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Abstract

The isotropic and anisotropic behaviors are considered as the important formats of the constitutive behaviors, and can also be
called the global properties. To improve the identification ability of virtual fields method (VFM) when the global properties
are unknown, this paper proposes the strain correlation method (SCM) to determine the global properties before the parameter
identification using the VFM. Firstly, the basic principle of SCM is described in detail. Then, the feasibility and accuracy of
SCM are verified through the numerical experiments based on the three-point bending configuration and the real experiment
of polymethyl methacrylate (PMMA). The influence of the additive Gaussian white noise, local errors in the strain fields,
and missing data at the specimen edges on the characterization results are evaluated. The results show that the SCM has
good noise immunity and lower accuracy requirements for the strain fields. As an application, the mechanical properties of
Ti-6Al-4V alloys fabricated by selective laser melting (SLM) are characterized by the SCM. The results show that the alloys
are isotropic, and the isotropic VFM is utilized to determine the mechanical parameters. By using the SCM, the accuracy of
identification results can be improved for the isotropic or bidirectional reinforced orthotropic materials when using VFM.

Keywords Global properties - Constitutive parameter identification - Strain correlation method - Virtual fields method

1 Introduction

Characterization of material mechanical properties is a sig-
nificant and challenging task in experimental solid mechanics
[1, 2]. Generally, there are two main approaches to iden-
tify the mechanical parameters governing the constitutive
equations: one is based on the standard tests (using strain
gauges or extensometer), the other is based on the full-filed
measurement technology. The former requires homogeneous
strain or stress state, however, when the constitutive behav-
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iors are complex, a large number of experiments are required.
The development of full-field measurement technology pro-
vides another way for multi-parameter identification [3]. To
achieve the multi-parameter identification, various identi-
fication methods have been proposed, including the finite
element model updating (FEMU) [4, 5], the constitutive
equation gap method (CEGM) [6, 7], and the equilibrium gap
method (EGM) [8]. For both elastic and inelastic properties,
these methods are to establish a constrained optimization
equation and then use the iterative algorithm to obtain the
unknown parameters [9, 10]. Before the iterative calculation,
the initial values of the unknown parameters need to be deter-
mined. The setting of the initial value will affect the speed
of calculation convergence and the accuracy of the results.
In recent years, a novel identification strategy named the
virtual fields method (VFM) has been widely studied [11,
12]. The VFM is a non-iterative method for the linear elastic
situation, and the current full-field measurement techniques
combined with VFM include the digital image correlation
(DIC) [13], moiré interferometry [14], grid method [15],
etc. The VFM has been widely applied in various materi-
als, such as composite materials [16], laser weldments [17],
and additive manufacturing materials [18—20]. In the case of
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linear elasticity, it has been applied in various constitutive
models including but not limited to isotropic elasticity [11],
transverse isotropic elasticity [21], orthotropic elasticity [16]
and orthotropic thermo-elasticity [22]. For orthotropic VFM,
due to the increase in the number of unknown parameters,
many factors will affect the accuracy of identification results,
including noises in the strain fields [23], selection of virtual
fields [24], loading configuration [20, 25], etc.

However, when using these identification methods, the
material constitutive behaviors or global properties are
known as priors. Generally, if the material global proper-
ties are unknown, it can be assumed to be anisotropic, and
then all parameters are identified, and finally, according to
the relationship between the parameters, the global proper-
ties can be determined. For planar problems, for example, the
orthotropic VFM (four unknown parameters: Q11, 022, Q12
and Qge, subscript “17, “2” mean along the material princi-
pal axis) can be directly applied to identify all parameters.
If the parameters satisfy with the relationship Q11 = O
and Q¢ = (Q11 — Q12)/2, then the material is isotropic. If
the parameters only satisfy with the relationship Q11 = Q22,
then it is bidirectional reinforced orthotropic, otherwise, it
is completely orthotropic. However, many factors affect the
identification accuracy of orthotropic VFM, it may be labori-
ous to fully consider these factors [20, 23—25]. In addition, to
obtain each parameter precisely requires that all strain fields
can be measured accurately, which is very difficult in real
experiments. Therefore, for isotropic and bidirectional rein-
forced orthotropic materials, the above-mentioned method
may lead to incorrect determination of the global properties.
To handle these issues, this study aims to introduce a simple
method with low accuracy requirements for the strain fields to
determine the material global properties before using VFM.

