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Abstract 
The variable flexibility of a fish body is believed to play a significant role in improving swimming performance. To explore 
the effect of non-uniform flexibility on the motion performance of fish under biologically relevant conditions, we set up 
three different flexible distribution modes for a semi-free filament and compared the motion performance of different flex-
ible distribution modes through numerical simulations. The filament is located in the wake of the front flapping foil; it can 
swing adaptively in the lateral direction according to the flow situation of the surrounding fluid and finally reach a stable 
position. The results show that the motion state of the filament will alter with a change in the flexibility of the filament, from 
moving in the vortex street to moving on the side of the vortex street. In the Bénard-von Kármán (BvK) vortex streets, the 
drag coefficient of the filament increases as the flexibility of the filament increases, and the value of the drag coefficient is 
at a minimum when the flexibility of the filament increases linearly along the length of the filament. Further investigation 
indicates that at 85%–90% of the filament length (starting from the leading edge), the flexibility of the filament begins to 
increase significantly, and the filament can obtain its best propulsion performance. The results of this work provide new 
insights into the role of non-uniform flexibility during the process of fish movement and provide a valuable reference for the 
design of bionic underwater vehicles.
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1  Introduction

In nature, organisms obtain the thrust needed for motion by 
swinging their bodies, which is a very universal phenom-
enon, e.g., when birds and insects fly and when fish and 
microorganisms swim. These movements are often accom-
panied by great deformation of the bodies [1], in which 
flexibility is the key factor. In recent years, scientists have 
performed considerable research on passive flexibility. By 
comparing the swimming efficiency of an artificial rigid 
robot dolphin and a real dolphin in nature, Gray [2] found 
that the efficiency of the former is only one-seventh of the 
efficiency of the latter. Iverson et al. [3] demonstrated that 
flexibility can improve the thrust generation and efficiency 

of the oscillating-foils in comparison to a rigid foil baseline. 
Zhu et al. [4] studied the wake symmetry of a self-propelled 
foil and found that increasing the flexibility of the foil can 
increase the symmetry of the wake and may also destroy 
the symmetry of the wake. In this experiment, increasing 
the flexibility of the foil will lead to a decrease in the attack 
angle and vorticity at the leading edge. At the same time, the 
flapping speed at the trailing edge will be increased, result-
ing in an increase in the vorticity at the tail end. ToshiyukiIn 
et al. [5] studied the wing passively maintains aerodynamics 
through flexibility. In many previous studies, passive flex-
ibility has been shown to improve swimming performance 
[6–9]. However, the influence of the variable flexibility 
along the length direction on the filament thrust has not been 
explored to a large extent.

Interestingly, some flying animals, such as birds and 
flies, have variable flexibility in their wings, and this 
unevenly distributed flexibility can improve flight effi-
ciency [10, 11]. Swimming and flying animals, ranging 
from whales to insects, have different shapes and differ-
ent ways of moving, and their bodies begin to become 
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highly flexible at about two-thirds from the head end 
[12]. For fish, although there are many factors (material, 
shape, interaction with a fluid, driving mode) that affect 
the generation of thrust and swimming efficiency, passive 
non-uniform flexibility is the main variable that controls 
the waveform [13, 14]. The research of Lucas et al. [15] 
showed that, with few exceptions, the motion performance 
of a model with variable flexibility is better than that of 
a model with uniform flexibility, and this result is not 
affected by the experimental conditions. The relationship 
between variable flexibility and exercise performance is 
very complicated, and how variable flexibility improves 
exercise performance is still unknown.

