
eigenvectors are independent, so that the matrix �−1 exists. 
As the result of this, we have

which implies the eigenvalue of matrix V̂
2
 is the square of 

the eigenvalue of matrix V̂ and the corresponding eigenvec-
tor is same as the one of matrix V̂  . Therefore, we have

(135)V̂� = ��,
|||V̂ − �I

||| = 0.

(136)
V̂� = ��, � =

[
�1 ⋯ �10

]
, � = diag

(
�1,⋯ , �10

)
,

(137)

�
−1
V̂� = �, V̂ = ���

−1,

V̂V̂ = ���
−1
���

−1 = ��
2
�

−1,

V̂

2
� = ��

2,
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Amplifying factor and numerical damping   The inde-
pendent eigenvectors of the characteristic matrix V̂ span a 
complete characteristic space in which the displacement vec-
tor can be expressed as

where q denotes a displacement vector in the characteristic 
space. From this expansion, when Eq. (139) is substituted 
into Eq. (120), it follows

where the external force term has been excluded because it 
does not affect the performance of the characteristic matrix. 
Substituting Eq. (138) into Eq. (140), we obtain

which, when multiplying both side by �−1 , gives

Physically, this result implies that the performance of the 
scheme is determined by the eigenvalues of the characteristic 
matrix of the scheme.

Generally, we may assume the eigenvalues of the scheme 
consist of conjugate complex numbers, since the character-
istic matrix is real, therefore we have

where �J is complex with its conjugate marked by *. The two 
complex eigenvalues can be expressed in the form

Here �̂J and �J denote the module and phase angle of the 
complex eigenvalue, respectively. Using these notations, we 
can re-write Eq. (142) in the form

Here ∼A is called as a complex amplifying factor matrix, 
which produces the amplitude amplification and the phase 
shift. The phase shift implies a damping effect, and the 
damping factor vanishes if all eigenvalues are real. For 1-D 
problems, its characteristic matrix is a 3 × 3 real matrix, so 
that it must have at least one real eigenvalue.

(138)Ŝ =
(
� − 1

�
�� +

1

�
��

2
)
�

−1.

(139)U
(�)

= �q(�),U
(�+1)

= �q(�+1)

(140)�q(�+1) = Ŝ�q(�),

(141)�q(�+1) =
(
� − 1

�
�� +

1

�
��

2
)
q(�),

(142)q(�+1) =
(
� − 1

�
� +

1

�
�

2
)
q(�).

(143)� = diag(�1, �
∗
1
,⋯),

(144)�J = �̂Je
−i�J , �∗

J
= �̂Je

i�J , J = 1,2, 3,4, 5.

(145)q(�+1) =
∼

A q(�),
∼

A=
� − 1

�
� +

1

�
�

2.

5 � Examples

The key contribution of this paper is to include the internal 
energy parameter in the amended theoretical EDF, which 
allows the conservation laws to be obtained from the amended 
BTE. To illustrate the internal energy parameter effect, we 
consider the following hand-workable examples which can 
clearly explore the essential physical characteristics and avoid 
non-essential numerical treatment.

5.1 � Example 1: the performance of scheme D1Q3

For this scheme, we choose three nodes ( 0,−1,1) with the 
corresponding streaming velocity ( 0,−v, v) and the weights 
w1 = w−1 = 1∕6 and w0 = 4∕6.

5.1.1 � Streaming velocity vi
I
=

√
2"̂ˇi

I

Characteristic matrix and its eigenvalues  Using the method 
given in Sects. 4.6.1 and 4.6.2 and considering the case with 
no external forces, we can obtain the following matrices for 
this D1Q3 scheme. For this 1D problems, we have the values

from which, when Eq. (146) is substituted into Eq. (126), it 
follows the characteristic matrix of the system, i.e.,

Adopting the streaming velocity form shown in Eq. (127), 
we obtain

The eigenvalues and eigenvectors of the matrix V̂ can be 
obtained as

(146)d̃ = 1, i = j = 1 = r = s,

(147)V̂ =

⎡⎢⎢⎣

V̂1 0 V̂13

0 V̂2 0

V̂31 0 V̂3

⎤⎥⎥⎦
,

�V
1

=
3

2

−
3

2

k11, �V
2

= 3k11, �V
3

=
9

2

k̃1111 −
3

2

k11,

�V
13

=
9

2

k11 −
3

2

,
�V
31

=
3

2

k11 −
3

2

k1111.