In this study, the strain correlation method (SCM) is pro-
posed to determine the material global properties before
using VFM. In the theory section, the principle of SCM
and VFM is illustrated in detail. Then, the feasibility and
accuracy of the SCM are verified by numerical experiments
based on the three-point bending configuration. The influenc-
ing factors including the additive Gaussian white noise, local
errors in strain fields, and missing data at the specimen edges
are discussed by numerical experiments. Furthermore, the
comparative studies of SCM and orthotropic VFM are also
conducted to illustrate the robustness of SCM. In the exper-
iment section, the verification experiment using polymethyl
methacrylate (PMMA) is conducted to illustrate the feasi-
bility of SCM in real experiments. After that, the Ti-6Al-4V
alloys fabricated by alternative cross routes are characterized
by SCM and VFM. The results are reasonable compared with
those in the literature.

2 Theory
2.1 Principle of SCM

Considering the planar problem, there are three strain fields
€xx» €yy and yyxy. Taking the strain field ey, as an example.
The SCM is to determine the material global properties by
performing correlation calculation between the experimental
strain field (e5, ) and a series of simulated strain fields. First,
two kinds of strain libraries (Lf;’;”, L*D’r’fh") are established
using the finite element method, one strain library contains

strain fields with n different isotropic materials (L5 =

. . R Lso
sitmu stmu stmu 3 1 3
{siwfl,siwfz, R iwfn}, n is a positive integer), and
the other contains strain fields with n different orthotropic

: simu __ simu simu simu
materials (Lorth - {8orth—l ’ 8()rth—2’ e Sorth—n})' Then’

the experimental strain field (e5xF) is correlated with the
libraries, and two groups of the coefficients (Cj5, =
{Cilso’ Cizso’ T Cl'rffo}’ Corn = {C;rth’ C(%rth’ e Zrth})
are obtained. Finally, after comparing the two groups of coef-
ficients, according to which group has the maximum number
of the maximum coefficients, the material global properties
can be determined. The schematic of the SCM is shown in
Fig. 1.

For the planar problem, the strain fields can be stored as
a matrix in the computer, which facilitates correlation calcu-
lation. Due to this convenience, both the experimental strain
fields and the strain fields in strain libraries are stored as
matrices. Therefore, the correlation calculation of the strain
fields is equivalent to that of the matrices. Through the cor-
relation calculation, the similarity of the global properties
of the strain fields can be compared. In matrix correlation
analysis, there are various calculation indicators to charac-
terize the correlation between the two matrices. In this paper,
the algorithm for calculating the correlation coefficient is as
follows [26]:

Zm Zn (Am” B Z) (an — E

r= , r

IS0 0 (A = 4)] [0 5, (Bon — B
e[-1,1],

ey

where r is the correlation coefficient of matrix A and matrix
B, m and n represent the number of rows and columns, respec-
tively. A and B represent the average value of the whole
matrix A and B, respectively. In this paper, matrices A and
B represent the experimental strain field and strain field in
strain libraries, respectively.

2.2 Theory of VFM

VFM is based on the principle of virtual work [11]. When
the volume forces and acceleration terms are not considered,
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Fig. 1 Schematic diagram of the SCM (taking the strain field &, as an example)

suppose the volume of the object is V, the external surface
area is S, and the external load vector on the surface is T, the
governing equation of VFM is as follows [11]:

—/ a:e*dV+/T-u*dS=O, Yu*KA, )
\4 S

where o is the stress tensor, €* is the virtual strain field, u™* is
the virtual displacement field, and KA means kinematically
admissible conditions.

In the case of orthotropic materials, the constitutive equa-
tion under the principal axis (with subscript “1”, “2”) can be
expressed by Eq. (3) [11]:

o1l Q11 012 O e11
00 ¢=|0120x»n 0 £ ¢, 3
o12 0 0 OQOes Yi2

where Q;; (i, j = 1, 2, 6) are the four stiffness parameters.
Bring Eq. (3) into Eq. (2) to get Eq. (4) [11]:

A B C

———
Q]ll/6118T1dS+Q22t[8228§2dS+Q121/(6118;2 +8228T1)ds
S S S

D
——

+Q661/V127/1*2d5=/7-u*d5, Yu*K A, )
s s

where ¢ is the thickness of the specimen.

In Eq. (4), four parameters are unknown, therefore four
independent virtual fields need to be determined. Considering
the special virtual fields in Ref. [11], for each virtual field,
the coefficients [A, B, C, and D in Eq. (4)] of three of the four
unknown parameters are zero, and the other one is unity.
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Fig. 2 Three-point bending configuration

For more details, refer to Refs. [11, 24]. Furthermore, the
selection of the virtual fields is also an important factor in
the identification. In this paper, the optimized polynomial
virtual fields are used [11]:

P 9 i
=X ,_OAU(%) (%)

- o )
wy =2 > Bii() (5)

i=0j=0

where p, g are the orders of the polynomials, A;;, B;; are the
coefficients of the polynomials, which can be optimized by
the algorithm [11], and L, w are the span and height of the
specimen, as shown in Fig. 2.