Experimentally, it has been impossible to control the driv-
ing and flexible distribution patterns of free-moving live fish 
and to accurately measure the forces and torques. To sepa-
rate the influence of other factors and study the relationship 
between flexibility and swimming performance, research-
ers have proposed simplified experimental models. Peng 
et al. [16] carried out numerical simulation research on a 
filament with different fixation modes of the drive end and 
found that when the flexibility of the filament was expo-
nentially distributed, the filament obtained the maximum 
thrust. Lucas et al. [15] studied the flexible distribution of a 
foil and found that when the fish moved at a uniform speed, 
the flexible distribution mode exhibited low flexibility in 
the first two-thirds of the body and high flexibility in the 
remainder of the body. However, during the acceleration 
process, fish bodies usually start to become highly flexible 
at one-third of their length. By optimizing the flexible distri-
bution of the foil chord upwards, the propulsion efficiency of 
the foil has been improved by 69% at most [17]. The above 
experimental results show that the impact of flexibility on 
motion performance is very complex. Notably, in previous 
studies, the propulsor is in a static or uniform fluid, which 
is inconsistent with the fluid environment in most cases of 
fish in nature. Moreover, in the self-propelled model, the 
movement of the propulsor is given by an equation in the 
direction perpendicular to the advancement and cannot be 
adjusted adaptively according to the force of the flow field; 
therefore, the fluid–solid coupling effect in this direction 
may be ignored.

To fully explore the impact of the non-uniform stiffness on 
the swimming performance under biologically relevant condi-
tions, in this work, we conduct a numerical simulation study 
on the model of a semi-free filament by using the immersed 
boundary method [18]. The filament is placed behind the 
flapping foil, and both of them are immersed in a uniform 
oncoming fluid [19]. Changing the flapping parameters of the 
foils can also change the vortex street modes of their wakes, 
including the BvK vortices and the reverse BvK wake [20]. 
The remainder of the article is organized as follows. In Sect. 2, 
we describe the formulations applied to the foil filament model 

and fluid. In Sect. 3, the influence of variable flexibility on the 
motion and performance of filaments is discussed. In Sect. 4 
we summarize the work of this paper.

2 � Computational model and method

2.1 � Computational model

In the calculation model presented in this paper, the rigid 
pitching foil on the left and the flexible filament on the right 
are placed in a 2D incompressible viscous fluid from left to 
right (see Fig. 1). The rigid foil is actuated by the harmonic 
pitching motion with the fixed center of the semicircle. The 
motion equation is as follows:

Here, θ(t) is the flapping angle of the foil, which changes 
with time, θ is the maximum flapping angle, and f is the rate 
of flapping. According to the given different parameter val-
ues of f and θ, the wakes of the foil will show different pat-
terns, including BvK vortices and the reverse BvK vortices. 
The leading edge (LE) of the filament is fixed in the hori-
zontal direction and is unrestricted in the vertical direction, 
while the remainder of the filament is free in both directions. 
After the wake of the foil is stabilized, the filament is placed 
horizontally in the vortex street along the incoming inflow 
direction (y = 0). The filament oscillates passively under the 
action of the surrounding fluids.

The motion of the fluid–structure system is governed by the 
following equations:

(1)�(t) = �sin(2πft).

(2)
�u

�t
+ ∇ ⋅ (uu) = −∇p +

1

Re
∇2u + f ,

(3)∇ ⋅ u = 0,

(4)f (x, t) = ∫ F(s, t)�(x − X(s, t))ds,

Fig. 1   Diagrammatic sketch of the physical model. c: chord length of 
the flapping foil, d: diameter of the flapping wing head end (c = 1.0, 
d = 0.4); θ: the maximum pitching angle of the foil; L: filament length 
and its value is 1.0; U∞ : initial incoming flow speed and its value is 
1.0; O is the origin of the coordinate axis and the foil pitches around 
this point
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Equations (2)–(5) are dimensionless by L and the initial 
flow velocity U∞ (L = 1.0, U∞ = 1.0), where u and p are the 
flow speed and fluid pressure, respectively; s is the curvilin-
ear material coordinate and t is the time; F is the Eulerian 
force density; f is the Lagrangian force density. In addition, 
we define the Reynolds number as:

The value of Re is taken as Re = 255 in the current work 
because animal collectives demonstrate Re values from 102 to 
106 [21]. Here, � is the density of the flow, d is the diameter 
of the LE of the flapping foil, and u is the dynamic viscosity. 
Other major dimensionless parameters used in this paper are 
defined as follows:

where St and StA are both Strouhal numbers, but their defini-
tions are different. The value of St depends on the flapping 
frequency of the foil, the value of StA depends on the fre-
quency and amplitude at the same time, and Ad is the ampli-
tude of the pitching foil. In addition, the filament and the 
flapping foil are separated by a distance DL in the x direction.

