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Abstract 
The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform 
the virtual work in the third direction to the plane. Subsequently, based on Betti reciprocal theorem, by adopting the time 
dependent fundamental solutions in terms of displacement, traction and equivalent stress, the boundary integral equations 
for dynamic elastoplastic analysis for the plane strain problem are established. The establishment procedures for the dis-
placement and the stress boundary integral equations, together with the stress equation at boundary points, are presented in 
details, while the standard discretization both in time and space under the frame of time domain boundary element method 
(TD-BEM) and the solution of the algebraic equations are also briefly stated. Two verification examples are presented from 
different viewpoints, for elastic and elastoplastic analysis, for 1-D and 2-D geometries, and for finite and infinite domains. 
The TD-BEM formulation for dynamic elastoplastic analysis is presented for the plane strain problem as an example, where 
the formulation is also applicable for the plane stress problem by properly transforming the elastic constants and adopting 
the corresponding fundamental solutions.

Keywords Time domain boundary element method · Dynamic elastoplastic analysis · Equivalent stress fundamental 
solution · Boundary integral equation

1 Introduction

It is well known that the general problem of the determina-
tion of the response of elastoplastic structures to dynamic 
loads can only be solved by numerical methods [1]. In the 
past several decades, with the drastic evolution of digital 
computers, the finite element method (FEM) has become 
the predominant numerical tool in dynamic elastoplastic 
analysis. The boundary element method (BEM) has played 
a secondary role, however in some cases, appeared to be a 

better choice than FEM due to the inherent advantages of the 
algorithm in BEM formulation [1–6].

There are three different BEM formulations for dynamic 
elastoplastic analysis, that is, the domain boundary element 
formulation (D-BEM) [7–9], the dual reciprocity bound-
ary element formulation (DR-BEM) [9–12], and the time-
domain boundary element formulation (TD-BEM) [13–16]. 
In both of the first and the second formulations, static fun-
damental solutions are employed, distinguished by the 
treatment of the inertial integral, where keeping the inertial 
integral in the characteristics equation generates D-BEM, 
while transforming the inertial integral into a boundary one 
generates DR-BEM. In the third formulation for dynamic 
elastoplastic analysis, TD-BEM, dynamic fundamental solu-
tions are considered in the direct conventional BEM frame.

From the brief comparison among the aforementioned 
three BEM formulations for dynamic elastoplastic analysis, 
it can be seen that the boundary integral equations in the 
formulations, where the fundamental solutions are adopted, 
play the essential role. For this research topic, the read-
ers could refer to the review works by Beskos et al. [1–3], 
the original TD-BEM formulation by Banerjee et al. [14, 
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15], TD-BEM formulation coupling with other numerical 
methods by Soares [5], Soares et al. [17], Yu et al. [18] 
and Elleithy and Tanaka [19]. The TD-BEM formulation 
for dynamic elastoplastic problems was for the first time 
developed, with the whole numerical implementation and 
examples for plane problems in Ref. [14]. It is well known 
that, the plastic strain potentially exists in the third direction 
in dynamic elastoplastic analysis for the plane strain prob-
lem. Taking the stresses in the third direction in the plane 
strain problem into account, the virtual work in the third 
direction is accordingly produced. By contrast, in dynamic 
elastoplastic analysis for the plane stress problem, no plas-
tic work in the third direction exists due to the assumption 
of none stress in the third direction, even the plastic strain 
potentially exists in the third direction. In the correct TD-
BEM formulation for dynamic elastoplastic analysis for the 
plane strain problem, the virtual work in the third direction 
should be considered in the boundary integral equations. It 
is noted that the virtual work for the elastoplastic analysis for 
static plane strain problem was considered in Refs. [20, 21]. 
However, for the elastoplastic analysis for dynamic plane 
strain problem in Ref. [14], the virtual work, incorporated 
in Bikj�̇�

0

ik
 in the second integral term in the displacement 

boundary integral equation in the literature, was not consid-
ered. Therefore, the boundary integral equations were only 
applicable for the dynamic plane stress problem. The same 
omission also existed in the other related Ref. [15], although 
the virtual work was incorporated in different expression due 
to different adopted notations.

In this paper, by establishing the equivalent stress fun-
damental solution, the virtual work in the third direction is 
considered in the boundary integral equations. The TD-BEM 
formulation for dynamic elastoplastic analysis is devel-
oped for the plane strain problem, and 1-dimensional and 
2-dimensional numerical examples are used to validate the 
formulation. Due to the proper consideration of the virtual 
work in the third direction in the boundary integral equa-
tions, the TD-BEM formulation for dynamic elastoplastic 
analysis is also applicable for plane stress problems, by prop-
erly transforming the elastic constants and by adopting the 
corresponding fundamental solutions. In this paper, as an 
indispensable part of the standard TD-BEM formulation, 
the numerical discretization and the solution procedure are 
also briefly stated.

2  Establishment of the boundary integral 
equation

Before presenting the main text of the paper, two points 
should be pointed out. First, the TD-BEM formulation in 
this paper is presented for the plane strain problem without 
gravity. By replacing the fundamental solutions for the 
plane strain problem with those for the plane stress prob-
lem, also respectively replacing the Young modulus E and 
Poisson’s ratio ν in the expression of the Lame constant λ 
with E(1 + 2ν)/(1 + ν)2 and ν/(1 + ν), and keeping the other 
Lame constant μ (shear modulus) unchanged, the TD-BEM 
formulation for the plane strain problem is transformed 
into TD-BEM formulation for the plane stress problem. 
Second, for the plane problem with constant body force, 
such as gravity, based on the TD-BEM formulation for the 
plane problem without body force, the additional boundary 
integral is needed.

The boundary integral equation for elastoplastic dynam-
ics by the initial strain method can be constructed by 
following the similar procedure for inelastic statics and 
elastoplastic dynamics by the method of the initial stress 
method [20, 22]. Namely, based on Betti reciprocal theo-
rem, by integrating over τ from instant 0 to t, the displace-
ment boundary integral equation, Eq. (1), can be obtained, 
where the last term, the domain integral term, corresponds 
to the dissipation work in the plastic region

In the above equation, cik is the position coefficient, 
which was explained TD-BEM literatures, and could be 
found with ease for interested readers. The displacement 
and traction fundamental solutions in the equation are 
expressed in Eqs. (2) and (3) [23] as:

(1)

cikui(P, t) = − ∫
Γ
∫

t

0

p∗
ik
(P, �;Q, t)uk(Q, �)d�dΓ

+ ∫
Γ
∫

t

0

u∗
ik
(P, �;Q, t)pk(Q, �)d�dΓ

+ ∫
Ω
∫

t

0

�
∗

ikl
(P, �;R, t)�

p

kl
(R, �)d�dΩ.