In the case of isotropic materials, the stiffness parameters
have the following relation: Q11 = 022, Qs = (Q11 — Q12)/2.
Accordingly, Eq. (4) can be written as:

E

1
Q11t/ (e116]] + 2285, + 51/127/1*2)615
s

F

1
+ Q12t/ (e1185, + €xnel) — §V12V1*2)d5
s

= /T.u*ds,Vu*KA, (6)
N
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where the subscript “1” corresponds to “x”, and the subscript
“2” corresponds to “y”.

Given that the shear strain of the three-point bending is
smaller than &1 and &7, to weaken the influence of shear
strain on the identification of the other two parameters (Q1

and Q1»), the governing equation is rewritten as:

H I

Q11t/ (e11€]) + 8228§2)d5+Q121/ (€185, + €226])dS
s s

J

+ Q66t/ Yi2yiHdS = /T-u*ds, Yu*KA. (7
S N

Equation (7) does not consider Qg = (Q11 — Q12)/2, this
relationship is used to calculate Qg after obtaining Q11 and
Q12. This purpose is to reduce the influence of the shear strain
field on other parameters for the isotropic case. Furthermore,
the optimized polynomial virtual fields are used for isotropic
VEM [11].

In addition, as shown in Fig. 2, the loading configuration is
symmetrical, so the boundary conditions are set as follows:
the virtual displacement in the x-direction is restricted on
the symmetry axis, and the virtual displacement in the y-
direction is constant. The virtual displacements of the fixed
end are zero. The specific expression is as follows:

ui(L,y)=0,
u(L,y) = const.,
y
u3(0,0) =0, ®)
u;f(O, 0)=0.

The theory of SCM and VFM has been described in detail
above. Conclusively, for materials with unknown constitutive
behaviors, the SCM is used to determine the global proper-
ties, and then VFM is performed for parameter identification.
The flowchart of the SCM-VFM is shown in Fig. 3.

3 Verification of SCM

3.1 Simulation results of SCM with additive
Gaussian white noise

In this section, the feasibility of the SCM will be verified
by numerical methods. The simulation model is built in
ABAQUS, as shown in Fig. 4. The L and w are 24 mm and
8 mm respectively. The thickness is 2 mm, and the element
type is CPS4.

According to the procedure in Fig. 3, the isotropic and
orthotropic strain library should be established. The primary
problem is how to select the constitutive parameters of the
two kinds of strain libraries, and then how to obtain these
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Fig. 3 Flowchart of the SCM-VFM
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Fig.4 Three-point bending model in ABAQUS

strain fields conveniently and quickly. To ensure the correct-
ness of the SCM, the samples in the strain library should be
as many as possible, but too many samples may increase the
amount of calculation. In this study, the number of samples n
in each strain library is 16. Considering Young’s modulus and
Poisson’s ratio of common materials, for the isotropic strain
library, Young’s modulus is selected as 50 GPa, 100 GPa,
150 GPa, 200 GPa, and the Poisson’s ratio is selected as
0.25,0.28, 0.31, 0.34. Therefore, there are 16 different mate-
rials for the isotropic strain library. For the orthotropic strain
library, since the 2-D orthotropic material has four inde-
pendent engineering constants (£, Eo—Young’s modulus
along the material principal axis, vip—principal Poisson’s
ratio, G1p—shear modulus), so E is selected as 60 GPa, 190
GPa, E, is considered to be smaller than £, and E; is set
as 20 GPa, 50 GPa. vy is selected as 0.27, 0.32, and G1» is
selected as 60 GPa, 110 GPa. Therefore, for the orthotropic
strain library, there are also 16 materials. In the numerical
experiments, the engineering constants will be converted to
the stiffness coefficients (Q11, @22, Q12, and Qge). It should
be noted that the materials in the orthotropic strain library are
completely orthotropic, that is, £ is not equal to E», or Q11
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Table 1 Parameters of simulated - -
Isotropic material

Orthotropic material (Q1] # 022)

materials
FIN E/GPa v E/N 011/GPa 02,/GPa 012/GPa Q66/GPa
983.2 150 0.30 1105.6 185.95 61.98 19.22 90
&xx-Isotropic material X £xx-Orthotropic material
x103 x103

(a)

€yy-Isotropic material

Yxy-Isotropic material

(c)

€yy-Orthotropic material

Yxy-Orthotropic material

-6
-8

Fig.5 Strain fields of a &xx, b &y, and ¢ yy, of isotropic material, and strain fields of d &,,, € &y, and f y,, of orthotropic material

is not equal to Q»>. In addition, the principal axis (1-2) of
the materials is consistent with the measurement axis (x—y)
in the simulation.

