
Acta Mechanica Sinica (2021) 37(9):1457–1466
https://doi.org/10.1007/s10409-021-01114-x

RESEARCH PAPER

Nonlinear dynamical analysis of somemicroelectromechanical
resonators with internal damping

Dongming Wei1 · Daulet Nurakhmetov1 · Christos Spitas2 · Almir Aniyarov1 · Dichuan Zhang2

Received: 19 March 2021 / Accepted: 21 April 2021 / Published online: 26 July 2021
© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In this paper, a new Kelvin-Voigt type beam model of a microelectromechanical resonator made of power-law materials
taking into account internal strain-rate damping is proposed and the corresponding lumped-parameter model is derived.
Analytical formulas of the lumped parameters in the model are presented. And the pull-in solution is analyzed based on the
lumped-parameter model. It is demonstrated analytically and numerically that the internal damping plays an important role
in the pull-in solution as well as in determination of the amplitudes and frequencies of the resonator. The hysteresis loops
are provided for this model with initial conditions using numerical simulations. The approximation of the electrostatic force
in the lumped-parameter model can describe the relations between amplitudes and frequencies with different values of the
stiffness and damping coefficients quite well.

Keywords Power-law materials · Euler-Bernoulli cantilever beam · Lumped-parameter model · Microelectromechanical
system · Strain-rate damping

1 Introduction

Microelectromechanical system (MEMS) is one of the active
research areas in engineering. The growing demand for better
microelectronic devices requires the creation of new tech-
nologies. Reviews of some of these devices can be found in
Refs. [1–3]. An important component in modeling ofMEMS
devices is the physical properties of the material. There are
many materials which are good candidates for MEMS appli-
cations, but they have nonlinear mechanical properties. The
most commonly used materials for MEMS applications are
polysilicon, aluminum, titanium alloys, etc. [1,4]. The mate-
rials at various temperatures exhibit power-law stress-strain
relationship, which can be characterized by the Hollomons
constitutive equation

σ = K |ε|n−1ε, (1)
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where σ, ε, K , and n ∈ (0, 1) denote the stress, the strain,
the strength coefficient, and the strain-hardening (or work-
hardening) exponent, respectively [5]. For polysilicon, the
true stress and true strain curve can be modeled by the
power-law equation in the temperature greater than 25 ◦C,
see Refs. [6–8]. Materials modelled by Eq. (1) are called
work-hardening materials, sometimes referred to as Lud-
wick materials [9,10]. The power-law constitutive equation
is a well-known empirical relation that represents the experi-
mental non-linear stress-strain relation of annealed metals,
such as annealed copper and No. 8 nickel plated (N.P.8)
aluminum alloy [11,12]. The values of K and n for some
common annealed metals can be found in engineering liter-
ature [6,13]. The parameters for several types of power-law
materials are specified in Table 1.

Wepropose to study a natural generalization of theKelvin-
Voigt damping for the power-law materials in the following
form:

σ = K |ε|n−1ε + cd |ε̇|m−1ε̇, (2)

where cd denotes the strain-rate damping coefficient, m is
the strain-rate sensitivity exponent [6]. Typical ranges of
m for metals are up to 0.05 for cold-working, 0.05–0.4 for
hot-working, and 0.3–0.85 for superplasticmaterials, respec-
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Table 1 Physical properties of some well-known power-law materials
[6,13]

Material n K (MPa) ρ (g/cm3)

Aluminum 1100-O 0.2 180 2.71

304 stainless steel annealed 0.45 1275 8.00

Copper, annealed 0.54 315 8.91

Ti-6Al-4V, annealed, 800 ◦C 0.146 350 4.51

Table 2 Strain rate effects of different materials for MEMS [6,13,14]

Material Temperature (◦C) cd (MPa) m

Aluminum 200-500 82-14 0.07-0.23

Stainless steel 600-1200 415-35 0.02-0.4

Copper 300-900 240-20 0.06-0.17

Titanium 200-1000 135-2 0.04-0.3

Fig. 1 Design scheme of the microelectromechanical resonator

tively. The values of strain-rate effects for several materials
are shown in Table 2.