The immersion boundaries consist of two parts: one is the 
rigid boundary of the flapping foil, and the other is the flexible 
boundary of the filament. Therefore, the interaction force is 
defined as follows:

where F(s,t) is the interaction force between the immersed 
boundary and the fluid. F1(s,t) refers to the interaction force 
between the fluid and the rigid flapping foil and F2(s,t) refers 
to the interaction force between the fluid and the filament. 
Equation [22] for calculating the interaction force between 
surrounding fluids and filaments are as follows:

(5)U(s, t) = ∫ u(x, t)�(x − X(s, t))dx.

(6)Re =
�dU∞

u
.

(7)St =
fd

U∞

, Ad =
2c ⋅ sin �

d
,

(8)DL =
D

L
, StA = St ⋅ Ad,

(9)F(s, t) = F1(s, t) + F2(s, t),

(10)F2(s, t) = Fs(s, t) + Fb(s, t) =
�T𝝉

�s
+

�Eb

�X
,

(11)T = Ks

(
|
|||

�X

�s

|
|||
− 1

)

,

where Fs(s, t) and Fb(s, t) are the stretching and compres-
sion force and the bending force, respectively; 𝝉 is the unit 
tangent vector defined at each point of the filament; Eb is the 
bending energy, which is defined by Eq. (12). The interac-
tion force between the pitching foil and fluids is computed 
by the following equation [23]:

where Ub(s, t) is the actual velocity of the foil and U(s, t) is 
the intermediate velocity of the foil based on the flow speed. 
Ks and T are the stretching coefficient and the tension of the 
filament (Ks= 1 × 102). Kb is the dimensional bending rigid-
ity of the filament. The smaller the value of Kb is, the more 
flexible the filament is. K̂b is the dimensionless form of Kb 
and is defined as follows: K̂b = Kb/(�0 U2L3) ( �0 is the fluid 
mass density). In this paper, the value range of K̂b is 10−5< 
K̂b < 10−3, which is referred to in previous studies [24].

For the structure, a no-slip boundary condition is 
applied on the flexible filaments and the rigid foil surfaces. 
At LE (s = 0) of the filament, the boundary condition is:

For the free end (s = L) of the filament, the boundary condi-
tion is

The no-slip condition is imposed on the outer boundary 
of the fluid. In this study, the calculation area is rectangu-
lar with the dimensions of −5L < x < 20L and −8L < y < 8L. 
The computational grid in this paper is a reference to a 
previous study [25]. The grid is composed of 280 × 160 
spatial nodes, the grid width is Δx = Δy = 0.025L , and the 
time step length is dt = 0.002.

The present Navier–Stokes (N–S) solver and filament 
solver are validated by simulating an oscillating cylinder 
immersed in a uniform inflow and simulating the motion of 
a tethered filament behind the stiff cylinder, respectively, 
in Lin’s work [19]. The numerical simulation results show 
that the solver used in this study is accurate.

(12)𝝉 =

�X

�s

|
|
|
�X

�s

|
|
|

,

(13)Eb =
1

2
Kb ∫

|
|
|
|
|

�2X(s, t)

�s2

|
|
|
|
|

2

ds,

(14)
∫

[

∫ F1(s, t)�(x − X(s, t))ds

]

�(x − X(s, t))dx =
Ub(s, t) − U(s, t)

Δt
,

(15)

X(s = 0, t = 0) = (x0, 0),X(s = 0, t) = x0,
�2X

�s2
= (0, 0)T.

(16)T = 0,
�2X

�s2
= (0, 0)T,

�3X

�s3
= (0, 0)T.
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2.2 � Filament design

In this study, there are three types of flexible distribution 
modes for filaments. Uniform distribution: The flexibility of 
filaments is the same from the LE to the trailing edge (TE), 
as shown in Fig. 2a. Continuous distribution: The flexibility 
of the filament varies according to the rule of functions, 
including linear, square and exponential functions, as shown 
in Fig. 2b. The segmented flexible distribution: the stiffness 
of the left part of the filament is K̂b1 , and the stiffness of the 
right part (1-α)L of the filament is K̂b2 , as shown in Fig. 2c.