(148)
v =

√
2�̂, �0 = 0, �−1 = −1, �1 = 1, k11 = 1∕3 = k1111, V̂ = I.

(149)

�
1

= 1,�
1

=

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦
;�

2

= 1,�
2

=

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦
;

�
3

= 1,�
3

=

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
;� = I,� = I = �

−1
.
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Amplifying matrix  The amplifying matrix of the transfor-
mation of the scheme in Eq. (145) is

Final transformation  From Eqs. (135) and (139), we have 
the transformation

that is

from which, when pre-multiplying the inverse matrix of the 
first matrix on the left-hand side, it follows

where the ratio � of internal energy change is given by 
Eq. (123).

5.1.2 � Streaming velocity vi
I
= ˇi

I

Characteristic matrix and its eigenvalues  In this case, from 
Eq. (128), we obtain

so that the characteristic matrix of the system is

with

The characteristic equation of the system is

The eigenvalues of this equation are

(150)
∼

A= I.

(151)U
(�+1)

= U
(�)
,

(152)

⎡⎢⎢⎢⎣

1 0 0

0
1√
2�̂

0

0 0
1

2�̂

⎤⎥⎥⎥⎦

(�+1)

⎡
⎢⎢⎣

�

�u

�( 2�̂
3
+ u2)

⎤
⎥⎥⎦

(�+1)

=

⎡⎢⎢⎢⎣

1 0 0

0
1√
2�̂

0

0 0
1

2�̂

⎤⎥⎥⎥⎦

(�)

⎡
⎢⎢⎣

�

�u

�( 2�̂
3
+ u2)

⎤
⎥⎥⎦

(�)

,

(153)

⎡⎢⎢⎣

�

�u

�( 2�̂
3
+ u2)

⎤⎥⎥⎦

(�+1)

=

⎡⎢⎢⎣

1 0 0

0 � 0

0 0 �2

⎤⎥⎥⎦

(�)⎡⎢⎢⎣

�

�u

�( 2�̂
3
+ u2)

⎤⎥⎥⎦

(�)

, � =

�
�̂(�+1)

�̂(�)
,

(154)k11 =
1

6�̂
, k1111 =

1

12�̂2
,

(155)V̂ =

⎡⎢⎢⎣

V̂1 0 V̂13

0 V̂2 0

V̂31 0 V̂3

⎤⎥⎥⎦
,

V̂
1

=
3

2

−
1

4�̂
, V̂

2

=
1

2�̂
, V̂

3

=
3

8�̂2
−

1

4̂�
,

V̂
13

=
3

4�̂
−

3

2

, V̂
31

=
1

4�̂
−

1

8�̂2
.

(156)
(
V̂2 − �

)[(
V̂1 − �

)(
V̂3 − �

)
− V̂13V̂31

]
= 0.

of which, �1 is real, and the last two ones are real if Δ ≥ 0, 
otherwise complex. Generally, as the case of complex eigen-
values, we may express these two eigenvalues as

Amplifying matrix  The amplifying matrix of the transfor-
mation of this scheme in Eq. (145) is now given by

As mentioned before, in the complex eigenvalue cases, 
the amplifying matrices produce some damping effects caus-
ing the phase shifts in each simulation step.

5.2 � 1‑D constant incompressible flow by D1Q3 
scheme

We investigate a 1-D constant incompressible flow by the 
scheme D1Q3 of the weights w1 = w−1 = 1∕6 , w0 = 4∕6 
with three nodes ( 0,−1, 1) , and the corresponding stream-
ing velocity ( 0,−

√
2�̂,

√
2�̂) , of which the integrated trans-

formation is given in Sect. 5.1.1, based on which we have

which is the theoretical solution of the problem.