The structural elements of typical microelectromechani-
cal resonators include a low-mass movable electrode and a
fixed electrode, which are separated by a micro-gap. A non-
deformable platform attached to a spring is used as amovable
electrode in some cases. The plane of the platform is parallel
to the flat surface of the fixed electrode, as shown in Fig. 1.
The fixed electrode is coated with a dielectric layer, of which
thickness is h and dielectric constant is εr . The function of the
spring is performed by an elastic micro-cantilever beam of
length �. Let d denote the distance from the point of attached
of the spring to the surface of the dielectric, and V be the
electrostatic potential difference between the electrodes. As
a result of the interaction of the elastic force of the spring, the
inertia force, and the electrostatic attraction force due to the
potential difference between the electrodes, high-frequency
oscillations of the platform occur. The resistance forces due
to the air layer between the electrodes are assumed to be
negligible.

For linear materials, n = 1 and cd = 0. The design of
micro-resonator with elastic elements in form of strained
film, clamped-clamped beam, and cantilever beam were
investigated [15–17]. When external damping exists, Ref.
[18] gave the design of micro-resonator with elastic elements
in form of clamped-clamped beam. In the case of n = 1 and
cd �= 0, similar problemswith different conditions and forces
were considered [19,20]. In Ref. [21], the damping ratio
included the strain-rate and the air damping components for
the linear materials was presented. And results showed that
the strain-rate damping coefficient is proportional to struc-
tural stiffness. In thiswork, the correspondingproportionality
is shown for nonlinearmaterials. The stiffness coefficients for
the power-law Euler-Bernoulli beams without damping sub-
jected to different types of boundary conditions were derived
in Ref. [22]. The derivation of the approximation formula for
the effective internal and external damping coefficients in the
cases of the cantilever and hinged-hinged beams were pub-
lished in the separate paper [23]. Lumped-parameter models
for the cantilever beamswere useful formodeling energy har-
vesting devices [24–26]. The first lumped-parameter model
for an electrostatically actuated device was introduced by
Nathanson et al. [27]. For lumped-parameter models, Zhang
et al. [28] specified that the dynamic pull-in described the
collapse of the moving structure caused by the combination
of kinetic and potential energies. In general, a dynamic pull-
in required a lower voltage to be triggered compared to the
static pull-in threshold [29,30].

The first goal of this paper is to provide the mathematical
model for amicroelectromechanical resonator beambasedon
Eq. (2) of power-lawmaterials with internal damping. This is
an extension of the procedure developed inRef. [31] to amore
general class of resonators with damping. The second goal
is to provide a lumped-parameter model for the beam partial
differential equation (PDE) model and perform analysis of
dynamic pull-in of the beam by using the lumped-parameter
model. Our lumped-parameter model gives MEMS design-
ers a good account of the pull-in effects, amplitudes, and
frequencies of the beam before a more sophisticated simula-
tion using the PDE model is performed.

The paper has six sections. Section 1 is introduction. In
Sect. 2, the PDE model for the microelectromechanical res-
onator is presented. In Sect. 3, the lumped-parameter model
is introduced to study the dynamical properties of the res-
onator. The approximations of the generalized stiffness and
damping parameters for power-law cantilever beamunder the
load at its tip are presented. In Sect. 4, the dynamic pull-in
conditions are provided by the lumped parameters. In Sect.
5, the hysteresis loops for solutions of oscillatory types are
demonstrated for energy dissipation analysis. In Sect. 6, the
electrostatic force is approximated by a cubic polynomial for
numerical simulations of the amplitudes and frequencies of
the resonator. The paper ends with the conclusions.
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2 Mathematical model for a
microelectromechanical resonator

Fadeev et al. [17] provided the physical model of the micro-
electromechanical resonator, as shown in Fig. 1, is used to
demonstrate the motion of the non-deformable platformwith
point mass Mc under the influence of electrostatic Coulomb
force Fe applied at the platform.