(2)
u∗
ik
=

1

2π�cs
[(EikLs + FikL

−1

s
+ JikLsNs)Hs

−
cs

cd
(FikL

−1

d
+ JikLdNd)Hd],

(3)p∗
ik
=

1

2π�cs

{

Aik

[

rL3
s
Hs + Ls

�Hs

�(cs�)

]

+ BikLsNsHs +
Dik

r2

[

r3L3
s
Hs + LsNs

�Hs

�(cs�)

]

−
cs

cd

{

BikLdNdHd +
Dik

r2

[

r3L3
d
Hd + LdNd

�Hd

�

(

cd�
)

]}}

,
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where the parameters are explained in Appendix A.
The equivalent stress fundamental solution �∗

ikl
 is fur-

ther determined in the following context. By recalling the 
theorem of elasticity, the stress fundamental solution �∗

ikl
 

represent the stress at k direction in the plane with the nor-
mal vector of nl at field point Q at instant t, due to the unit 
impulse at i direction at source point P at instant τ. There-
fore, for the same plane, the traction p∗

ik
 and the stress �∗

ikl
 

at field point Q are the same, which can be expressed as:

The stress fundamental solution for plane stress prob-
lem can be expressed, as:

By comparing Eq. (5) with Eq. (3), it is found that �∗
ikl

 
is expressed in the same format with p∗

ik
 , by replacing the 

subscript ik with ikl. The parameters in Eq. (5) are also 
explained in Appendix A.

However, the equivalent stress fundamental solution is 
different from the stress fundamental solution. For the plane 
strain problem, the stress fundamental solution for the third 
direction is not zero, which could be expressed as:

where

According to Law of volume elasticity, one has

i.e.

It is obvious that, even for the plane strain problem, the 
plastic strain at the third direction might not be zero either. 
Therefore, the stress at the third direction potentially pro-
duces the virtual work, whose effects should be considered 
in the boundary integral equations in TD-BEM formulation 

(4)�
∗

ikl
(P, �;Q, t) =

[

p∗
ik
(P, �;Q, t)

]

nw=�lw
, w = 1, 2.

(5)�
∗

ikl
=

1

2π�c
s

{

A
ikl

[

rL
3

s
H

s
+ L

s

�H
s

�(c
s
�)

]

+ B
ikl
L
s
N
s
H

s
+

D
ikl

r2

[

r
3
L
3

s
H

s
+ L

s
N
s

�H
s

�(c
s
�)

]

−
c
s

c
d

{

B
ikl
L
d
N
d
H

d
+

D
ikl

r2

[

r
3
L
3

d
H

d
+ L

d
N
d

�H
d

�(c
d
�)

]}}

.

(6)
�
∗

i33
= ��

∗

imm

=
1

2π�cs

{

ΔAimm

[

rL3
s
Hs + Ls

�Hs

�(cs�)

]

+
ΔDimm

r2

[

r3L3
s
Hs + LsNs

�Hs

�(cs�)

]

−
cs

cd

ΔDimm

r2

[

r3L3
d
Hd + LdNd

�Hd

�(cs�)

]}

,

(7)ΔAimm = −ΔDimm = 2��(2� + 1)r,i m = 1, 2.

(8)ep = �
p

11
+ �

p

22
+ �

p

33
= 0,

(9)�
p

33
= −

(

�
p

11
+ �

p

22

)

= − �
p

kl
�kl.

for plane strain problem. In order to equivalently transform 
the virtual work at the third direction into the plane, one has

Therefore, the last integrand in boundary integral equa-
tion Eq. (1) is expressed as

One can express the equivalent stress fundamental solu-
tion for the plane strain problem as follows:

Then, the equivalent stress fundamental solution for the 
plane strain problem can be obtained as:

where the parameters are also explained in Appendix A.
Therefore, the virtual work is eliminated from the equiva-

lent stress fundamental solution. And the equivalent stress 

integral term in the boundary integral equation is expressed 
in Eq. (14) as:

where the symbol “ ” represents the finite part of an  
integral, for which one can refer Ref. [24].

(10)w3= − �
∗

i33
�
p

kl
�kl.

(11)
�
∗

ikl
�
p

kl
+ �

∗

i33
�
p

33
= �

∗

ikl
�
p

kl
− �

∗

i33
�
p

kl
�kl = (�∗

ikl
− �

∗

i33
�kl)�

p

kl
.

(12)�
∗

ikl
=�∗

ikl
− �

∗

i33
�kl.

(13)

�
∗

ikl
=

1

2π�c
s

{

A
ikl

[

rL
3

s
H

s
+ L

s

�H
s

�(c
s
�)

]

+ B
ikl
L
s
N
s
H

s
+

D
ikl

r2

[

r
3
L
3

s
H

s
+ L

s
N
s

�H
s

�(c
s
�)

]

−
c
s

c
d

{

B
ikl
L
d
N
d
H

d
+

D
ikl

r2

[

r
3
L
3

d
H

d
+ L

d
N
d

�H
d

�(c
d
�)

]

}}

,

(14)

∫
Ω
∫

t

0

�
∗

ikl
�
p

kl
d�dΩ

=
1

2π�cs ∫Ω

[

(Aikl + Dikl)

|

|

|

|

|

|

∫
t

0

rL3
s
�
p

kl
Hsd� + Bikl ∫

t

0

LsNs�
p

kl
Hsd�

−
cs

cd

(

Bikl ∫
t

0

LdNd�
p

kl
Hdd�+Dikl

|

|

|

|

|

|

∫
t

0

rL3
d
�
p

kl
Hdd�

)]

dΩ,



665A study on boundary integral equations for dynamic elastoplastic analysis…

1 3

3  Establishment of the stress boundary 
integral equation at interior points

For elastoplastic dynamics, the unknowns cannot be inde-
pendently solved by the displacement boundary integral 
equation. In the process of solving the unknowns, the stress 
boundary integral equation at interior points is a must, which 
is based on the physical and the geometric equations.

The physical equation is

where the imaginary elastic stress and plastic stress, �e
ij
 and 

�
p

ij
 , are expressed as:

The differential relationship between the total stress and the 
total strain are expressed in the geometric equation as follows:

Putting the displacement boundary integral equation at 
interior points into Eq. (17), and combining the physical equa-
tion and the geometric equation, the stress boundary integral 
equation at interior points can be obtained. The kernel func-
tions in terms displacement, traction and strain influence coef-
ficients, s∗

ijk
 , d∗

ijk
 and �∗

ijkl
 , are respectively expressed as:

The kernel function in terms of strain influence coeffi-
cients, �∗

ijkl
 , could not be directly calculated by using the 

equation, s∗
ijk

= nl�
∗

ijkl
 ,  additionally, ui,j(X(P), t) and 

uj,i(X(P), t) in the geometric equation stand for the deriva-
tives with respect to the coordinate of the source point. It 
means that the newly emerged derivatives in the above 
equations are regarding with the coordinate of the source 
point. The stress boundary integral equation at interior 
points is expressed as:

(15)�ij(P, t) = �
e
ij
(P, t) − �

p

ij
(P, t),

(16)

{

�
e
ij
(P, t) = ��ij�mm(P, t) + 2��ij(P, t),

�
p

ij
(P, t) = ��ij�

p
mm

(P, t) + 2��
p

ij
(P, t).

(17)�ij(P, t) =
1

2

[

ui,j(P, t) + uj,i(P, t)
]

.

(18)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s∗
ijk

= ��ijp
∗

mk,m
+ �

�

p∗
ik,j

+ p∗
jk,i

�

,

d∗
ijk

= ��iju
∗

mk,m
+ �

�

u∗
ik,j

+ u∗
jk,i

�

,

�
∗

ijkl
= ��ij�

∗

mkl,m
+ �

�

�
∗

ikl,j
+ �

∗

jkl,i

�

.

