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Abstract
In the context of isogeometric analysis (IGA) of shell structures, the popularity of the solid-shell elements benefit from
formulation simplicity and full 3D stress state. However some basic questions remain unresolved when using solid-shell
element, especially for large deformation cases with patch coupling, which is a common scene in real-life simulations. In this
research, after introduction of the solid-shell nonlinear formulation and a fundamental 3D model construction method, we
present a non-symmetric variant of the standardNitsche’s formulation formulti-patch coupling in associationwith an empirical
formula for its stabilization parameter. An selective and reduced integration scheme is also presented to address the locking
syndrome. In addition, the quasi-Newton iteration format is derived as solver, together with a step length control method.
The second order derivatives are totally neglected by the adoption of the non-symmetric Nitsche’s formulation and the quasi-
Newton solver. The solid-shell elements are numerically studied by a linear elastic plate example, then we demonstrate the
performance of the proposed formulation in large deformation, in terms of result verification, iteration history and continuity
of displacement across the coupling interface.

Keywords Isogeometric · Solid-shell · Nitsche · Patch coupling · Quasi-Newton

1 Introduction

Shell structure plays an important role in industry, biome-
chanics (e.g. heart valve [1]), architecture and various kinds
of daily products. Finite element method (FEM) based shell
elements are necessary in structural simulations [2,3]. How-
ever corresponding elements are usually derived from shell
theories, e.g. Kirchhoff-Love theory for thin shells and
Reissner-Mindlin theory for thick shells, due to the fact that
the shell thickness dimension is much smaller than the other
two dimensions of the shell mid-surface. Meshing the shell
model by 3D solid blocks and calculating by 3D solid ele-
ments seems to be an alternative way, however using solid
elements for thin shells is highly restricted to limited compu-
tational resources. In cases of thin or mid-thick shells, there
should be sufficient elements along the thickness direction to
capture themechanical behavior, and the element length ratio
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should be close to one in order to keep good element perfor-
mance. In FEM achieving simultaneously both requirements
mentioned above would increase the computational effort
heavily [4].

With the introduction of isogeometric analysis (IGA) by
Hughes et al. in 2005 [5], both a seamless integration
between the computer-aided design (CAD) and the analysis
as well as a systematic construction of high-order basis func-
tions become possible within a single robust paradigm [6],
Kirchhoff-Love shell element and Reissner-Mindlin shell
element are developed rapidly and applied widely in this
framework. However, there exist several drawbacks of the
shell elements.

(1) The 3D shell structure is modeled by its mid-surface,
which explains the name “degenerated shell”. According
to the shell kinematics definition, the 3D displacement
field is reconstructed by the nodal displacement degrees
of freedom (DoFs), nodal rotational DoFs and outward
normal vectors attached to the mid-surface nodes (con-
trol points) [7]. The nonlinear formulation together with,
e.g. patch coupling [8] or contact problems, becomes
complex due to the need of special treatment of the field
reconstruction process.
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(2) The need of patch coupling raises naturally from the fact
that shell structures are usuallymade uponmultiple parts
ofCADmodels in realistic scenarios.TheMortarmethod
[9,10], Nitsche’s method [11] and unfitted method [12]
arewidely adopted, however for patch coupling of a shell
structure with different type of structures, the evaluation
of the interfacial integrals would increase computational
complexity. For example, in order to couple one shell
mid-surface with another 3D solid structure, we need to
determinate Gauss points for both sides of the coupling
interfaces [13].

(3) These shell-theory based elements depend on the degen-
erated representation of a shell into its mid-surface,
the transverse stress (i.e. stress through the thickness
direction) is neglected according to the plane stress
assumption [14], or in other explanation, the strain
energy corresponding to the stress perpendicular to the
mid-surface is ignored to improve numerical condi-
tioning [15]. This makes the elements inapplicable for
contact simulations.

In the present research, we adopt the solid-shell ele-
ments, which are simply 3D solid elements, to simulate
shell structures. As said by Bischoff et. al [16]: “Owing to
increasing computer capacity on the one hand and higher
demands in practice on the other hand, a strong indica-
tion to go three-dimensional can be currently recognized.
In other words, even thin-walled structures are simulated by
three-dimensional solid-type elements, allowing inclusion of
higher-order effects not represented by classical theories for
thin-walled structures”. The idea was originally proposed
in 1998 by Hauptmann and Schweizerhof [17], where the
usage of the solid-shell elements in traditional FEM was
systematically studied. In some applications such as [18,19]
similar solid-like shell elements that derived from 3D con-
tinuum mechanics were adopted. In the framework of IGA,
solid-shell elements and locking phenomenon were studied
in [20–23]. Generally, the solid-shell elements have the fol-
lowing potential advantages.

(1) Containing only displacement DoFs, the nonlinear for-
mulation of the solid-shell elements is rather simple as
classical solid elements.

(2) The shell structure is modeled by 3D solids, making the
patch coupling treatment straightforward.

(3) No plane stress assumption is made, the deformation
behavior through the thickness direction is treated the
same as the other two directions, the solid-shell elements
are capable to present complete 3D stress state, and thus
are potentially suitable for contract problems [24].