With 0 < x < � and t > 0, let the function u(t, x) be the
vertical deflection of the cantilever beam. The deflection at
the tip u(t, �) is equal to the deflection of the non-deformable
platform denoted by uc(t). The distance between the surface
of the platform and the surface of the dielectric equals to d −
uc(t). And the electrostatic force Fe, acting on the platform,
is given by

Fe = ε0V 2S

2
[
d + h

εr
− uc(t)

]2 , (3)

where S is the area of the platform and the electric constant
of air ε0 = 8.85 × 10−12. The mathematical model for the
deflection of the cantilever beam under the influence of the
movement of the platform with mass Mc applied at its tip
(x = �) is described by the following nonlinear PDE model

ρAutt (x, t) + ∂2

∂ x2

[
cd Im

∣∣∣∣
∂3u(x, t)

∂ x2∂ t

∣∣∣∣
m−1

∂3u(x, t)

∂ x2∂ t

]
+

∂2

∂ x2

[
K In

∣∣∣∣
∂2u(x, t)

∂ x2

∣∣∣∣
n−1

∂2u(x, t)

∂ x2

]
= 0. (4)

The initial conditions are

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, 0 < x < �,

and boundary conditions are

u(x, t) = 0,
∂u(x, t)

∂x
= 0, x = 0, t > 0,

K In

∣∣∣∣
∂2u(x, t)

∂ x2

∣∣∣∣
n−1

∂2u(x, t)

∂ x2

+cd Im

∣∣∣∣
∂3u(x, t)

∂ x2∂ t

∣∣∣∣
m−1

∂3u(x, t)

∂ x2∂ t
= 0, x = �, t > 0,

∂

∂ x

[
K In

∣∣∣∣
∂2u(x, t)

∂ x2

∣∣∣∣
n−1

∂2u(x, t)

∂ x2

+ cd Im

∣∣∣∣
∂3u(x, t)

∂ x2∂ t

∣∣∣∣
m−1

∂3u(x, t)

∂ x2∂ t

]
= Mcutt (x, t),

x = �, t > 0, (5)

for x ∈ (0, �), t > 0, n,m ∈ (0, 1). The derivation of Eq.
(4) is similar to that inRefs. [17,32]. In the above equations,ρ
denotes the density of material, A is the cross-sectional area,
and In , Im are the moments of inertia of the cross-sectional
area of the beam relative to the neutral axis. Here, note that
the tip mass as well as the damping moment are represented
in the boundary conditions.

In Eq. (5), the acceleration at the tip utt (�, t) equals the

acceleration of the platform d2uc(t)
dt2

with mass Mc. The elec-
trostatic Coulomb force Fe, the spring elastic restoring force
(−Fc) and the spring damping force (−Fd) acting on the
platform together with the platform inertia force obey the
force balance equation,

{
(Mc + meff)

d2uc(t)
dt2

+ Fd + Fc = Fe,

uc(0) = 0, duc(0)
dt = 0, t > 0,

(6)

where meff is the generalized effective mass coefficient for
power-law Euler-Bernoulli cantilever beam [27].

The solution u(�, t) = uc(t), t > 0, to the initial
problem (6), describes the motion of the platform, which
is assumed to be a point of mass Mc. Consequently, the cou-
pled system of equations for the mathematical model of the
micro-resonator reads as follows

ρAutt (x, t) + ∂2

∂ x2

⎡
⎣cd Im

∣∣∣∣∣
∂3u(x, t)

∂ x2∂ t

∣∣∣∣∣
m−1

∂3u(x, t)

∂ x2∂ t

⎤
⎦

+ ∂2

∂ x2

⎡
⎣K In

∣∣∣∣∣
∂2u(x, t)

∂ x2

∣∣∣∣∣
n−1

∂2u(x, t)

∂ x2

⎤
⎦ = 0, (7)

u(x, t) = 0,
∂u(x, t)

∂x
= 0, x = 0, t > 0,

K In

∣∣∣∣∣
∂2u(x, t)

∂ x2

∣∣∣∣∣
n−1

∂2u(x, t)

∂ x2

+cd Im

∣∣∣∣∣
∂3u(x, t)

∂ x2∂ t

∣∣∣∣∣
m−1

∂3u(x, t)

∂ x2∂ t
= 0, x = �, t > 0,

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, 0 < x < �,

u(�, t) = uc(t),

(Mc + meff )
d2uc(t)

dt2
− ∂

∂ x

⎡
⎣K In

∣∣∣∣∣
∂2u(x, t)