(19)

�ij(P, t) = −∫
Γ
∫

t

0

s∗
ijk
(P, �;Q, t)uk(Q, �)d�dΓ

+∫
Γ
∫

t

0

d∗
ijk
(P, �;Q, t)pk(Q, �)d�dΓ

+∫
Ω
∫

t

0

�
∗

ijkl
(P, �;R, t)�

p

kl
(R, �)d�dΩ − �

p

ij
(P, t)xf P

ij
.

The notations in Eq. (19), together with the coefficients, 
which are solely relevant with the spatial coordinate, are 
listed in Appendix B, while the others are listed in Appen-
dix A.

It needs to specially point out that both the displace-
ment integral equation and the stress boundary integral 
equation are applicable in both finite and infinite problems. 
For inf inite problem, two additional integrals, 
lim
r→∞

∫
Γr
∫ t

0
u∗
ik
pkd�dΓ and lim

r→∞
∫
Γr
∫ t

0
p∗
ik
ukd�dΓ , should be 

included in the boundary integral equations, where r 
stands for the radius of the virtual out boundary of a big 
circle, Γr, surrounding the internal boundary Γ. When ρ 
approaches the infinity, r → ∞, the finite problem turns to 
the infinite problem. However, the two integral terms in 
dynamics are different from those in statics. In a dynamic 
problem, only in the case where Mw = cw(t − τ) − r ≥ 0, i.e., 
H(Mw) = 1, the two integral terms are not zero. In the case 
of r → ∞, one has H(Mw) = 0, meaning that the two inte-
gral terms naturally disappear in a dynamic problem.

The wave front of an impulse, that initiates at any instant 
within the analysis duration [0, t], cannot reach the infinity 
before t instant. It means that the impulse has none impacts 
on, such as the displacement, velocity, traction, stress and 
strain, for the infinity during the analysis duration. In this 
sense, the phenomenon is reasonably explained. Moreover, 
the phenomenon could also be illustrated from the viewpoint 
of the difference between the treatment mechanisms for stat-
ics and dynamics. In statics, only if the internal force acts in 
an infinite elastic body, the resultant force on the virtual outer 
boundary of a big circle Γr is always equal in amount and 
opposed in direction to the resultant internal force, where the 
effects from the virtual outer boundary could not be neglected. 
By contrast, in dynamics, the impulse initiated at any instant 
in the finite analysis duration, definitely cannot reach  
the infinity, the infinite outer boundary has none influence  
on the problem.

By comparing the boundary integral equations in Refs. 
[1, 3, 13] and in this paper, it can be seen that an additional 
domain integral is included in elastoplastic dynamics. The 
domain integral accounts for the energy dissipation due to 
plasticity. By comparing with the boundary integral equations 
for both elastostatics in Refs. [25, 26] and elastoplastic dynam-
ics in this paper, it can be seen that time dependent transient 
fundamental solutions are adopted.

4  Stress equation at boundary points

According to the idea of the standard dynamic TD-BEM for-
mulation, source point P is supposed to traverse every node in 
the expected elastoplastic domain. In some cases, the internal 
element in the elastoplastic domain is so close to the boundary, 
that some nodes of the internal elements would be coincident 
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with the boundary nodes. If source point P goes through the 
coincident node connecting the internal element in the elas-
toplastic domain and the boundary element, hyper singularity 
is encountered, where the singularity treatment for the other 
internal node is not applicable. In this scenario, the stress equa-
tion at boundary points is proposed to calculate the stress for 
the points on the boundary.

Supposing that the displacement, traction and plastic strain 
at the boundary points are given, the stress equation at bound-
ary points is easy to be obtained by combining Hooke’s law and 
the boundary condition. For the coincident node connecting the 
internal element in the elastoplastic domain and the boundary 
element, according to the general Hooke’s law, one has:

where �p

ij
= 2��

p

ij
+ ��ij�

p
mm.

The equation is written in matrix format as:

where

and m, e and Q in superscript (m;e,Q) stand for the number 
of moment, element and node respectively.

However, in the above expression, Eq. (21), σ, σp and u′ 
are unknown. In order to obtain u′ , the following two equa-
tions, Eqs. (22) and (23), are established based on the bound-
ary condition.

The traction condition:

The displacement condition:

On the boundary, ∂ui/∂ξ and pi can be expressed by the 
nodal displacement and traction in the corresponding bound-
ary element as:

(20)�ij = �

(

ui,j + uj,i
)

+ ��ijum,m − �
p

ij
,

(21)� = Cu� − �
p,

� =

(

�
(m;e,Q)

11
�
(m;e,Q)

12
�
(m;e,Q)

22

)T

,

�
p =

(

�
p(m;e,Q)

11
�
p(m;e,Q)

12
�
p(m;e,Q)

22

)T

,

u� =
(

u
(m;e,Q)

1,1
u
(m;e,Q)

1,2
u
(m;e,Q)

2,1
u
(m;e,Q)

2,2

)T

,

C =

⎡

⎢

⎢

⎣

2�+� 0 0 �

0 � � 0

� 0 0 2�+�

⎤

⎥

⎥

⎦

,

(22)�

(

ui,j + uj,i
)

nj + �nium,m = pi + �
p

ij
nj (i = 1, 2).

(23)ui,j

�xj

��

=
�ui

��

(i = 1, 2).

Combining Eqs. (22) and (23), one has:

That is

where

(24)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�u
(m;e,Q)

1

��

�u
(m;e,Q)

2

��

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

�

�N1

��

0
�N2

��

0

0
�N1

��

0
�N2

��

�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u
(m;e,1)

1

u
(m;e,1)

2

u
(m;e,2)

1

u
(m;e,2)

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(25)

⎧

⎪

⎨

⎪

⎩

�x1

��

�x2

��

⎫

⎪

⎬

⎪

⎭

=

�

�N1

��

0
�N2

��

0

0
�N1

��

0
�N2

��

�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x
(e,1)

1

x
(e,1)

2

x
(e,2)

1

x
(e,2)

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(26)

�

p
(m;e,Q)

1

p
(m;e,Q)

2

�

=

�

N1 0 N2 0

0 N1 0 N2

�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p
(m;e,1)

1

p
(m;e,1)

2

p
(m;e,2)

1

p
(m;e,2)

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(27)Bu� = Np + N�u + V�p
.

(28)u� = B−1Np + B−1N�u + B−1V�p,

B =

⎡

⎢

⎢

⎢

⎢

⎣

(2�+�)n1 �n2 �n2 �n1
�n2 �n1 �n1 (2�+�)n2
�x1

��

�x2

��

0 0

0 0
�x1

��

�x2

��

⎤

⎥

⎥

⎥

⎥

⎦

,

N =

⎡

⎢

⎢

⎢

⎣

N1 0 N2 0

0 N1 0 N2

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

N�
=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0
�N1

��

0
�N2

��

0

0
�N1

��

0
�N2

��

⎤

⎥

⎥

⎥

⎥

⎦

,

V =

⎡

⎢

⎢

⎢

⎣

n1 n2 0

0 n1 n2
0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

.
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Expressing �p by means of �p , one has

w h e r e  Cp=

⎡

⎢

⎢

⎣

2� + � 0 �

0 2� 0

� 0 2� + �

⎤

⎥

⎥

⎦

 a n d 

�
p =

(

�
p(m;e,Q)

11
�
p(m;e,Q)

12
�
p(m;e,Q)

22

)T
.

Based on Eq. (29), putting Eq. (28) into Eq. (21), one 
has

where G�(m;e)
= CB−1N, H�(m;e)

= −CB−1NQ′, Q′(m;e) =
(

CB−1V − I
)

Cp
.