However, before putting solid-shell elements into actual
usage, we believe that several aspects of solid-shell elements

in IGA need to be further studied. Firstly, the performance of
the elements needs to be systematically studied, especially
for the treatment of locking phenomena when one computes
thin shells. Regarding the nonlinear formulation of solid-
shell elements, effective and efficient multi-patch coupling
formulation and its iterative format are still required. In this
paper, we briefly introduce the nonlinear solid-shell element
formulation in Sect. 2, then propose a simple way to gen-
erate the 3D-solid model from a shell mid-surface in Sect.
3. The Nitsche method for patch coupling, isogeometric dis-
cretion, and quasi-Newton solver are adopted in Sect. 4. In
Sect. 5, fundamental questions of sold-shell elements are
studied by a single patch plate problem in linear elastic-
ity. Several numerical studies in Sect. 6 are carried out to
illustrate the performance of the solid-shell elements. Con-
clusions are given in Sect. 7.

2 Brief introduction on solid-shell element
formulation

Denote the initial configuration of a shell structure as Ω .
One material pointX on reference configurationΩ is related
to one material point x on current configuration through the
mapping ϕ. The displacement is then the change between
two frames

x = ϕ(X) = X + u(X). (1)

The deformation gradient is derived as

F(u) = ∇X(x) = I + ∇X(u), (2)

where ∇X denotes the gradient in the initial configuration.
Consider the Total-Lagrange formulation, the Green strain
tensor is given as

E = 1

2
(FTF − I) = 1

2
(∇Xu + ∇T

Xu + ∇T
Xu∇Xu). (3)

It should be noted that the idea of solid-shell elements simply
consists in using 3D solid elements to simulate plates and
shells, thus no plane stress assumption is made herein.

For hyperelastic material considered in this research, the
second Piola-Kirchhoff (PK2) stress is computed by

S = ∂W (E)

E
, (4)

whereW (E) is the strain energy density. Particularly we con-
sider the St. Venant-Kirchhoff material, then

W (E) = 1

2
E : D : E,

S = D : E,

(5)
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Fig. 1 Degenerated shell geometry description. The full 3D shell is
constructed by its mid-surface S(ξ, η) and thickness t along the mid-
surface normal n

in which D is the constitutive tensor of isotropic material.
The potential energy is written as

Π(u) =
∫

Ω

W (E) dX − Πext, (6)

in which Πext is the potential for the external work, made by
the body force, traction force or gravity force for instance.

Define the directional derivative of a quantity A (with
respect to u) in direction δu as

DA(u)[δu] = lim
ε→0

A(u + εδu) − A(u)

ε
, (7)

then the weak formulation reads

DΠ(u)[δu] = 0. (8)

Note that the Dirichlet conditions are omitted for simplifica-
tion. More details can be found in Chapter 5 of Ref. [25], and
Chapter 3 of Ref. [26], in spite of some differences between
shape functions adopted in IGA and in FEM.

3 Construct a 3D solid model from a shell
mid-surface

The simulation of a shell usually begins from its mid-
surface sketch. In IGA framework, leveranging the superior-
ity of non-uniform rational B-splines (NURBS) in drawing
curved surfaces, the shell mid-surface is natually represented
as shown in Fig. 1. The mid-surface is generated by tensor
product of two sets of NURBS basis functions Ri,p and R j,q ,

Fig. 2 Distance between Greville points (blue cross) on the top-surface
and the mid-surface is t/2. Then the control points on the top-surface
are obtained by a system of linear equations

and corresponding control points Pmid
i j as [27]

Smid(ξ, η) =
n∑

i=1

m∑
j=1

Ri,p(ξ)R j,q(η)Pmid
i j . (9)

Define the Greville abscissae [28] in parametric space of
the mid-surface as (ξ̄i , η̄ j ), where

ξ̄i = ξi+1 + . . . + ξi+p

p
, η̄ j = η j+1 + . . . + η j+q

q
, (10)

and they typically give a stable interpolation [29]. According
to the assumption that the distance between the top-surface
and the mid-surface along the normal direction is half of the
thickness t , we have

∥∥Stop(ξ̄i , η̄ j ) − Smid(ξ̄i , η̄ j )
∥∥ = t

2
, (11)

additionally let n = (nx ,ny,nz)T be the normalized outward
normal vector at point (ξ̄i , η̄ j ), we have

⎧⎪⎨
⎪⎩
Stopx (ξ̄i , η̄ j ) − Smid

x (ξ̄i , η̄ j ) = t
2nx (ξ̄i , η̄ j ),

Stopy (ξ̄i , η̄ j ) − Smid
y (ξ̄i , η̄ j ) = t

2ny(ξ̄i , η̄ j ),

Stopz (ξ̄i , η̄ j ) − Smid
z (ξ̄i , η̄ j ) = t

2nz(ξ̄i , η̄ j ).

(12)

In this way we arrive at a system of linear equations by
collocating at (ξ̄i , η̄ j ), and then we solve for Pbot. Con-
trol points for the bot-surface are obtained by the fact that
Pmid = (Ptop + Pbot)/2. This procedure is illustrated in Fig.
2.