∂ x2

∣∣∣∣∣
n−1

∂2u(x, t)

∂ x2

+ cd Im

∣∣∣∣∣
∂3u(x, t)

∂ x2∂ t

∣∣∣∣∣
m−1

∂3u(x, t)

∂ x2∂ t

⎤
⎦

= ε0V
2S

2
[
d + h

εr
− uc(t)

]2 , x = �, t > 0,

uc(0) = 0,
duc(0)

dt
= 0. (8)

In this paper, we investigate the solutions behavior of the
micro-resonators (7), (8) at the tip x = �. In order to analyze
the micro-resonator behavior at the tip x = �, it is needed to
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study the solution of the Cauchy problem (6). Note that the
Cauchy problem (6) is equivalent to the initial value prob-
lem (8). However, the second and third terms are unknown
in the left side of Eq. (8) regarding to u(x, t). Therefore, to
describe the platform behavior, these terms have to approx-
imate through the lumped-parameter model. In the next
section, the derivation of the lumped-parameter model will
be shown.And for linear elasticmaterials, lumped-parameter
models for Euler-Bernoulli beams in MEMS devices are
well-known in Ref. [1].

3 Lumped-parameter model

In this section, we consider the lumped-parameter model for
investigationof themicro-resonator vibration at the tip x = �.
Lumped-parameter models for the Euler-Bernoulli beams
with linear materials were collected in Ref. [1]. The general-
ized stiffness and mass effective coefficients for power-law
Euler-Bernoulli beams were presented in Ref. [22]. The
connection of the generalized stiffness coefficients with the
strain-rate damping coefficients are shown below. Let U (x)
be a solution of the initial boundary value problem (4), which
satisfies the following system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(K In|Uxx |n−1Uxx )xx = 0,

U (0) = 0, Ux (0) = 0,

K In|Uxx (�)|n−1Uxx (�) = 0,

(K In|Uxx |n−1Uxx )x
∣∣
x=�

= −Fc,

where for x ∈ (0, �), 0 < n < 1. The function U (x)
describes the stationary equilibrium of an elastic nonlinear
beam under the influence of a concentrated force Fc at the
tip. From Ref. [10], we can obtain that

U (x) = F
1
n
c G(x, �), (9)

where

G(x, �) = 1

(K In)
1
n

[
(� − x)

1
n +2

( 1n + 1)( 1n + 2)
+ �

1
n +1

1
n + 1

x−

�
1
n +2

( 1n + 1)( 1n + 2)

]
.

And due to U (�) coincides with uc(t),

Fc = |uc(t)|n−1uc(t)

|G(�, �)|n−1G(�, �)
.

The restoring force for the power-lawmaterials implies Fc =
kn|uc(t)|n−1uc(t). According to Ref. [22],

kn = K In
l1+2n

(
1 + 2n

n

)n

. (10)

Since u(�, t) = uc(t), it follows that

u(x, t) ≈ G(x, �)

G(�, �)
uc(t), x ≈ �. (11)

Thus, we have remark 1. The next approximation holds

∂

∂ x

[
K In

∣∣∣∣
∂2u(x, t)

∂ x2

∣∣∣∣
n−1

∂2u(x, t)

∂ x2

]∣∣∣∣∣
x=�

≈

−kn|uc(t)|n−1uc(t). (12)

Considering Eq. (11), we can rewrite Eq. (12) in the form

∂

∂ x

⎡
⎣K In

∣∣∣∣∣
∂2u(x, t)

∂ x2

∣∣∣∣∣
n−1

∂2u(x, t)

∂ x2

⎤
⎦

∣∣∣∣∣∣
x=�

≈ ∂

∂ x

⎧⎪⎨
⎪⎩
K In

∣∣∣∣∣∣
∂2

[
G(x,�)
G(�,�)

uc(t)
]

∂ x2

∣∣∣∣∣∣

n−1
∂2

[
G(x,�)
G(�,�)

uc(t)
]