The stress equation at boundary points is applicable for 
any point on the boundary. For the case where field point Q 
is located within the boundary element, it only needs to put 
the natural coordinate ξ of Q into the equation to calculate 
the stress. For the case where point Q is the node of the 
boundary element, the stress at point Q is calculated by aver-
aging the stresses for the two adjacent boundary elements, 
connected by point Q. The stress equation at boundary points 
can be directly assembled together with the stress boundary 
integral equation at interior points. However, it should be 
noted that the shape function is used in the stress equation 
at boundary points. The shape function is an approximation, 
which might undermine the accuracy, by comparing with the 
stress boundary integral equation at interior points.

Upon the establishments of the boundary integral equa-
tions, the stress boundary integral equation at interior 
points, and the stress equation at boundary points, the 
basic equations for TD-BEM formulation for elastoplastic 
dynamics are established.

5  Numerical implementation and solution

Supposing that a unit impulse acts on a node in an element, 
in order to solve Eqs. (1) and (19) for an individual boundary 
element, the discretization both in time and space needs to be 
performed upon Eqs. (1) and (19). In the process of discretiza-
tion, the time interval of the analysis duration [0, t] is evenly 
divided into M time intervals, each with the same length of 
Δt, such that t = MΔt. In each time interval Δt, the linear time 
variation is conventionally assumed for the displacements uk 
and the plastic strains �p

k
 , while the tractions pk are assumed 

to be constant. The spatial discretization is performed on 
both the boundary and the part of the interior of the expected 
elastoplastic domain (3 nodded linear elements), where the 
linear spatial variation is assumed. After the time and spa-
tial discretization, the boundary integral equations, Eqs. (1) 
and (19), are transformed into the discrete equations for each 
time and space element. Putting the discretized variables into 
the boundary integral equations, the displacement, traction 

(29)�
p = Cp

�
p,

(30)� = −H�(m;e)u(m;e,Q) + G�(m;e)p(m;e,Q) + Q�(m;e)
�
p,

and the plastic integral terms in the boundary integral equa-
tions, both on the boundary and in the expected elastoplastic 
domain, are expressed in the following discrete forms as:

In Eqs. (31) and (32), Ne and Nf are amounts of the bound-
ary elements and the domain elements, respectively. Due to 
the assumption of constant tractions in the time interval, the 
two influence coefficients, g(m;e,a)

ik
 and d(m;e,a)

ijk
 , of the displace-

ment of node a (a = 1, 2) in boundary element e and the plastic 
strain of node b (b = 1, 2, 3) in domain element f to the stress 
of source point P, are constant for every individual element. 
The other four coefficients, h

(m;e,a)

ik
 , s(m;e,a)

ijk
 , q(m;f ,b)

ikl
 and f (m;f ,b)

ijkl
 , 

are expressed in the following equations (respectively corre-
sponding to the influence of the displacement of node a (a = 1, 
2) in boundary element e to the displacement and stress of 
source point P, and the influence of the plastic strain of node 
b (b = 1, 2, 3) in domain element f to the displacement and 
stress of source point P)

(31)

∫
Γ
∫

t

0

u∗
ik
pkd�dΓ =

M
∑

m=1

Ne
∑

e=1

Nq
∑

a=1

g
(m;e,a)

ik
p
(m;e,a)

k
,

∫
Γ
∫

t

0

p∗
ik
ukd�dΓ =

M
∑

m=0

Ne
∑

e=1

Nq
∑

a=1

h
(m;e,a)

ik
u
(m;e,a)

k
,

∫
Ω
∫

t

0

�
∗

ikl
�
p

kl
d�dΩ =

M
∑

m=0

Nf
∑

f=1

Nr
∑

b=1

q
(m;f ,b)

ikl
�
p(m;f ,b)

kl
,

(32)

∫
Γ
∫

t

0

d∗
ijk
pkd�dΓ =

M
∑

m=1

Ne
∑

e=1

Nq
∑

a=1

d
(m;e,a)

ijk
p
(m;e,a)

k
,

∫
Γ
∫

t

0

s∗
ijk
ukd�dΓ =

M
∑

m=0

Ne
∑

e=1

Nq
∑

a=1

s
(m;e,a)

ijk
u
(m;e,a)

k
,

∫
Ω
∫

t

0

�
∗

ijkl
�
p

kl
d�dΩ =

M
∑

m=0

Nf
∑

f=1

Nr
∑

b=1

f
(m;f ,b)

ijkl
�
p(m;f ,b)

kl
.

(33)

h̄
(m;e,a)

ik
=

{

h̄
(m+1,1;e,a)

ik
+ h̄

(m,2;e,a)

ik
, m = 1, 2,⋯ ,M − 1,

h̄
(m,2;e,a)

ik
, m = M,

(34)q
(m;f ,b)

ikl
=

{

q
(m+1,1;f ,b)

ikl
+ q

(m,2;f ,b)

ikl
, m = 1, 2,⋯ ,M − 1,

q
(m,2;f ,b)

ik
, m = M,

(35)s
(m;e,a)

ijk
=

{

s
(m+1,1;e,a)

ijk
+ s

(m,2;e,a)

ijk
, m = 1, 2,⋯ ,M − 1,

s
(m,2;e,a)

ijk
m = M,

(36)

f̄
(m;f ,b)

ijkl
=

{

f̄
(m+1,1;f ,b)

ijkl
+ f

(m,2;f ,b)

ijkl
, m = 1, 2,⋯ ,M − 1,

f̄
(m,2;f ,b)

ijkl
, m = M.
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After assemblage, the discrete 2-D time domain boundary 
integral equations are transformed into the following equations 
in matrix format:

w h e r e  aM =
∑M−1

m=0

�

−h
Mm

um + gMmpm
�

+ qMm
�
pm, 

bM =
∑M−1

m=0

�

−sMmum + dMmpm
�

+ f
Mm

�
pm.

As the unit impulse traverses all the boundary nodes, 
the overall time domain displacement boundary integral 
equation in matrix format Eq. (39) is obtained. As the unit 
impulse traverses all the domain nodes in the expected elas-
toplastic domain, the overall time domain stress boundary 
integral equation in matrix format Eq. (40) is obtained, in 
which the stress boundary integral equation at interior points 
and the stress equation at boundary points are incorporated

w h e r e  AM
=
∑M−1

m=0

�

−H
Mm

um + GMmpm + QMm
�
pm
�

 , 
BM

=
∑M−1

m=0

�

−SMmum + DMmpm + FMm
�
pm
�

 , where the 
superscript “Mm” stands for the matrix when t = MΔt, 
τ = mΔt. H, G, S, D stand for the boundary influence matri-
ces, and Q and F stand for domain influence matrices. u, p 
and εp are vectors representing the displacement, traction, 
plastic strain, respectively.