The 3D solid representation needs a set of B-spline basis
functions along the thickness, denoted by N (ζ ). As a starting
point the N (ζ ) is built as simple as possible, later algorithms
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could be adopted to insert knots or elevate orders. To generate
N (ζ ) the knot vector is set to be

[0, 0, 0, 1, 1, 1], (13)

implying that Nk,r with k = 1, 2, 3 and order r = 2. Then
we perform a tensor product using the basis functions for
the mid-surface R(ξ), R(η) and for the thickness N (ζ ), and
corresponding control points as

S(ξ, η, ζ ) =
n∑

i=1

m∑
j=1

z∑
k=1

Ri,p(ξ)R j,q(η)Nk,r (ζ )Pi jk, (14)

see Fig. 3 for illustration.
To transfer the mid-surface to 3D solid representation, the

thickness t of the shell is needed, however for simplicity,
in the present study we assume that the shell thickness t is
constant. For a shell with a non-constant thickness function
t(ξ, η), the method presented above would still work if suf-
ficient number of sampling points are used. In addition, the
presented study could treat the trimmed features by solv-
ing an additional linear equations correspond to the trimmed
curves on the shell mid-surfaces. Such extension will be con-
sidered for further investigation.

4 Isogeometric multi-patch treatment and
quasi-Newton solver

The Nitsche’s method was originally proposed in order to
imply displacement boundary conditions [30]. In the con-
text of IGA, its applications cover a wide range of boundary
conditions implementation as well as domain decomposi-
tion problems and contact problems. Apostolatos et al. [31]
did a comparison among the popular coupling methods and
the results indicated the Nitsche type formulation is robust.
Nguyen et.al. [13] employed the Nitsche’s method to cou-
ple 2D and 3D patches in linear elasticity. Guo and Ruess
[32] used the Nitsche’s method to glue Kirchhoff-Love shell
models and blended shell models, their further research [33]
introduced the parameter-free non-symmetric Nitsche’s for-
mulation for thin shells even with trimmed features by the
finite cell method (FCM), the choice of the element-wise
stabilization parameter was also discussed. In Ref. [34], Guo
et al. extended the above techniques to real applications for
Kirchhoff-Love shells by the STEP exchange format, the lin-
earization process are given in the Newton-like form and
some derivatives are given in appendix therein. Hu et.al. [11]
proposed a general Nitsche’s framework to cover a various
kinds of formulation variants and applications. Du et.al. [35]
put the Nitsche’s method into hyperelastic applications and
used the classical Newton-Raphson method to perform the

linearization process. In this section, the Nitsche’s method
is simply adopted as a patch coupling technique, except
for a new empirical formula for the stabilization parameter.
Moreover, we adopt the quasi-Newtonmethod, together with
other techniques, as the solver to avoid the linearization and
more importantly, to avoid all the second order derivatives
when considering the non-symmetric variant of the Nitsche’s
formulation, and finally achieve a fully linearization-free for-
mulation.

4.1 Non-symmetric Nitsche’s formulation for
multi-patch coupling

Assume the initial domain Ω is decomposed into two sub-
domains Ωm , with the superscript m = 1, 2 indicating the
corresponding variables on Ω1 and Ω2 respectively. The
Nitsche’s method adds the coupling energy into the weak
form of the problem [11]. Based on the single-patch formu-
lation in Eq. (8), we have

DΠ(u)[δu] + Nitsche contribution = 0, (15)

in which, the Nitsche’s contribution for multi-patch coupling
is inserted as an energy-conjugate pair, made upon of dis-
placement gap �u� = u1 − u2 and average traction force
〈P(u)〉 = [

P(u1) − P(u2)
]
/2 along the coupling interface

Γc betweenΩ1 andΩ2.P stands for the first Piola-Kirchhoff
(PK1) stress and N is the outward normal to Γc. Then the
modified weak form reads

∫
Ω

S : DE[δu] dX −
∫

Γc

�δu� · 〈P(u)〉 · N1 dS

− θ

∫
Γc

�u� · 〈P(δu)〉 · N1 dS +
∫

Γc

γ �δu� · �u� dS

= fext,
(16)

in which fext = DΠext[δu] stands for the external force vec-
tor, θ is theNitsche parameter,γ is the stabilization parameter
and it is normally required to be a large number.

The Nitsche parameter θ acts as a controller of system
matrix symmetry and dependency on γ [11]. When θ = 1,
the standard Nitsche’s formulation is recovered, the obtained
stiffness matrix is symmetric, and usually the stabilization
parameter γ is estimated by a generalized eigenvalue prob-
lem of the coupled interfaces [32], or a couple of generalized
eigenvalue problems defined element-wise along the coupled
interfaces [33]. This could be time-consuming especially for
nonlinear problems that need iterations with configuration
changing. When θ = −1, we get the so-called skew-
symmetric formulation, one remarkable advantage is that the
formulation is parameter-free for linear boundary conditions
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Fig. 3 Full 3D solid-shell representation. The solid model is generated by the help of the basis functions along the thickness direction, N (ζ ), and
corresponding control points

and has less dependency on γ for nonlinear boundary con-
ditions. For simplicity we adopt θ = 0, in this way the third
term of Eq. (16) is neglected, and the directional derivative of
P is also dropped, therefore it finally leads to a non-symmetric
formulation.

4.2 Isogeometric discretization

Assuming that, by the help of the method illustrated in Sect.
3, we generate a full-3D solid model from its mid-surface
description as

S(ξ, η, ζ ) =
n∑

i=1

m∑
j=1

z∑
k=1

Ri,p(ξ)R j,q(η)Nk,r (ζ )Pi jk

=
∑
a

RaPa .