∂ x2

⎫⎪⎬
⎪⎭

∣∣∣∣∣∣∣
x=�

= ∂

∂ x

⎧⎪⎨
⎪⎩
K In

∣∣∣∣∣∣
∂2

[
G(x,�)
G(�,�)

]

∂ x2

∣∣∣∣∣∣

n−1
∂2

[
G(x,�)
G(�,�)

]

∂ x2

⎫⎪⎬
⎪⎭

∣∣∣∣∣∣∣
x=�

· |uc(t)|n−1uc(t). (13)

In analogy to remark 1, we can obtain the approximate
expression of remark 2,

∂

∂ x

[
cd Im

∣∣∣∣
∂3u(x, t)

∂ x2∂ t

∣∣∣∣
m−1

∂3u(x, t)

∂ x2∂ t

]∣∣∣∣∣
x=�

≈

−cd
K
km

∣∣∣∣
duc(t)

dt

∣∣∣∣
m−1 duc(t)

dt
, (14)

where km is the stiffness coefficient and it is given by Eq.
(10) in analogy to the linear case in Ref. [21]. Taking into
account Eqs. (12) and (14), the initial value problem (8) for
the motion of the platform reads as follows

(Mc + meff)
d2uc(t)

dt2
+ cd

K
km

∣∣∣∣
duc(t)

dt

∣∣∣∣
m−1 duc(t)

dt
+

+kn|uc(t)|n−1uc(t) = ε0V 2S

2
[
d + h

εr
− uc(t)

]2 , (15)

and has zero initial conditions

uc(0) = 0,
duc(0)

dt
= 0. (16)
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The solution uc(t) of the Cauchy problem (15) determines
themotion of themassMc under the influence of electrostatic
attraction Fe, the elastic force springs Fc with stiffness coef-
ficient kn , and damping force Fd with damping coefficient
cd
K km . As a result, the nonlinear PDEmodel for the boundary
value problem turns to the lumped-parameter model having
single degree-of-freedom with a damping.

4 Dimensionless lumpedmass model
equation

Following the ideas from Ref. [18], the dimensionless time
τ, deflection y, quality factor of a mechanical system Q, and
voltage parameter B are defined as follows

τ =
⎡
⎢⎣
kn

(
d + h

εr

)n−1

Mc + meff

⎤
⎥⎦
1/2

t, y(τ ) =
(
d + h

εr

)−1
uc(t), (17)

Q = K

cdkm
kn

2−m
2

(
d + h

εr

)n

⎡
⎢⎣

(
d + h

εr

)n+1

Mc + meff

⎤
⎥⎦

−m
2

,

B = ε0V
2S

2
(
d + h

εr

)n+2
kn

. (18)

In the sequel, we denote the first and second derivatives of y
with respect to the dimensionless time τ by ẏ, ÿ respectively.
Then, we obtain from Eq. (15) the following dimensionless
single-degree model equation

ÿ + 1

Q
|ẏ|m−1 ẏ + |y|n−1y = B

(1 − y)2
, (19)

which is subject to

y(0) = 0, ẏ(0) = 0, (20)

where 0 < n,m ≤ 1, Q > 0, and B ≥ 0. The case of
n = m = 1, Q = ∞, and B = 0 corresponds to the clas-
sical harmonic oscillator. The static pull-in voltage analysis
for the linear case has been investigated in Ref. [1]. It is
corresponding to

Bstat (1) = 4

27
.

The dynamic pull-in voltage

B∗
1 = 1

8
< Bstat (1),

can be seen in Refs. [17,30]. In the case of n = 1, Q �=
0, and B �= 0, dynamic pull-in voltage analysis has been
investigated in Ref. [18]. The case of n �= 1, m > 0, and

Q = ∞, and B > 0, dynamic pull-in voltage analysis has
been presented in Ref. [31]. The dynamic pull-in voltage

B∗
n = 1

(n + 1)2

(
n

n + 1

)n

.