Thus, the dynamic plasticity is described by the coupled 
system of the two integral equations, Eqs. (39) and (40). How-
ever, the integral equation set is undetermined, with the amount 
of unknowns more than that of equations. In order to solve 
the undetermined integral equation set, the additional relation-
ship between plastic stress and plastic strain, i.e. the constitu-
tive relation, needs to be supplemented. In this research, an 
elastoplastic material obeying the V. Mises isotropic harden-
ing model is assumed, and the bilinear constitutive model is 
employed. When the node in the medium is under elastic state 
or unloading, by adopting the Hooke’s law, one has:

where Δεe, Δσ and De respectively represent the elastic 
strain increment, stress increment of the node, and the flex-
ibility matrix related to the elasticity modulus E, which is 
expressed as:

(37)hMMuM = gMMpM + qMM
�
pM + aM ,

(38)�
M + sMMuM = dMMpM + fMM

�
pM + bM ,

(39)HMMuM = GMMpM + QMM
�
pM + AM

,

(40)�
M + SMMuM = DMMpM + FMM

�
pM + BM

,

(41)Δ�e = DeΔ�,

(42)De =

⎡

⎢

⎢

⎢

⎣

1−�2

E
0 −

�(1+�)

E

0
(1+U)

E
0

−
�(1+�)

E
0

1−�2

E

⎤

⎥

⎥

⎥

⎦

.

When the node in the medium is under elastic–plastic 
state and loading, the total strain increment Δε and the stress 
increment Δσ still obey the Hooke’s law as:

where Dt represents the flexibility matrix related to the tan-
gent modulus Et, which is expressed as:

Therefore the supplementary relationship between the 
plastic stress increment and the plastic strain increment is 
expressed as:

where Det is defined as:

where H� =
EEt

E−Et

 . Dp is a matrix with Det and 3 × 3 zero 
matrix as diagonal submatrix, corresponding to yield point 
and non-yield point respectively.

So far, the dynamic plasticity is fully described by the 
coupled system of the two boundary integral equations, 
Eqs. (39) and (40), together with the constitutive relation, 
Eq. (45).

In order to solve the two boundary integral equations, 
besides the constitutive relation for determining the unde-
termined equation set, all of the elements in the influence 
matrices must be solved. In the process of the solution of 
the elements of the influence matrices, singularities must 
be treated. In this research, the elements in the influence 
matrices are divided into singular parts and non-singular 
parts to accordingly form the singular and non-singular sub-
matrices, to be solved in different procedures. In order to 
treat the integral terms with hyper superficial singularities, 
the similar integral terms are coalesced to eliminate most of 
the singularities at first. For the remaining singularities, the 
treatment by calculating the Cauchy principle integral for the 
singular integrals was used to treat the singularities in other 
literatures [23, 27–29]. Besides the mathematical complex-
ity, the method of rigid body displacement is an elastostatic 
concept, therefore, those singular treatments might not be 
applicable in nonlinear analysis both for elastoplastics and 
elastoplastic materials. Therefore, in this paper, Hadamard 
principle integral [24] is used to solve the singular integrals 
in discretization both in time and space, from the viewpoint 

(43)Δ� = DtΔ�,

(44)D
t
=

⎡

⎢

⎢

⎢

⎣

1−�2

E
t

0 −
�(1+�)

E
t

0
(1+�)

E
t

0

−
�(1+�)

E
t

0
1−�2

E
t

⎤

⎥

⎥

⎥

⎦

.

(45)Δ�p = Δ� − Δ�e =
(

Dt − De

)

Δ� = DpΔ�,

(46)D
et
= D

t
− D

e
=

⎡

⎢

⎢

⎢

⎣

1−�2

H�
0 −

�(1+�)

H�

0
(1+�)

H�
0

−
�(1+�)

H�
0

1−�2

H�

⎤

⎥

⎥

⎥

⎦

,
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of dynamics, rather than the viewpoint of elastostatics. Inter-
ested readers could refer to literature [30] for the treatments 
to singularities in elastodynamics by using Hadamard prin-
ciple integral. However, the full statement of the singularity 
treatment by using Hadamard principle integral is mathe-
matically arduous, and will make the paper oversize, losing 
the focus of the paper and undermining the readability. The 
analytical treatments to the singularities by using Hadamard 
principle integral would be described in another independ-
ent paper. It is noted that the accurate evaluation of domain 
integrals is a big issue. There are two methods to evaluate 
the domain integrals, the internal cells-based method and the 
boundary-only method. The internal cells-based method is a 
direct method without special treatment, but the accuracy of 
integrals is dependent on the internal mesh. The boundary-
only method can avoid the discretization of internal mesh 
and make good use of the advantages of BEM [31]. In our 
research, the internal cells-based method is adopted. When 
all of the integrals are obtained, all the elements in the influ-
ence matrices are solved.

The unknowns and the known elements of the nodal dis-
placement and traction vectors are mixed in Eqs. (39) and 
(40). By separating the unknowns and the known elements 
and rearranging, Eqs. (39) and (40) are re-formulated as 
follows:

Equations (47)and (48) are rewritten as:

w h e r e  RMM =
(

AMM
1

)−1
QMM

,  YM =
(

AMM
1

)−1
yM , 

KM =
(

AMM
1

)−1
AM

,  TMM
= FMM

− AMM
2

RMM
, 

ZM
= zM − AMM

2
YM

, LM
= BM

− AMM
2

KM
.

In the above algebra equations, all the matrices are solely 
dependent on the differential value of (M − m). It means that 
two matrices, with different m value but with the same dif-
ferential value of (M − m), have the same element values. 
Therefore, if the response at the M-th time step is supposed 
to be solved, it only needs to obtain the corresponding matri-
ces at the time step, with the maximum value of (M − m), 
i.e., (M − 1). So, every new matrix for a time instant is saved 
for the forthcoming time step. The causality dramatically 
reduces the cost in the computation of matrices.

The stress at the M-th time step is expressed in incremen-
tal format as: 

(47)AMM
1

xM = yM + QMM
�
pM + AM

,

(48)�
M = −AMM

2
xM + zM + FMM

�
pM + BM

.

(49)xM = RMM
�
pM + YM

+ KM
,

(50)�
M = TMM

�
pM + ZM

+ LM
,

�
M = �

M−1 + Δ�M ,

 where, Δ�M = T−1

p

(

ΔZM
+ ΔLM

+ Re
)

, Re = TM,M−1
�
p(M−1)

+ZM−1
+ LM−1

− �
M−1 , Tp = I − TMMDp , and I is the iden-

tity matrix.
Analogously, the plastic strain at the M-th time step is 

obtained as:

where Δ�pM = DpΔ�
M.

In order to treat the discontinuity of the slop of 
stress–strain curve at the transition period from elastic 
region to plastic region, a special treatment of sub-dividing 
the time intervals around the transition period is adopted. 
The amount of divisions in every time interval is dependent 
on the requirement of the evaluation accuracy, to guarantee 
that the calculated mechanical behavior in every sub-time-
interval, in terms of the stress and strain increment, is close 
to the relationship between the stress and strain increment 
described by the constitutive law of the material.

So far, the computation in the M-th time step is finished, 
and the computation moves to the next time step, up to the 
last instant.

As all the unknowns on the boundary (the tractions and 
displacements) and in the expected elastoplastic domain 
(the plastic strain) are solved, the displacements of the 
interior points and the stresses of interior points in the 
non-plastic domain are solved by the following equations 
without any singularities:

w h e r e  AM
=
∑M−1

m=0

�

−H
Mm

um + GMmpm + QMm
�
Pm
�

 , 
BM

=
∑M−1

m=0

�

−SMmum + DMmpm + FMm
�
pm
�

.