5.3 � 1‑D high pressure compressible gas flow 
in a tube with a unit cross‑sectional area

As shown in Fig. 4, a horizontal tube of length L and unit 
cross-sectional area A = 1 locates along O − x axis. We 
assume that the left end of the tube connected to a very 
high pressed gas tank of pressure p0 keeping a prescribed 

(157)

�
1

= V̂
2

,�
1

; �
2

=

�
V̂
1

+ V̂
3

�
+
√
Δ

2

,�
2

;

�
3

=

�
V̂
1

+ V̂
3

�
−
√
Δ

2

,�
3

;Δ =
�
V̂
1

− V̂
3

�
2

+ 4V̂
13

V̂
31

,

(158)�2,3 = �̂e±i�.

(159)
∼

A=

⎡⎢⎢⎣

A1 0 0

0 A2 0

0 0 A3

⎤⎥⎥⎦
,AI =

� − 1

�
�I +

1

�
�2
I
, I = 1,2, 3.

(160)U

(�+1)
= IU

(�)
= U

(�)
, � =

√
�̂(�+1)

�̂(�)
= 1,

Fig.4   1-D stable compressed gas flow through a tube with unit cross-
sectional areas
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constant, and its right end at x = L connecting to the atmos-
pheric pressure pL , so that the difference of pressures at the 
two ends produces a flow in the tube. The governing equa-
tions and theoretical analysis of the problem are discussed 
for two cases.

5.3.1 � Transient analysis before stable flow

Considering the fluid is compressible and barotropic, we 
respectively have its conservation equations of mass and 
momentum, and state equation

where c is a speed of sound, and �̂  denotes the mass den-
sity of the gas with zero pressure. The initial and boundary 
conditions are

To find the internal energy per unit mass of the gas at a 
point, we define the specific volume � = 1∕� , the volume of 
unit mass, and use the mass conservation Eq. (161) to obtain

Using Eq. (7), we obtain the physical internal energy per 
unit mass

and then from Eq. (75), the statistical internal energy per 
unit mass is

which is a function of x and t.

(161)
��

�t
+

�(�u)

�x
=

d�

dt
+ �

�u

�x
= 0,

(162)�

(
��

�t
+ u

�u

�x

)
= −

�p

�x
,

(163)
dp

d�
= c2, p = c2

(
� − �L

)
+ pL, �̂ = �L −

pL

c2
,

(164)u(x, 0) = 0, p(x, 0) = pL, �(x, 0) = �L, x ∈ (0, L),

(165)p(0, t) = p0, �(0, t) = �0, p(L, t) = pL, �(L, t) = �L.

(166)
d�

�
= −

d�

�
= −�d� = −

�u

�x
dt.

(167)�(x, t) = −∫
t

0

p

�

�u

�x
dt = ∫

�

�̂

p

�2
d� = −∫

�

�̂

pd�,

(168)�(x, 0) = ∫
�L

�̂

p

�2
d� = −∫

�L

�̂

pd�,

(169)�̂(x, t) =
3�(x, t)

2
, �̂(x, 0) =

3�(x, 0)

2
,

The prescribed pressures at two ends of tube produce the 
generalised forces at the nodes of two ends for simulation 
used in LBM, and from Eqs. (97)–(99) they are

Here the variable () implies its non-dimensional one by 
dividing with 

√
2�̂I  that involves step (�).

5.3.2 � Stable flow

When the flow reaches stable, the variables of motion are 
independent of the time, Eqs. (161) and  (162) reduces to

The integrations of Eq. (171) along the tube with respect 
to x yield

where C is a constant, the Mach numbers M(x) equals u(x)∕c 
and M0 equals u0∕c. Using Eq. (163), the prescribed pres-
sures at the two tube ends are given as.

from which, it gives

which shows that the flow is supersonic, since p0 > pL . Now 
we can obtain the speed, pressure, and mass density of the 
fluid at any point of tube. In this case, the internal energy in 
Eq. (169) will be function of x only.