(17)

Define h as the mesh size associated to this parametrization,
then similarly as above, we approximate the displacement
field by

uh(ξ, η, ζ ) =
∑
a

Raua, (18)

where ua = (uax , u
a
y, u

a
z )

T is the displacement vector
attached to each control pointPa . Taking the IGAapproxima-
tion into the system leads to a non-linear formulation (with
respect to displacement uh), which needs to be iteratively
solved in Sect. 4.3.

We calculate the stabilization parameter γ , inspired by
Refs. [36,37], with a little modification of the Gismo imple-
mentation in Ref. [38] by multiplying the Young’s modulus
E

γ = 4E(p + 1)(p + d)

(
1

h1
+ 1

h2

)
, (19)

where p is the maximum order of basis functions, d denotes
the domain dimension, and h1 and h2 are mesh sizes of ele-
ments on both sides of the interface Γc. To our experience,
this stabilization parameter plays an important role not only
for stiffness matrix conditioning, but also for coupling con-
ditions applying. It should be large enough for initialization,
in order to effectively glue patches, then the self-correcting
property of the quasi-Newton iterations, which will be intro-
duced below, can lead this large number to a proper value.
Otherwise, if the parameter γ is not large enough at first, the
system will be easier to converge but the interface cannot be
glued tightly.

4.3 Quasi-Newton solver

Firstly let us briefly review the classical Newton-Raphson
solver. Following the Newton-Raphson format, the lineariza-
tion of a nonlinear IGA formulation [39] reads

D2Π(uh)[δuh,Δuh] = −DΠ(uh)[δuh], (20)

where DΠ(uh)[δuh] (respectively D2Π(uh)[δuh,Δuh]) is
the first (respectively second) order directional derivative of
Π(uh). Therefore the linearization of the multi-patch IGA
formulation is derived as

∫
Ω

DS[Δuh] : DE[δu] dX +
∫

Ω

S : D2E[δuh,Δuh] dX

−
∫

Γc

�δu� · 〈P(Δuh)〉·N1 dS+γ

∫
Γc

�δuh� · �Δuh� dS

= fext −
∫

Ω

S : DE[δu] dX +
∫

Γc

�δuh� · 〈P(uh)〉 · N1 dS

− γ

∫
Γc

�δuh� · �uh� dS.

(21)
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In general the tangent system can be summarized as

KT (ui ) · Δui+1 = R(ui ), (22)

where KT stands for the tangent stiffness matrix, residual
R denotes the unbalanced force vector. In each iteration we
solve the above tangent system then update the solution by
ui+1 = ui + Δui+1.

However, the Newton-Raphson solver for Nitsche for-
mulation of large deformation problem requires additional
improvements for sold-shell elements. Infact, from numeri-
cal experiment, the following issues are observed.

(1) The Newton-Raphson solver needs to linearize the non-
linear system, as shown in Eq. (21), this is complex in
formulation derivation and code implementation, espe-
cially after the introduction of the Nitsche’s method [8].

(2) In each iteration we need to solve the linearized system
(see Eq. (22)), which is time consuming no matter using
iterative nor direct solvers.

(3) From our experience the solid-shell formulation solving
by the Newton-Raphson solver is sometimes difficult to
converge, especially in cases of thin shells. This is also
noticed in commercial FEM software ABAQUSwith the
error “too many attempts made for this increment”.

In discontinuous Galerkin (DG) method [40,41] , regarding
Eq.(16), (a) the 3rd term is dropped because this term is only
used for symmetrizing the system but has no effect on consis-
tency, and (b) the second order derivative of the 2nd term (i.e.
the 3rd term in Eq. (21)) is neglected to save computational
effort, because it is small compared to the stabilized jump
term. By the above two simplifications the derivatives of P
are avoided. The Nitsche’s formulation can be simplified in
a similar way.

In our implementation, we adopt the quasi-Newton solver,
which uses the similar tangent system structure as the
Newton-Raphson solver but with an approximated tangent
stiffness matrix K̃,

K̃(ui ) · Δuhi+1 = R(ui ), (23)

and it is initialized by

K̃0 = s · Klinear = s · (

∫
Ω

σ : Dε[δu] dX

−
∫

Γc

δu · 〈σ (u)〉 · N1 dS +
∫

Γc

γ δu · u dS),

(24)

in which s is a scaling factor, which is recommended to be
s = 16 due to the fact that in a large deformation problem the
geometry deformation, rather than the structure deformation,
may dominate and absorb too much energy, and the model

behaves more rigid than in the linear case. Then we recover
the linear stiffness by setting the max step length as sa <

smax = 16.
Next, the inverse of K̃ is directly updated by the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) formula.Thequasi-Newton
solver algorithm is outlined in Algorithm 1, and the Illinois
algorithm for line search is outlined in Algorithm 2, from
which the following features of the solver are addressed.

(1) The quasi-Newton solver only needs to evaluate the
right-hand-side residual vector R(uh), no need to lin-
earize the formulation.

(2) The approximated tangent stiffness matrix K̃ is initial-
ized by the linear elasticity problem, then the BFGS
formula, which is believed to have self-correcting prop-
erty, allows us to directly update the inverse of K̃.