6  Verification

In order to verify the proposed 2-D TD-BEM formulation 
for dynamic elastoplastic analysis, two examples are cho-
sen for verification, i.e., 1-D rod (shown in Fig. 1(a), where 
a = 2 m) subjected to a Heaviside-type load, p(t) = 200 MPa, 
t ≥ 0 (shown in Fig. 1(c)), at the free side, and 2-D cavity 
in an infinite medium (shown in Fig. 1(b), where r0 = 1 m) 
under the same Heaviside-type load as in the case of the 1-D 
rod on the cavity boundary.

It is noted that the elastoplastic response to transient 
dynamic loads can only be solved by numerical meth-
ods, without analytical solutions. Therefore, the results 
of the dynamic elastoplastic analysis from the TD-BEM 

(51)�
pM = �

p(M−1) + Δ�pM ,

(52)uM
P
= −H

MM
uM + GMMpM +QMM

�
pM + AM

,

(53)�
M = −SMMuM + DMMpM + F

MM
�
pM + BM

,
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formulation in this paper are compared with those from the 
commonly used FEM program, Abaqus.

It is also noted that, if the third term in the boundary 
integral equations, Eq. (1), is excluded, the proposed TD-
BEM formulation is degenerated from elastoplastic analysis 
to elastic analysis. It means that the degenerated TD-BEM 
formulation for elastic analysis is to some extent the bench 
mark of the formulation for elastoplastic analysis. Therefore, 
in order to enhance the convincingness of the verification for 
elastoplastic analysis, the degenerated TD-BEM formulation 
for elastic analysis is verified in advance, by comparing the 
elastic results from both FEM and the degenerated TD-BEM 
formulation for elastic analysis with the analytical solutions 
under the elastic conditions, which is more objective than 
the numerical solution.

Therefore, the proposed 2-D TD-BEM formulation for 
dynamic elastoplastic analysis is intensively validated from 
different viewpoints, for elastic and elastoplastic analysis, for 
1-D and 2-D geometries, and for finite and infinite domains.

In order to determine the optimal time step, the TD-BEM 
results for different β values from the range of 0.5 to 1.0 are 
compared. The optimal time steps of 2 × 10–5 s, 1.5 × 10–5 s 
and 3.5 × 10–5 s are determined for 1-D elastic and elasto-
plastic examples, 2-D elastic example and 2-D elastoplastic 
example, respectively. It is noted that the accuracy of TD-
BEM is sensitive to the time step [32]. Several research-
ers put forward improvement measures for elastodynamic 
TD-BEM, such as convolution quadrature method (CQM) 
[33, 34]. The stability of elastoplastic dynamic TD-BEM is 
worthy studying next.

6.1  Verification example of 1‑D rod for elastic 
and elastoplastic analysis

6.1.1  1‑D rod for elastic analysis

The classical 1-D rod under an axial Heaviside-type load 
was reported by some literatures for verification [26, 27, 35, 

36]. In this paper, in order to clearly compare the modeling 
results by different TD-BEM formulations, it is also chosen 
to verify the degenerated TD-BEM formulation for dynamic 
elastic analysis, as shown in Fig. 1(a,b) for the geometry, in 
Fig. 1(c) for the load, p(t) = 200 MPa, t ≥ 0. The transient 
elastic responses for two points A(2, 0) and B(1, 0) are cho-
sen for the purpose of comparison.

The material parameters of the rod are: the elastic mod-
ulus E = 2.1 × 1011 Pa, Poisson ratio v = 0, mass density 
ρ = 7900 kg/m3. So, the velocity of the P wave is calcu-
lated as, cd = 5156 m/s. The boundary of the rod is evenly 
divided into 48 elements as shown in Fig. 2, and the time 
step 2 × 10–5 s is used in TD-BEM modeling. By contrast, in 
FEM program Abaqus, much finer mesh 0.005 m × 0.005 m 
is used to discretize the whole geometry of the problem, and 
the much shorter time step 5 × 10–7 s is employed.

The calculated transient displacements in two periods 
from the degenerated TD-BEM formulation for dynamic 
elastic analysis at two monitoring points A and B are shown 
in Fig. 3, in which, for the purpose of comparison, the dis-
placements of the same two monitoring points both from the 
analytical solution [37] and FEM are also included.

Fig. 1  Numerical examples and the load: a 1-D example, b 2-D example, and c Heaviside-type load

Fig. 2  Boundary discretization of 1-D rod
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From Fig. 3, it can be seen that both of the numerical 
results, from the degenerated TD-BEM and FEM, agree with 
the analytical solutions reasonably well.

6.1.2  1‑D rod for elastoplastic analysis

The same 1-D rod in Fig. 1(a) subjected to the same Heav-
iside-type uniform load p(t) = 200 MPa, t ≥ 0 in Fig. 1(c) is 
used as the numerical example to verify the TD-BEM formu-
lation for dynamic elastoplastic analysis. In order to ensure 
the occurrence of the plasticity in the medium, the tangent 
modulus of the material for bilinear constitutive model 
(Et = 1 × 1011 Pa) and the yield stress (σs = 2.1 × 108 Pa) are 
given to the mechanical properties of the material.

In TD-BEM model shown in Fig. 4, the whole geometry 
is discretized by 336 3-nodded boundary elements, with 
the mesh size 0.1 m × 0.1 m. And the time step 2 × 10−5 s 
is used. Therefore, 48 boundary nodes and 145 internal 
nods in the expected plastic region are generated. In FEM 
model, much finer mesh size 0.005 m × 0.005 m and the 

much shorter time step 5 × 10−7 s are employed again for the 
elastoplastic modeling.

The calculated elastoplastic transient displacements 
in two periods from TD-BEM formulation for dynamic 
elastoplastic analysis, together with those from FEM, at 
points A and B, are shown in Fig. 5. It can be seen that a 
good agreement between the TD-BEM and FEM has been 
achieved, with much more favorable mesh size and time 
step for FEM.

6.2  Verification example of 2‑D cavity for elastic 
and elastoplastic analysis

6.2.1  2‑D cavity for elastic analysis

Similar to the 1-D verification example, the 2-D example 
is used to verify the degenerated TD-BEM formulation for 
elastic analysis in advance as well. Suppose that the uni-
form Heaviside-type load, p(t) = 200 MPa, t ≥ 0, is suddenly 
applied on the boundary of the cylindrical cavity in an infi-
nite medium, shown in Fig. 1(b,c). The material parameters 
of the medium are: the elastic modulus E = 2.1 × 1011 Pa, 
Poisson ratio v = 0.3, mass density ρ = 7900 kg/m3.

In BEM model, the internal boundary of the cylindrical 
cavity is divided into 40 linear boundary elements, with 
40 linear boundary nodes, as shown in Fig. 1(b), and the 
time step 1.5 × 10−5 s is used. By contrast, the problem is 
modeled by a circular FEM model, with the outer artificial 
dynamic boundary, r = 100 m, preventing from reflecting 
the outgoing wave. The whole FEM model is divided by 
quadrilateral elements. The mesh size 0.25 m × 0.25 m and 
the time step 1 × 10−6 s are used.

The calculated waves at r = 2 m from the degenerated TD-
BEM formulation for dynamic elastic analysis are shown in 
Fig. 6(a–c) in terms of the radial stress, the circumferential 

Fig. 3  Comparison between the results for displacement from TD-
BEM, analytical and FEM for elastic analysis

Fig. 4  Discretization of the boundary and suspicious plastic region of 
one-dimensional bar

Fig. 5  Comparison between the results for displacement from TD-
BEM and FEM for elastoplastic analysis
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stress and the velocity, respectively, where the results from 
the method of characteristics, see reference by Chou and 
Koenig [38], and the results from FEM are also included. 
The velocity wave form TD-BEM formulation shown in 
Fig. 6(c) is calculated by using the following expression:

where u1 and u2 represent the displacement at the time node 
before and behind the calculating time node, and Δt repre-
sents the time step.