(170)

F
(�)

0
=

⎡
⎢⎢⎢⎢⎢⎣

�
F
m

0

�
(�)

�
F
v

0

�
(�)

�
F
e

0

�
(�)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0

3�0p0
6�0p0u0

⎤
⎥⎥⎦

(�)

,

F
(�)

L
=

⎡
⎢⎢⎢⎢⎢⎣

�
F
m

L

�
(�)

�
F
v

L

�
(�)

�
F
e

L

�
(�)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0

3�LpL
6�LpLuL

⎤
⎥⎥⎦

(�)

.

(171)
�(�u)

�x
= 0, �

(
u
�u

�x

)
= −

�p

�x
.

(172)�(x)u(x) = �0u0 = �LuL = C,

(173)

p(x) = p
0

− �
0

u
0

[u(x) − u
0

] = p
0

{1 −
u
0

c2
⋯

[
u(x) − u

0

]
} = p

0

{1 −M
0

[M(x) −M
0

]},

(174)p0 = c2(�0 − �L) + pL, p(x)u(x) = p0u0 = pLuL = C,

(175)p0 − pL = �0u0(uL − u0) = M0(ML −M0),

(176)

u2
x

c2
= M2

x
=

p0 + (c2 − 1)pL

p + (c2 − 1)pL
,

u2
L

c2
= M2

L
=

p0 + (c2 − 1)pL

pL + (c2 − 1)pL
= 1 +

p0 − pL

pLc
2

,
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5.3.3 � Stable solution by LBM

Now we can use the LBM scheme D1Q3 to deal with the 
stable problem with the streaming velocity ( 0,−

√
2�̂,

√
2�̂) , 

which is a function of cell position. We have known from 
the performance study of this scheme that its characteris-
tic matrix Eq. (148) and amplifying matrix Eq. (150) are 
unit matrix, i.e., V̂ = I =

∼

A , therefore the transformation 
U

(�+1)
= U

(�)
 in Eq. (151) confirms the initial stable values 

of variables obtained by Eqs. (171)–(176) is stable solution.
The aim of the hand-workable examples given herein is 

mainly to show that the introduced internal energy variable 
into LBM equation plays an important role in dealing with 
problems with energy changes in the cell, which caused the 
difficulty of current LBM theory as mentioned in references 
cited in introduction of the paper. Therefore, considering 
page limits, we do not intend to do some numerical examples 
but leave it for readers to practice it for further developing 
the theory and proposed method.

6 � Conclusion and discussion

To summary the theoretical analysis, we conclude the follow-
ing contributions of the paper. (a) The short introduction on 
LBM provides the historically important information, which 
should confirm, based on the author’s check, that there have 
not been found any references presenting the same idea as 
given in the paper. (b) The amended theoretical EDF derived 
by the H-theorem with Lagrangian multiplier approach 
includes the mass density, mean velocity, and total internal 
energy of fluids as three macroscopic parameters, from which 
the three conservation laws can be directly derived from the 
BTE without additional small parameter expansions. (c) The 
improved LBM, requiring the internal energy parameter to 
be updated in each simulation step for general cases, and the 
updated non-dimensional streaming velocity provides a means 
to simulate more complex flow problems concerning obvi-
ous energy changes in high-speed, compressible flows. The 
performance study approach is formulated. (d) The modified 
differential BTE includes a new term concerning energy vari-
ation allowing external forces and external energy generation 
source to be considered in the method. (e) The hand-workable 
examples theoretically illustrate the essential characteristics 
and confirm the proposed improved LBM with the perfor-
mance study.

The paper is a theoretical document, which have not given 
complex practical numerical examples, due to pages limited. 
Author wishes the interested readers may follow the proposed 
method numerically to tackle some engineering problems from 
which to further develop this new improved method benefiting 
to sciences and engineering advances.
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