(3) With the step length control [42] and stability check [43],
the solver behaves more tolerance w.r.t. the shell thick-
ness and element length ratio.

It is worth mention that, after using the non-symmetric
Nitsche’s formulation, the obtained stiffness matrix becomes
non-symmetric. Indeed, this is a drawback of the proposed
method, compared to the standard and symmetric Nitsche
one, in terms of matrix storage and matrix equation solv-
ing. It may take more computer resources and computational
effort. However, by the help of the quasi-Newton method,
the drawback coming from the non-symmetric Nitsche’s
formulation is almost avoided: once the inverse of the non-
symmetric stiffness matrix is calculated in the quasi-Newton
initialization step, for the rest steps only matrix multiplica-
tions are required. Theoretically, the quasi-Newton solver
could achieve superlinear convergence, compared to (local)
quadratic convergence of the Newton-Raphson solver, which
means the quasi-Newton method usually needs more itera-
tions to converge, yet quasi-Newton iterations are distinctly
less expensive: the cost per Newton-Raphson iteration is
O(n3)plus computing the tangent stiffnessmatrix by second-
order derivatives, while the cost per quasi-Newton is only
O(n2). Moreover, although not used in this research, the so-
called limited-memory BFGS (L-BFGS) method [44] could
be further adopted to save computer storage.

5 Numerical study of solid-shell elements in
linear elasticity

Before calculatingnumerical examples inSection6, in this
section we limit the problem in single-patch linear elasticity
state. Consider a simple plate model subjected to uniform
pressure pz . The length of the plate is fixed to be L = 1
and the thickness t various from 0.1 to 0.001, as shown
in Fig. 4, and we set the load varies proportionally to t3
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Algorithm 1: Quasi-Newton solver
1. Initialize

(a) Klinear , R0

(b) K̃−1
0 = 1/16 · K−1

linear

(c) u0 = K̃−1
0 R0

2. Loop on i for equilibrium

(a) Compute update direction: Δui+1 = K̃−1
i R(ui )

(b) Line search and solution update

b1. Step length β = 1

b2. Evaluate G0 = ΔuTi+1R(ui ),

G(β = 1) = ΔuTi+1R(ui + βΔui+1)

b3. IF |G(β = 1)| > |0.5G0| THEN
β = linesearch()

b4. Update ui+1 = ui + βΔui+1

(c) Equilibrium check → EXIT

(d) Stability check: IF

√
βG0

G0 − G(β)
> 5 THEN

K̃−1
i+1 = K̃−1

i → (2a) ELSE → (2e)

(e) BFGS inverse update

e1. s = βΔui+1, y = R(ui ) − R(ui+1)

e2. IF ρ = 1/yTs > 0 THEN → (e3) ELSE

K̃−1
i+1 = K̃−1

i → (2a)

e3. Inverse update:

K̃−1
i+1 = (

I − ρsyT
)
K̃−1

i

(
I − ρysT

) + ρssT

(f) i = i + 1

Fig. 4 Plate model subjected to uniform pressure pz , only 1/4 plate is
modeled

as pz = −10(100t)3. For the plate problem with various
thickness, firstly we compute the reference solutions at the
central point A by commercial FEM software ABAQUS
using 500 × 500 S4R elements (4-node doubly curved thin
or thick shell elements with reduced integration, hourglass
control and finite membrane strains), except for t = 0.1 we
use 50×50×10 C3D8R elements (8-node linear bricks with

Algorithm 2: Function linesearch() based on Illinois

algorithm
Input: G0,G(β = 1),Δui+1,ui ,R(u)

Output: Step length β, value G(β) and residual

R(ui+1)

1. Initialize: Gb = G0, Ga = G(β), sb = 0, sa = 1

2. begin Find an interval [sb, sa] which contains the

zero

while GaGb > 0 and sa < smax = 16 do
sb = sa, sa = 2sa,Gb = Ga

R(ui+1) = R(ui + saΔui+1),Ga =
ΔuTi+1R(ui+1)

end

β = sa,G(β) = Ga

end

3. begin Illinois algorithm to locate the zero
while i < 10 and GaGb < 0 and (

|Ga | > |0.5G0| or
|sb − sa | > |0.5 · 0.5 · (sb + sa)| ) do

β = sa − Ga(sa − sb)/(Ga − Gb)

R(ui+1) = R(ui + βΔui+1),G(β) =
ΔuTi+1R(ui+1)

IF G(β)Ga > 0 THEN Gb = 0.5Gb ELSE

sb = sa,Gb = Ga

sa = β,Ga = G(β), i = i + 1
end

end

reduced integration and hourglass control). The thickness t ,
applied pressure pz , and corresponding reference solution
urefz (A) are shown in Table 1.