3 � Results and discussion

3.1 � Influence of the variable flexibility 
on the motion pattern of the filament

By setting different pitching parameters, the flapping foil 
can generate different wakes, including BvK vortex streets 
and the reverse BvK vortex streets. In this part, we com-
pared 6 sets of data (see Table 1) to explore the influence of 
flexibility on the motion pattern of filaments. In the experi-
ments of group A and group B, the flapping foil oscillation 
produces BvK vortex streets. The flexibility of the filaments 
is uniform, but the filaments in group B are more flexible. 
In group A, the filament swings between vortex streets. The 
filament is always swinging back and forth between adja-
cent vortex cores, the counterclockwise whirlpool (positive 
vorticity) will always pass through the underside of the fila-
ments (−y direction), and the clockwise vortices (negative 
vorticity) always pass through the upper side of the filament 
(+y direction). Figure 3a-d shows the instantaneous vorticity 
contours and filament shapes at 0.1T, 0.4T, 0.7T and 1.0T 
(a complete swing cycle). This state of motion is referred to 
as M1. Figure 3e shows the curve of the y-coordinate of LE 
and TE of the filament changing with time. The solid-line 
and dotted-line curves represent the trajectory of the LE and 
TE of the filament, respectively.

In group B, the motion state of the filament is completely 
different from that of A. The filament always keeps swinging 
outside the vortex streets and will not return to the middle 
position of the vortex streets. Both the positive and negative 
vortices pass only from one side of the filament (the upper 
or lower side). When the leading edge of the filament meets 
the negative vortex, the filament will begin to move upwards. 
When encountering a positive vortex, the filament begins to 
move downwards. This state of motion is referred to as M2. 
Figure 4a–d shows the instantaneous vorticity contours and 
filament shapes at 0.1T, 0.4T, 0.7T and 1.0T (a complete swing 
cycle). Figure 4e shows the y coordinate curve of the filament 
changing with time. Compared with A, it can be seen that 
when the filament moves on the side of the vortex street, the 
flapping amplitude is smaller. When other parameters are the 
same, changing the flexibility of the filament will change its 
motion state. To verify the universality of this result, we per-
formed four other comparative experiments. In groups C and 
D, the flapping foil oscillation produces a reverse BvK wake, 
and the flexibility of the filament is uniform in group C. From 
the y-coordinate of the LE and TE of the filament changes with 
time, as shown in Fig. 5a, we can see that the motion state of 
the filament is M1. In group D, the flexibility of the filaments 
changes according to the linear equation ( K̂b = bx + 0.001). 
From the LE to the TE, the flexibility of the filament increases 
gradually along the length, and Fig. 5b shows the curve of the 
y-coordinates of the LE and TE of the filament. According to 
the curve, we can see that the motion state is M2. In groups E 
and F, the pitching foil produces a BvK wake. The flexibility 
of the filaments in the E group is uniform, but in the F group, 
it is composed of two parts. The stiffness of the first half (0.5L, 
L is the filament length) of the filament is K̂b1 = 10−3, and the 
stiffness of the remainder of the filament is K̂b2 = 10−5. The 
curves of the y-coordinates of the LE and TE of the filaments 
of the two groups are shown in Fig. 5c and d, respectively. The 
motion state of group E is M1, and the motion state of group 
F is M2. The above numerical results show that changing the 
flexibility of the filament will also change the motion state of 
the filament.

a  b

c

Fig. 2   Three flexible distribution modes of the filament. a Uniform 
distribution, K̂

b
 = k; b Continuous variation distributions: (1) linear 

and square distributions K̂
b
 = nx2 + bx + 0.001, (2) changes according 

to an exponential composite function, K̂
b
 = exp(hx); c Segmented flex-

ible distribution, the stiffness of the left part (αL) of the filament is 
K̂
b1

 = b1, and the stiffness of the right part (L-αL) of the filament is 
K̂
b2

= b2. L is the length of the filament, 0 < α<1

Table 1   Physical parameter settings in the comparative experiment

Group Re U∞ DL f θ K̂
b

A 255 1.0 2.0 0.4 20 10−3

B 255 1.0 2.0 0.4 20 10−5

C 255 1.0 2.0 0.55 15 10−3

D 255 1.0 2.0 0.55 15 linear
E 255 1.0 2.0 0.3 25 5 × 10−3

F 255 1.0 2.0 0.3 25 Seg-
mented
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3.2 � Comparison of the drag coefficients 
of continuous variable flexible filaments