It has found that if

0 < B < B∗
n , (21)

autovibrations of the platformarisewhen themicro-resonator
is started, else there are no autovibrations at B > B∗

n .
The platform performs autovibrations can be described by

the Cauchy problem (19), (20) with the condition (21) and
τ < Timp, where Timp is a duration of start. The action of the
electrostatic attraction stops at themoment of time τ = Timp,
and the movement of the platform continues by inertia in the
form of damped vibrations. Suppose that ŷ(Timp) = y(Timp)

is the solution and dŷ
dτ

(
Timp

) = ẏ(Timp) is its derivative of
the initial value problem (19), (20), then it can be rewrited as

ÿ + 1

Q
|ẏ|m−1 ẏ + |y|n−1y = 0, Timp < τ, (22)

which is subject to

y(Timp) = ŷ(Timp), ẏ(Timp) = dŷ

dτ

(
Timp

)
. (23)

When n is equal to 0.54, for different values of m, several
solutions with respect to non-damped and damped vibrations
for the beams are compared in Fig. 2. In the case of no damp-
ing, B = 0.2 is less than B∗

n , the dynamic critical pull-in
voltage B∗

n = 0.239. Figure 2a and 2b show that the model
has periodic solutions. Different values of Q are chosen to
numerically solve the initial problem (19), (20)with damping
by the standard Maple ordinary differential equation (ODE)
solver. And the embedded Runge-Kutta method can be used
to justify the predicted behavior of the solution y(τ ). In sev-
eral solutions, the amplitudes, which are the corresponding
amplitudes of the non-damped systems, do not exceed 0.15.
In our study, the amplitudes do not exceed 0.33 when volt-
age is B∗

n , and the amplitudes do not exceed 0.5 for the linear
case (n = m = 1) [18].

For B = 0.245, the pull-in solutions corresponding to the
non-damped vibrations are shown in Fig. 3a, and the behav-
iors of the solutions are preserved for the different values
of Q > 0. If the value of B is close to B∗

n , for example,
when B is equal to 0.242, some values of Q will show differ-
ent behaviors of the pull-in solutions to the solutions of the
systems with damping, see Fig. 3b.

Figures 2 and 3 demonstrate the dependency of vibration
of the microelectromechanical resonator on the strain-rate
damping of the materials. Let n = 0.54, m = 0.17, Q =
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a

b

y

τ

y

τ

Fig. 2 Solution profiles for B = 0.2: (a) strain-rate exponentm = 0.07;
(b) strain-rate exponent m = 0.17

200, B = 0.15, B∗
n = 0.239, and Timp = 2, then ŷ(2) =

0.074, dŷdτ (2) = 0.00012. The behavior of the solution is pre-
sented in Fig. 4a. Let n = 0.54, m = 0.17, Q = 130, B =
0.245, B∗

n = 0.239, and Timp = 3, then ŷ(3) = 0.286,
dŷ
dτ (3) = 0.066. The behavior of the solution is presented in
Fig. 4b.

Figure 4 shows that the vibrations of the micro-resonator
can be controlled. For example, in Fig. 4a the solution is
pull-in at τ = 6. When a damped solution exist, we can fix
Timp = 3, as shown in Fig. 4b. And the analogy analysis
for vibrations of microelectromechanical resonators with the
linear materials without damping were done in Ref. [17].

5 Hysteresis loop

In this section, the non-dimensional strain-stress relation
form of hysteresis loops for power-lawmaterials correspond-
ing to Eq. (2) are constructed by some numerical examples

σ = |ε|n−1ε + η |ε̇|m−1ε̇,

y

τ

a

b

y

τ

Fig. 3 Solution profiles for different values of Q and m = 0.17: (a)
B = 0.245; (b) B = 0.242

where η = cd
K . The corresponding model with one degree-

of-freedom has the form:

N (y, ẏ) = |y|n−1y + 1

Q
|ẏ|m−1 ẏ, (24)

where N := N (y, ẏ) is the generalized force, y is the gener-
alized coordinate, and Q is a reduced damping coefficient.