According to the conclusions in Ref. [45], for thin
plates/shells, in IGA framework it is sufficient to adopt a sin-
gle layer of solid elements of order 2 through the thickness
direction. However, for extremely thin plates/shells, when
one single layer of elements through the thickness is adopted,
it is still necessary to limit the element length ratio to a small
number (in ABAQUS the default criteria limit for the aspect
ratio is 10 1). Thus for various element length ratios γ , the
quality (condition number κ) of the stiffness matrix is stud-
ied. The number of elements is fixed as 4×4×1 in direction
ξ , η and ζ respectively, and the thickness t is changed gradu-
ally to obtain different element length ratios. The numerical
experiment setup and results are shown in Table 2, and then

1 http://abaqus.software.polimi.it/v2016/books/usi/pt03ch17s06s01.html
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Table 1 Reference solution urefz (A) and corresponding thickness t and applied pressure pz for the plate problem in Fig. 4

Thickness t 0.1 0.05 0.01 0.005 0.001

Pressure pz −1 × 104 −1.25 × 103 -10 -1.25 -0.01

urefz (A)(×10−6) −2.50640 −2.34209 −2.23820 −2.22779 −2.21978

Fig. 5 Condition numbers κ of stiffness matrix of the plate model with
various element length ratios γ

plotted in Fig. 5. For a given system of linear equations, the
condition number of its coefficientmatrix describes the “sick-
ness” of the system. The slope is about 1 despite for order
differences, meaning that the condition number will become
n times larger if the aspect ratio becomes n times smaller
with other settings remaining unchanged. It is noticed there
is a slope increment for length ratio larger than 200. Increas-
ing orders of elements on the mid-surface layer only slightly
decreases the condition number, nevertheless the computa-
tional time increases a lot for higher order elements since
the basis functions are calculated recursively. Based on the
considerations above, in the following studies the orders of
elements are restricted as (p, q, r) = (2, 2, 2), with only one
single layer of elements along the thickness direction.

For plates that are not extremely thin, for instance t = 0.1
and t = 0.05, more than one layer of solid elements can
be used, so as to keep the element length ratio closed
to one. In these cases using solid-shell elements performs
similarly to normal 3D solid elements, and the results are
acceptable, as shown in Table 3. For thin plates, such as
t = 0.01, 0.005, 0.001, as stated before only one single layer
of elements is employed. Figure 6 indicates that one single
layer of elements is effective to capture themechanical defor-
mation, because even for one single layer of elements there
are 3 control points and corresponding 3 B-spline basis func-
tions of order 2 through the thickness direction. As shown in
Table 4, when the mesh 2 × 2 × 1 is used for t = 0.001 the

Fig. 6 Solution field uz drawn on deformed configuration, plate thick-
ness t = 0.01. Here 10 × 10 × 1 3D solid elements of (p, q, r) =
(2, 2, 2) are used

element length ratio even reaches to 250, and the problem is
still calculable. The convergence curves are plotted in Fig.
7a. When the meshes are refined, the curve of t = 0.001
becomes flat, because of the slight mismatch of the refined
results and the reference value : the refined results are slightly
smaller than the reference value, this is verified in the partial
enlarged figure in Fig. 7b. Is is also a common situation as
in our previous research [7] when calculating thin shells by
Reissner-Mindlin shells. More importantly it is noticed that
shear locking occurs for thin plates with coarse meshes.

The above calculations are implemented by traditional
Gaussian numerical integrationwith (p+1)×(q+1)×(r+1)
quadrature points for solid elements of order (p, q, r). The
full Gaussian integration scheme as well as the proposed
integration scheme are demonstrated in Fig. 8. For the
common Gaussian integration, since we limit the order as
(p, q, r) = (2, 2, 2), the quadrature points are distributed
as 3 × 3 × 3. In the book [15] a simple reduction of the
dimension in the thickness direction seems to be effective,
thus in the middle of Fig. 8, we illustrate a simple reduced
integration scheme, in which 2 × 2 × 2 quadrature points
are employed. A similar scheme is adopted in Timoshenko
beam element [46], however this scheme is proved to be
unable to alleviate locking effectively for this research. In
our proposed scheme, the corner elements, boundary ele-
ments, and inner elements are treated differently, as shown
on the right side of Fig. 8, this selective and reduced integra-
tion scheme is inspired by Ref. [14]. It is worth noting that
the proposed scheme is equivalent to assuming the strain
distribution as in the B̄ method [7], but it is more conve-
nient to be implemented. Fig. 9 shows the numerical results
obtained by the full Gaussian integration and the proposed
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Table 2 Condition numbers κ (×1010) of stiffness matrix of the plate model with various element length ratios γ . The mesh is fixed as 4 × 4 × 1
in direction ξ , η and ζ respectively

t 0.125 0.0625 0.025 0.0125 0.00625 0.0025 0.00125 0.000625 0.00025

(p, q, r) γ 1 : 1 : 1 2 : 2 : 1 5 : 5 : 1 10 : 10 : 1 20 : 20 : 1 50 : 50 : 1 100 : 100 : 1 200 : 200 : 1 500 : 500 : 1
(2, 2, 2) κ 5.24169 10.0639 24.8964 49.7193 99.4018 248.479 496.950 993.897 8692.36

(3, 3, 2) κ 4.26425 8.18081 20.2349 40.4090 80.7877 201.948 403.890 807.777 11403.7

(4, 4, 2) κ 3.21954 6.14963 15.2088 30.3716 60.7203 151.785 303.565 607.127 11033.8

(5, 5, 2) κ 2.98846 4.65988 11.5205 23.0053 45.9928 114.969 229.935 459.869 10685.6

Table 3 Normalized solutions uz(A)/urefz (A) for the plate model with thicknesses t = 0.1, 0.05