From Figs. 6 and 7, by comparing the objective analyti-
cal results and the numerical results, both from the degen-
erated TD-BEM formulation for dynamic elastic analy-
sis and FEM, it can be seen that agreement between the 
numerical (TD-BEM and FEM) and the analytical results 

(54)v =
u2 − u1

Δt
,

Fig. 6  Comparison between the results from TD-BEM, method of 
Characteristics and FEM for elastic analysis (r = 2  m) for a radial 
stress, b circumferential stress, and c velocity.It should be noted that 
the stress and time are normalized, and the unit of the displacement is 
mm. Likewise, for the purpose of checking the computation stability 
for the degenerated TD-BEM formulation for dynamic elastic anal-
ysis, the corresponding calculated waves at a farther radial distance 
from the center of the cavity, r = 8 m, are shown in Fig. 7(a–c)

Fig. 7  Comparison between the results from TD-BEM, method of 
Characteristics and FEM for elastic analysis (r = 8  m) for a radial 
stress, b circumferential stress, and c velocity
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is generally good for the points both close to and far away 
from the cavity boundary in the surrounding medium. By 
checking the agreements between the numerical (TD-BEM 
and FEM) and the objective analytical results at the turn-
ing point, where the wave arrive the peak value at the 
peak value occurrence instant, it can also be seen that the 
results from the degenerated TD-BEM formulation agree 
with the objective analytical solution, better than results 
from FEM do, probably due to the proper treatments on 
the singularities in TD-BEM formulation. Therefore, due 
to the inherent advantages in the algorithm in TD-BEM 
formulation, it is not strange that the performance of the 
degenerated TD-BEM formulation seems better than FEM 
for the infinite case, even under the unfavorable conditions 
of the mesh size and time step for the degenerated TD-
BEM formulation for elastic analysis.

6.2.2  2‑D cavity for elastoplastic analysis

The 2-D cavity subjected to the Heaviside-type, load 
p(t) = 200 MPa, t ≥ 0, in an infinite medium is also used to 
verify the whole TD-BEM formulation for dynamic elasto-
plastic analysis. In order to ensure the occurrence of the plas-
ticity in the surrounding medium, the tangent modulus of the 
material for bilinear constitutive model (Et = 1 × 1011 Pa) and 
the yield stress (σs = 2.1 × 108 Pa) are given to the mechani-
cal properties of the material.

In BEM model, the ring-shaped region defined by 
1 m ≤ r ≤ 2 m is chosen as the expected elastoplastic domain, 
where the internal boundary is divided into 41 1-D lin-
ear boundary elements, and the domain is divided into 443 

3-nodded boundary elements, accordingly producing 40 
boundary nodes and 231 domain nodes, shown in Fig. 8. The 
time step is 3.5 × 10−5 s. The FEM model is subscribed in 
Sect. 6.2.1.

The calculated waves at r = 2 m from TD-BEM formula-
tion for inelastic dynamic analysis are shown in Fig. 9(a–c) 
in terms of the radial stress, the circumferential stress and 
the velocity, respectively, where the results from FEM are 
also included. The corresponding waves at a farther radial 
distance from the center of the cavity, r = 8 m, are shown in 
Fig. 10(a–c).

Fig. 8  Discretization of the expected elastoplastic region of 2-D 
example

Fig. 9  Comparison between the results from TD-BEM and FEM for 
elastoplastic analysis (r = 2  m) for a radial stress, b circumferential 
stress, and c velocity
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From Figs. 9 and 10, by comparing the results both from 
the TD-BEM formulation for inelastic dynamic analysis and 
FEM, it can be seen that reasonably good agreement has been 
achieved for the points both close to and far away from the 
cavity boundary in the surrounding medium. By checking the 
peak value and the corresponding occurrence instant, a cer-
tain difference between results from TD-BEM formulation for 
inelastic analysis and FEM exists. The main reason for the dif-
ference might be that a large diameter plane domain is used to 

approximate the infinite domain in FEM model. Although the 
propagation range of the stress wave is completely included, 
a certain degree of difference still appears. By considering 
that the agreement with the objective analytical solution for 
the degenerated TD-BEM formulation for elastic analysis is 
better than for FEM, the peak values and the corresponding 
occurrence instant in Figs. 9 and 10 from TD-BEM formula-
tion for inelastic analysis might be more convincing.

7  Conclusion

Based on the fundamental solution for traction and the rela-
tionship between stress and traction, the fundamental solution 
for stress is obtained. Upon the establishment of the funda-
mental solution for stress, by considering the law of volume 
elasticity, the equivalent stress boundary integral equation is 
established, where the virtual work in the third direction is 
considered.

Based on the equivalent stress fundamental solution, the 
boundary integral equations are proposed in this paper. The 
proposed boundary integral equations are applicable for plane 
strain problem and plane stress problem, by properly trans-
forming the elastic parameters and adopting the corresponding 
fundamental solutions.

The whole formulation for transient dynamics based on 2-D 
TD-BEM frame is presented, where the numerical implemen-
tation and solution to the proposed boundary integral equa-
tions are briefed. The whole TD-BEM formulation for inelastic 
dynamic analysis can be degenerated to TD-BEM formulation 
for elastic dynamic analysis, by excluding the plastic integral 
term from the boundary integral equations.

The proposed TD-BEM formulation for inelastic dynamic 
analysis is validated from different viewpoints, for elastic and 
inelastic analysis, for one dimensional and 2-D geometries, 
and for finite and infinite domains.

Appendix A: Notations in the fundamental 
solutions

The parameters in the fundamental solutions in terms of dis-
placement, traction and equivalent stress Eqs. (2), (3), (5) and 
(13), which are solely relevant with the spatial coordinate, are 
expressed as follows:

(A1)Eik = �ik,

(A2)Fik =
�ik

r2
,

Fig. 10  Comparison between the results from TD-BEM and FEM for 
elastoplastic analysis (r = 8  m) for a radial stress, b circumferential 
stress, and c velocity
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The variables in the fundamental solutions in terms of 
displacement, traction and equivalent stress, Eqs. (2), (3), 
(5) and (13), which are relevant both with space and time, 
are expressed in the following equations

The following relationships exist among the aforemen-
tioned variables:

(A3)Jik = −
r,i r,k

r2
,

(A4)Aik = �

(

2�r,i nk + �ik

�r

�n
+ r,k ni

)

,

(A5)Bik = −
2�

r3

(

�ik

�r

�n
+ r,i nk + r,k ni − 4

�r

�n
r,i r,k

)

,

(A6)Dik = −2�

(

�r,i nk +
�r

�n
r,i r,k

)

,

(A7)Aikl =
(

Aik

)

nw=�lw
= �

(

2�r,i �kl + �ikr,l +r,k �il
)

,

(A8)

Bikl =
(

Bik

)

nw=�lw
= −

2�

r3

(

�ikr,l +r,i �kl + r,k �il − 4r,i r,k r,l
)

,

(A9)Dikl =
(

Dik

)

nw=�lw
= −2�

(

�r,i �kl + r,i r,k r,l
)

,

(A10)Aikl = Aikl − ΔAimm�kl = �

[

�ikr,l +r,k �il
]

,

(A11)

Bikl = Bikl = −
2�

r3

(

�ikr,l +r,i �kl + r,k �il − 4r,i r,k r,l
)

.