In this section, we compare the swimming performance of 
uniform flexible filaments and variable flexible filaments by 
the drag coefficient. The time average drag coefficient of the 
filament is defined as:

where Fx is the component of the Lagrangian force density 
in the x-direction. In the BvK vortex streets (the correspond-
ing pitching parameters of the pitching foil are St = 0.12 
and Ad = 2.1), the value of Cd  decreases as the stiffness of 
the filament increases, as shown in Fig. 6. To achieve the 
best swimming performance, we explore three different 

(17)Cd =

∫ t+T

t

(∫ L

0
Fxds

)
dt

1

2
�U2

∞
LT

,

Fig. 3   Instantaneous vorticity contours and filament shapes within 
a complete swing cycle in motion state M1. a 0.1T, b 0.4T, c 0.7T, 
d 1.0T and e the curve of the Y-coordinate of the filament changing 
with time. The solid-line and dotted-line curves represent the trajec-
tory of the LE and TE of the filament, respectively

Fig. 4   Instantaneous vorticity contours and filament shapes within 
a complete swing cycle in motion state M2: a 0.1T, b 0.4T, c 0.7T, 
d 1.0T and e the curve of the Y-coordinate of the filament changing 
with time. The solid-line and dotted-line curves represent the trajec-
tory of the LE and TE of the filament, respectively
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functional laws (linear function, quadratic function, expo-
nential composite function) of the flexible distribution of a 
filament. For both linear and quadratic distributions, given 
by K̂b = nx2 + bx + 0.001 (x is the arc length along the fila-
ment, 0 < x < L). Referring to the study of Moore [26], we 
optimize the parameter space (n, b) to minimize the corre-
sponding drag coefficient of the filament. The optimal linear 
and quadratic distributions are shown in Fig. 7. When the 
filament flexibility changes according to the optimal linear 
function, the value of Cd  is 8.53. When the filament flex-
ibility changes according to the optimal square function, 
the value of Cd is 8.54. We also explored an optimal expo-
nential composite stiffness distribution, K̂b = 0.001exp(hx). 
According to the research method of Godoy-Diana et al. 
[27], we optimize the parameter h to minimize the corre-
sponding drag coefficient of the filament. The optimal expo-
nential composite function distribution is shown in Fig. 6, 
and its corresponding drag coefficient value is 8.59. There-
fore, when the flexibility of the filament is in the optimal 

Fig. 5   Curves of Y-coordinate of the filament changing with time. 
a Group C, the motion state is M1; b Group D, the motion state is 
M2; c Group E, the motion state is M1 and d Group F, the motion 
state is M2

Fig. 6   Line chart of the drag coefficient changing with flexibility in 
the BvK wake (St = 0.12,A

d
 = 2.1)

Fig. 7   Optimal linear (n = 0, b = − 0.001), quadratic (n = 0.0008, 
b = − 0.0018) and exponential compound (c = − 10) stiffness distribu-
tions



935Numerical study on the effects of a semi‑free and non‑uniform flexible filament…

1 3

linear distribution, its drag reduction effect is the best (see 
Table  2). In the reverse BvK wake (the corresponding 
flapping parameters of the pitching foil are St = 0.22 and 
Ad = 1.29), the numerical simulation is carried out accord-
ing to the same experimental method as the method in the 
BvK vortex streets. We find that when the flexibility of the 
filament changes according to the optimal linear distribution 
( Cd = 8.0), the value of Cd is still lower than quadratic and 
exponential composite function distributions(see Table 3). 
However, the drag coefficient increases as the stiffness of the 
filament increases (see Fig. 8).