(p, q, r) mesh(ξ × η × ζ ) 25 × 25 × 5 20 × 20 × 4 10 × 10 × 2 5 × 5 × 1 4 × 4 × 1 2 × 2 × 1

=(2,2,2) Ele length ratio γ 1 : 1 : 1 1 : 1 : 1 1 : 1 : 1 1 : 1 : 1 1.25 : 1.25 : 1 2.5 : 2.5 : 1
t = 0.1 uz(A)/urefz (A) 0.9910 0.9909 0.9897 0.9750 0.9713 0.9511

(p, q, r) mesh(ξ × η × ζ ) 40 × 40 × 4 20 × 20 × 2 10 × 10 × 1 5 × 5 × 1 4 × 4 × 1 2 × 2 × 1

=(2,2,2) ele length ratio γ 1 : 1 : 1 1 : 1 : 1 1 : 1 : 1 2 : 2 : 1 2.5 : 2.5 : 1 5 : 5 : 1
t = 0.05 uz(A)/urefz (A) 0.9960 0.9954 0.9887 0.9803 0.9760 0.9445

selective and reduced integration. The results indicate that
the proposed scheme is able to alleviate locking phenom-
ena and improve numerical accuracy especially for coarse
mesh, although slightly rank-deficiency occurs. In Fig. 9b
we show the convergence curves, the results by our method
have distinctly better convergence performance, especially
for extreme thin plate with thickness t = 0.001.

6 Numerical examples

According to the observations above and also in [45], in the
following examples the orders of elements are restricted as
(p, q, r) = (2, 2, 2), and only one single layer of elements
along the thickness direction is used.

6.1 Plate made by two-patches in nonlinear
elasticity

Firstly we test the solid-shell element performance in the
context of nonlinear elasticity by the same simply supported
square plate example in Fig. 4. The plate model is built
by two identical patches, the maximum load is set to be
pmax = 106 × pz . Figure 10 shows the contour plot of the
plate deflection for thickness t = 0.05 and t = 0.005 using
mesh 4 × 2 × 1 for each of the two patches, the elements of
one patch are colored by green wire frame and white for the
other patch. It should be noted that for the second example
the element length ratio is 25 : 25 : 1, but the solid-shell

elements still respond well since there are 3 control points
describing the thickness deformation in cooperating with 3
basis functions of order 2.

Fig. 11 describes the iteration history. It is observed that
stagnation or oscillation happens during iterations but con-
vergence can be achieved by the coefficient settings provided
in Algorithm 1 and Algorithm 2. Although taking more
iterations than the Newton-Raphson solver, in each quasi-
Newton iteration huge computational resource is saved by
approximating the tangent stiffness matrix instead of directly
computing its inverse. To our experience, if the stabilization
parameter in Eq. (16) is not large enough, the interface cou-
pling conditions cannot be fully applied, the system may
converge with a small gap along the coupling interface. The
interface deflection plotted in Fig. 12 indicates the effective-
ness of the Nitsche’s formulation as well as the proposed
stabilization parameter in Eq. (19). The corresponding data
for the above observation is provided 2. Figure 13 shows
the load-displacement curves for plate thickness t = 0.005,
obtained by mesh 8×8×1 for single patch and 8×4×1 for
each of the two patches. Under this mesh discretization the
Nitsche coupling of two patches gets similar results as one
single patch.

2 https://doi.org/10.6084/m9.figshare.11858136.v1
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b.

a.

Fig. 7 Results of uz(A) for the plate problem, shear locking occurs for
thin plate with coarse meshes. (a) Convergence performance. (b) Partial
enlarged

6.2 Pinched cylinder

Figure 14 shows the 1/8 mid-surface model of the pinched
cylinder problem. This structure experiences both shear and
membrane locking, the proposed reduced integration scheme
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Fig. 9 Results of uz(A) for the plate problem with respect to elements
per side on the mid-surface layer. RI means the proposed selective and
reduced integration scheme. (a) Normalized results. (b) Convergence
performance

is numerically studied in linear case, and the element perfor-
mance is slightly improved as indicated in Fig. 15.

For the nonlinear case, the model is split into two identical
patches, as shown in Fig. 16, and the nonlinear force Fnl is
106 times of the linear force Flin . In Fig. 17 we draw the

Fig. 8 Common Gaussian integration 3×3×3 for (p, q, r) = (2, 2, 2), the normal simple reduced integration scheme 2×2×2, and the proposed
scheme illustrated in a typical cube
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Fig. 10 Contour plot of deflection field of the plate problem in large
deformation, p = pmax. (a) Thickness t = 0.05. (b) Thickness t =
0.005

load-displacement curves under mesh 16 × 16, it is noted
that the curve is nearly linear, the reason is that the cylinder
belongs to developable structures and with this loading the
structure ismainly dominated by inextensional deformations,
also known as bending deformations [16]. Contour plot of
displacement distribution by ABAQUS S4R elements and
present solid-shell elements are presented in Fig. 18. Figure
19 illustrates the iteration history and interface deflection
curves, it is worth noting that if we relax the convergence
criteria the iteration system could be terminated earlier.