During cyclic deformation, model (24) can be used to
show the difference between the loading and unloading
curves in the N − y axes. This phenomenon is called hys-
teresis. Areas bounded by loading and unloading curves
(hysteresis loop), express the energy that is dissipated in each
one cycle of the deformation. The energy consumed in each
cycle of vibration equals to the work performed by an exter-
nal force for the cycle. In Fig. 5a and 5b, the hysteresis loops
of the initial value problem (19), (20) for different values of
n, m, Q, and B, are shown. In the linear case (n = m = 1),
the hysteresis loops for vibration of one degree-of-freedom
system with external harmonic force were investigated in
Ref. [33]. Our hysteresis loops analysis for vibration of one
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a

b

y τ

y τ

Fig. 4 Solution profiles for different values of Q and B: (a) duration
of start Timp = 2; (b) duration of start Timp = 3

degree-of-freedomsystemwith electrical force are calculated
analogy to the method used in Ref. [33].

The energydissipation for various exponent values of stiff-
ness and damping terms can be calculated by

W =
∫ T

0
N (y, ẏ)dy

=
∫ T

0

(
|y|n−1y + 1

Q
|ẏ|m−1 ẏ

)
ẏ dt, (25)

where T is the period of one cycle of the oscillation. Using
numerical results from Runge-Kutta method based on poly-
nomial interpolation, energy for each cycle is computed by
integral (22). The energy lost for first three cycles of oscilla-
tion are provided in Fig. 6.

These results can be useful for design of microelec-
tromechanical resonators of power-lawmaterialswith energy
considerations due to material internal damping.

N

y

a

b

N

y

Fig. 5 Hysteresis loops for different values of n, m, Q, and B: (a)
strain-hardening exponent n = 0.54, the strain-rate exponent m =
0.17; (b) strain-hardening exponent n = 0.2, the strain-rate exponent
m = 0.23

6 Approximation of the electrostatic force

Nonlinearity in MEMS system comes from a large variety of
sources [34]. One of them is the nonlinearity of the applied
force. In this section, we consider an approximation of the
electrostatic force Fe by the following Taylor expansion

Fe = B

(1 − y)2
≈ B(1 + 2y + 3y2 + 4y3 + . . . ). (26)

Using the cubic term in Eq. (26), the approximate solutions
of the initial value problem (19), (20) are developed, which
is able to show the relationship between the amplitudes and
frequencies in the case with different values of Q and B. This
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m

a

m

b

Fig. 6 Energy dissipation for three cycle for various value n and m:
(a) for n = 0.54, m = 0.11, 0.14, 0.17; (b) for n = 0.45, m =
0.11, 0.14, 0.17

gives the following equation

ÿ + 1

Q
|ẏ|m−1 ẏ + |y|n−1y ≈ B(1 + 2y + 3y2 + 4y3),

(27)

which is subject to the initial conditions in Eq. (20).
In Figs. 7 and 8, we plot the solutions of the initial prob-

lems (19), (20) and (24), (20),which are obtained by using the
standardMaple ODE solver with the embedded Runge-Kutta
method. Figure 7 shows that when B is in the neighborhood
of B∗

n and the value of Q is small, the two solutions will agree
well. And in Fig. 8, when B is less than B∗

n and the values of
Q are various, the two solutions also agree well.

τ

y

a

Q
Q W

W

Q
Q

W
W

y

τ

b

Fig. 7 Behavior of solutions for n = 0.54, m = 0.17, B is in the
neighborhood of B∗

n : (a) B = 0.24; (b) B = 0.245

There are examples of one degree-of-freedommodelswith
other types of nonlinear damping, which are approximated
with cubic term of electrostatic force, as shown in Ref. [34]
and its references.

7 Conclusions

AKelvin-Voigt type model of a microelectromechanical res-
onator made of power-law materials taking into account
the internal strain-rate damping is presented. In the inter-
val (0, 1), the power-law exponents of the materials, which
considering the stiffness and the strain-rate damping in the
model, canbeused in the analysis of the resonator. Thepull-in
solutions of this model are analyzed under the critical load of
the cantilever beam subjected to tip loads. The control of the
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Q
Q

W
W

τ

y

Fig. 8 Behavior of solutions for n = 0.54, m = 0.17, B < B∗
n

pull-in solutions is shown based on the duration start of the
electrical force. Hysteresis loops are constructed numerically
to demonstrate the energy dissipations due to material inter-
nal damping. When the voltage is less than the static pull-in
critical voltage, for the resonator with internal damping, the
amplitudes and frequencies are constructed numerically by
using a cubic approximation of the electric force.
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