(A12)Dikl = Dikl − ΔDimm�kl = −2�
[

r,i r,k r,l
]

.

(A13)Lw =
[

c2
w
(t − �)

2 − r2
]−

1

2 ,

(A14)Nw = 2c2
w
(t − �)

2 − r2,

(A15)Hw = H
(

Mw

)

,

(A16)Mw = cw(t − �) − r.

(A17)r =
(

rwrw
)

1

2 ,

The Lame constants and the relationship between the 
wave velocities are expressed as follows:

Appendix B: Notations in stress boundary 
integral equation at interior points

D
p
w , Su

w
 and Σ�

w
 in Eq. (19) respectively represent for the trac-

tion, displacement and plastic strain integral terms in stress 
boundary integral equation for elastoplastic dynamics, which 
are expressed by the following equations:

(A18)rw = xQ
w
− xP

w
,

(A19)r,w =
�r

�x
Q
w

= −
�r

�xP
w

=
rw

r
,

(A20)
�r,w

�x
Q
v

= −
�r,w

�xP
v

=
�vw − r,v r,w

r
,

(A21)nv =
�xv

�n
,

(A22)
�r

�n
= r,w nw,

(A23)nw = nv�vw,

(A24)r,w = r,v �vw.

(A25)� =
E

2(1 + �)
,

(A26)� =
�E

(1 + �)(1 − 2�)
,

(A27)cs =

√

�

�

,

(A28)cd =

√

� + 2�

�

,

(A29)� =
�

2�
=

c2
d
− 2c2

s

2c2
s

.



676 H. Li et al.

1 3

In the last two expressions, Ω0 is the special integral 
domain, where the singular point (the source point) is 
scooped away from the overall integral domain Ω.

(B1)Dp
s
= ∫

Γ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Eijk ∫
t

0

csLspkHsd� + E0

ijk

�

�

�

�

�

�

∫
t

0

cs
�Ls

�r
pkHsd� + Fijk ∫

t

0

csL
−1

s
pkHsd�

+F0

ijk

�

�

�

�

�

�

∫
t

0

cs
�

�

L−1
s

�

�r
pkHsd� + Jijk ∫

t

0

csLsNspkHsd� + J0
ijk

�

�

�

�

�

�

∫
t

0

cs
�

�

LsNs

�

�r
pkHsd�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dΓ,

(B2)D
p

d
=

c2
s

c2
d
∫
Γ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Fijk ∫
t

0

cdL
−1

d
pkHdd� + F0

ijk

�

�

�

�

�

�

∫
t

0

cd
�

�

L−1
d

�

�r
pkHdd�

+Jijk ∫
t

0

cdLdNdpkHdd� + J0
ijk

�

�

�

�

�

�

∫
t

0

cd
�

�

LdNd

�

�r
pkHdd�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dΓ,

(B3)Su
s
= ∫

Γ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

Aijk + Dijk

�

�

�

�

�

�

�

∫
t

0

csrL
3
s
ukHsd� +

�

A0

ijk
+ D0

ijk

�

�

�r

�

�

�

�

�

�

∫
t

0

csrL
3
s
ukHsd�

+Bijk ∫
t

0

csLsNsukHsd� + B0

ijk

�

�

�

�

�

�
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t

0
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�

�

LsNs

�

�r
ukHsd�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dΓ,

(B4)Su
d
=

c2
s

c2
d
∫
Γ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Bijk ∫
t

0

cdLdNdukHdd� + B0

ijk

�

�

�

�

�

�

∫
t

0

cd
�

�

LdNd

�

�r
ukHdd�

+Dijk

�

�

�

�

�

�

∫
t

0

cdrL
3

d
ukHdd� + D0

ijk

�

�r

�

�

�

�

�

�

∫
t

0

cdrL
3

d
ukHdd�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dΓ,

(B5)Σ�

s
= ∫

Ω

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

Aijkl + Dijkl

�

�

�

�

�

�

�

∫
t

0

csrL
3
s
�
p

kl
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�

A0

ijkl
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ijkl

�

�

�r

�

�

�

�

�

�

∫
t

0

csrL
3
s
�
p

kl
Hsd�

+Bijkl ∫
t

0

csLsNs�
p
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Hsd� + B0

ijkl

�

�

�

�

�

�

∫
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0
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�
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�
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�
p

kl
Hsd�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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(B6)Σ�

d
=

c2
s
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d
∫
Ω

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Bijkl ∫
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0

cdLdNd�
p

kl
Hdd� + B0

ijkl

�

�

�

�

�

�
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0

cd
�

�

LdNd

�

�r
�
p

kl
Hdd�

+Dijkl ∫
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0

cdrL
3

d
�
p

kl
Hdd� + D0

ijkl

�

�r

�

�

�

�

�

�

∫
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0
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3

d
�
p
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Hdd�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dΩ.

It is noted that, in the process of the solution of the kernel 
function in terms of strain influence coefficients, �∗

ijkl
 , the 

derivative of the equivalent stress fundamental solution with 
respect to the coordinates is involved, where the hyper 
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singularity arises. It has been shown that the concept of the 
finite part of an integral, Hadamard principle integral, is an 
efficient method to treat the hyper singularity. In order to 
manipulate the singularities in the process of the solution of 
the integral coefficients by means of Hadamard principle 
integral, the free term f P

ij
 is introduced, by subtracting 

�
p

ij
(P, t) from the independent integral at the singular point 

(the source point) as:

The coefficients in Eq. (19), which are solely relevant 
with the spatial coordinate are as follows:

(B7)f P
ij
= −

�

4(1 − �)

[

(1 − 4�)�ij�
p
mm

+ 2�
p

ij

]

.

(B8)Eijk = 0,

(B9)E0

ijk
= −�

(

�ikr,j +�jkr,i +2��ijr,k
)

,

(B10)Fijk =
2�

r3

(

�ikr,j +�jkr,i +2��ijr,k
)

,

(B11)F0

ijk
= −

�

r2

(

�ikr,j +�jkr,i +2��ijr,k
)

,

(B12)

Jijk =
�

r3

(

2�ijr,k +�jkr,i +�ikr,j −8r,i r,j r,k −2��ijr,k
)

,

(B13)J0
ijk

=
2�

r2

(

r,i r,j r,k +��ijr,k
)

,

(B14)

Aijk =
�
2

r

[

− 4�nk(�ij − r,i r,j ) +
�r

�n
(�ikr,j +�jkr,i )

− 2(�iknj + �jkni) + r,i r,k nj + r,j r,k ni

− 4��ij(�nk + nk −
�r

�n
r,k )

]

,

(B15)

A0

ijk
= �

2

[

− 4�r,i r,j nk −
�r

�n
(�ikr,j +�jkr,i ) − r,i r,k nj

− r,j r,k ni − 4��ij(�nk +
�r

�n
r,k )

]

,

(B16)

Bijk =
4�2

r4

[

4
�r

�n
(6r,i r,j r,k −�ijr,k −�jkr,i −�ikr,j )

+ (�ijnk + �jkni + �iknj)

− 4(r,i r,j nk + r,i r,k nj + r,j r,k ni)
]

,
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