6.3 Pinched hemisphere with a hole

As the last example, we compute the pinched hemisphere
with a hole, see Fig. 20. To eliminate the rigid body motion
we fix the topmost left corner in the z direction. Severe
membrane and shear locking is further enhanced bymesh dis-
tortion for this example [7]. Figure 21 shows that the results
by the proposed reduced integration rule.
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Fig. 11 Residual-iteration curves for the simply supported square plate
in the geometrically nonlinear case, p = pmax. (a) Thickness t = 0.05.
(b) Thickness t = 0.005

For the nonlinear case, the nonlinear force Fnl is 100 times
of the linear force Flin . In Fig. 22 we cut the shell into 2
patches, The load-displacement curves are illustrated in Fig.
23, in which the reference values are provided in Ref. [47],
and our results are calculated by mesh 16 × 16. As shown
in Fig. 24 the solid-shell elements achieve good deformation
response, compared with ABAQUS S4R elements. More-
over, for this severe locking shell problem the quasi-Newton
solver went through more ups and downs than previous
examples, but finally converged at nearly 1300 iterations, as
illustrated in Fig. 25(a). Once again if we relax the conver-
gence criteria, the iteration convergence could be achieved
much earlier with similar results. Figure 25(b) proves the
effectiveness of the proposed stabilization parameter for the
non-symmetric Nitsche’s formulation.
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Fig. 12 Interface deflection along the coupling interface for the simply
supported square plate in the geometrically nonlinear case, p = pmax.
(a) Thickness t = 0.05. (b) Thickness t = 0.005
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Fig. 13 Load-displacement curves (p/pmax = f (u)) for the simply
supported square plate of thickness t = 0.005 in the geometrically
nonlinear case

Fig. 14 Pinched cylinder. One eighth of the mid-surface is modeled.
The red filled squares are corresponding control points

Fig. 15 Normalized results of uz(C) for the pinched cylinder problem
in linear elasticity

Fig. 16 Solid model of the pinched cylinder made by two patches. The
left patch is shown in green line frame
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Fig. 17 Load-displacement curves (p/pmax = f (u)) for the pinched
cylinder problem in large deformation

b.

a.

Fig. 18 Contour plot of vertical displacement field of the pinched cylin-
der in large deformation, Fnl = 106×Flin . (a) ABAQUS S4R elements.
(b) Present solid-shell elements 4 × 8 × 1 × 2 patches
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Fig. 19 Iteration history and interface deflection curves for the pinched
cylinder problem in the geometrically nonlinear case, p = pmax. (a)
Residual-iteration and displacement-iteration. (b) Interface deflection

Fig. 20 Pinched hemisphere with hole. One fourth of the mid-surface
is modeled. The red filled squares are corresponding control points
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Fig. 21 Normalized results of ux (D) for the pinched hemisphere prob-
lem in linear elasticity

Fig. 22 Solid model of the pinched hemisphere made by two patches.
The left patch is shown in green line frame

Fig. 23 Load-displacement curves (p/pmax = f (u)) for the pinched
hemisphere in large deformation

a.

b.

Fig. 24 Contour plot of vertical displacement field of the pinched hemi-
sphere in large deformation, Fnl = 100 × Flin . (a) ABAQUS S4R
elements. (b) Present solid-shell elements ×4 × 8 × 1 × 2 patches

7 Conclusions

In this paper, we compute shell structures in isogeometric
framework by solid-shell elements, couple patches by the
Nitsche’s method, and solve the nonlinear system by the
quasi-Newton method.

1) Solid elements are adopted to simulate thick or thin
shells. The solid-shell elements suffer from locking, this
problem is addressed by a selective and reduced inte-
gration scheme, in which elements in different positions
are treated differently, in order to improve the elements
softness and alleviate locking as much as possible. The
numerical results of the solid-shell elements are similar
to the ABAQUS S4R elements.
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a.

b.

Fig. 25 Iteration history and interface deflection curves for the pinched
hemisphere problem in the geometrically nonlinear case, p = pmax. (a)
Residual-iteration and displacement-iteration. (b) Interface deflection

2) The quasi-Newton method is introduced as solver, the
system takes more iterations to converge than classical
Newton-Raphson solver, but the computational effort is
reduced for each iteration due to the fact that the inverse
of the approximated tangent stiffness matrix is directly
updated by the BFGS formula. Moreover with the
introduction of step length control and stability check,
the iterations behave more robust. The non-symmetric
Nitsche’s coupling formulation combinedwith the quasi-
Newton solver allow us to achieve a linearization-free
formulation, i.e. no need to calculate derivatives.

3) The non-symmetric version of the Nitsche’s method is
employed for patch coupling of solid-shell elements.
With the Nitsche parameter θ = 0 the coupling formula-
tion is simplified by dropping the derivative of the PK1
stress P. Instead of solving for the stabilization param-
eter γ by a generalized eigenvalue problem along the
coupled interface, a straightforward formula is also pro-
posed based on the Young’s modulus and element mesh
sizes. Using the non-symmetric Nitsche’s formulation,

the obtained stiffness matrix loses its symmetry, but we
believe that the concern about computational resources
can be resolved by the quasi-Newton method.

Our further research directions include the accuracy of the
stress through thickness direction of solid-shell elements, as
well as methods to further alleviate locking. It could be also
appealing and challenging to study further extensions, for
instance trimmed surfaces and local refinement.
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