3.3 � Segmented flexible distribution

Fish-like filament models with segmented stiffness distribu-
tions are considered to improve the motion performance. 
Previous experimental research results show that the body 
stiffness of many propulsors decreases along the length from 
the head to the tail, and the body becomes highly flexible 
from almost the same point [28]. To explore the segmen-
tal flexibility distribution characteristics of propulsors and 
their influence on swimming performance, we conducted 
a numerical simulation on the segmented stiffness distri-
bution filaments in the BvK wake and the reverse BvK 
vortex streets. The stiffness of the filament is divided into 
two parts: the stiffness of the first part of the filament (left 
side) is K̂b1 , and the stiffness of the second part of the fila-
ment is K̂b2 (right side), as shown in Fig. 2c. Zhu et al. [4] 
showed that an increase in flexibility can result in a reduc-
tion in the vorticity production at the leading edge because 

of the decrease in the effective angle of attack, but it also 
enhances vorticity production at the trailing edge because 
of the increase in the trailing-edge flapping velocity. The 
competition between these two opposing effects eventually 
determines the strength of vortex circulation, which gov-
erns the propulsion efficiency. Inspired by this finding, we 
set a greater stiffness to the leading edge of the filament, 
i.e.,K̂b1 = 10−3, making the trailing edge highly flexible, i.e., 
K̂b2 = 5 × 10−5. We assume that the length of the leading end 
( K̂b1 = 10−3) of the filament is αL. And the length of the trail-
ing end ( K̂b2 = 10−5) of the filament is (1−α)L (0 < α<1, L is 
the total length of the filament). We found that in the BvK 
wake, when the value space of α is [0.85,0.9], the value of 
Cd  is the lowest, as shown in Fig. 8a. In the reverse BvK 
vortices, the same results as in the BvK wake are observed, 
as shown in Fig. 8b.

However, we do not obtain similar results under some 
other flow conditions. We consider that the optimal flex-
ible distribution is related to the flow field conditions. Thus, 
numerical calculations are performed under different flow 
conditions to explore whether this conclusion is true. Finally, 
the parameter values that correspond to this conclusion are 
determined. As shown in Figs. 9 and 10, in parameter space 
A1, when the value space of α is [0.85,0.9], the value of Cd 
is the lowest.

4 � Conclusions

We have explored the effect of nonuniform flexibility on 
the motion performance of a semi-free filament in the 
wake of a flapping foil through numerical research. Our 
results indicate that the motion state of the filament will 
alter with a change in the flexibility of the filament, from 
moving in the vortex street to moving on the side of the 
wake. In BvK vortices, the drag coefficient of the filament 

Table 2   Values of resistance coefficient corresponding to different 
flexible distribution of filament (in the BvK wake)

Mode K̂
b C

d

Uniform 10−3 8.61
Uniform 10−5 8.54
Linear − 0.001x 8.53
Square 0.0008x2− 0.0016x + 0.001 8.54
Exponential com-

pound
0.001exp(− 10x) 8.59

Table 3   Values of resistance coefficient corresponding to different 
flexible distribution of filament (in there verse BvK wake)

Mode K̂
b C

d

Uniform 10−3 9.9
Uniform 10−5 8.2
Linear − 0.001x 8.0
Square 0.0008x2− 0.0016x + 0.001 8.1
Exponential compound 0.001exp(− 10x) 8.3

Fig. 8   Line chart of the drag coefficient changing with flexibility in 
the reverse BvK wake (St = 0.22,A

d
 = 1.29)
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decreases with increasing flexibility. In the reverse BvK 
vortices, the opposite result is observed. The value of Cd 
increases with the flexibility of the filament. However, in 
these two types of vortex streets, when the flexibility of 

the filaments changes linearly, the drag coefficient is the 
smallest, which is better than the uniform flexible distribu-
tion. In nature, the front part of the fish’s body is relatively 
less flexible, and the back part is relatively more flexible. 
Moreover, many experiments have proven that this flexible 
distribution pattern of fish can achieve better swimming 
performance. To obtain a clearer understanding of the flex-
ible distribution characteristics, we explored the segmental 
distribution model of elastic filaments. The results show 
that when the value of α is [0.85,0.9] (the specific value 
depends on the flow field conditions), the value of Cd  is 
the smallest. In other words, the drag reduction effect of 
the filament is optimal when the filament starts to become 
highly flexible at 85%–90% along the length direction.
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