Once the parameters in the strain library are determined,
the strain fields need to be obtained through ABAQUS and
exported to MATLAB for calculations. There are a total of
32 calculations that need to be performed. It will take a long
time if it is manually operated. Therefore, this paper has real-
ized automatic calculation through MATLAB-ABAQUS.
The calculation process is: the finite element calculation is
performed in ABAQUS, and then, by modifying the .inp file
and programming with MATLAB codes, the strain fields can
be obtained directly in MATLAB. Some MATLAB functions
can be found in Refs. [27, 28].

To verify that SCM can determine the material global
properties, one kind of isotropic material and one kind of
completely orthotropic material (Q11 # Q22) are simulated
in ABAQUS. The parameters of the two materials are shown
in Table 1. The mesh density is 0.05 mm~!, and the derived
strains are the values at the center of the element.

To directly illustrate that SCM is not sensitive to noise,
the additive Gaussian white noise with a standard deviation
of 0.001 is added to the strain fields in Table 1. The strain
fields without noises are shown in Fig. 5. Bring the strain

@ Springer

fields in Fig. 5 to the SCM program to obtain the two groups
of correlation coefficients (Cjis, and C.orp, Subscript “c-
orth” means completely orthotropic) for each strain field, as
shown in Fig. 6. The label (Material ID) of the horizontal
axis represents the ID of different material parameters in the
strain library.

Figure 6a—c shows that the correlation coefficients
between the isotropic material and isotropic strain library
are always maximum. Figure 6d—f shows that most of the
coefficients between the orthotropic material (Q11 # Q22)
and orthotropic strain library (Q11 7# Q22) are maximum. In
Fig. 6d, f, a total of 12 coefficients indicate that the material
is orthotropic, and 4 coefficients indicate that the material
is orthotropic. For the misjudgment of 4 values (Materials
ID 9-12), it is believed that the correlation calculation of
Eq. (1) is not optimal. However, since C_,;, has the largest
number of maximum coefficients, the material is determined
to be orthotropic. Therefore, it can be concluded that SCM
can be used to determine whether the material is isotropic or
orthotropic (Q11 # Q22). It should be noted that in the two
groups of correlation coefficients, if not all of the values in
one group are greater than these in the other group, then the
material global properties are determined according to the
number of maximum coefficients in C;g, and C._yy¢j.
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Fig.6 Correlation coefficients of isotropic strain fields of a &yx, b &yy, and ¢ y,, with strain libraries, and correlation coefficients of orthotropic

strain fields of d ey, e &yy, and f y,, with strain libraries

Table 2 Identified parameters
using OP-VFM

Isotropic material

Orthotropic material (Q1] # Q22)

Q11/GPa Q12/GPa 011/GPa 02,/GPa Q12/GPa Qe6/GPa
Reference 164.84 49.45 185.96 61.99 19.22 90
Identified 166.47 50.06 188.35 63.50 19.74 90.96
Relative error (%) 0.99 1.27 1.29 2.44 2.70 1.06

Finally, the constitutive parameters are identified by
the optimized polynomial VFM (OP-VFM). The identified
parameters are shown in Table 2.

3.2 Characterization of bidirectional reinforced
orthotropic materials

For bidirectional reinforced orthotropic materials (Q1; =
027), another orthotropic strain library where Q11 and O
are equal is created. In the same way, E'| and E; are selected as
95 GPa, 125 GPa, 155 GPa, 185 GPa, 215 GPa. vy, is selected
as 0.27,0.32, and G2 is selected as 50 GPa, 75 GPa. Hence,
there are also 16 materials. Then, one kind of bidirectional
reinforced orthotropic material is simulated in ABAQUS.
The parameters are shown in Table 3. The additive Gaus-
sian white noise with a standard deviation of 0.001 is also
added into the strain fields. In addition to the two strain
libraries in Sect. 3.1, there are three strain libraries in total,
so three groups of correlation coefficients (Cjs,C c—orth, and

Table 3 Parameters of simulated bidirectional reinforced orthotropic
materials (Q11 = 02)

F/N 011/GPa

Q12/GPa Q66/GPa

1212.4 196.53 56.99 100

Cp-orth» subscript “b-orth” means bidirectional reinforced
orthotropic) for each strain field can be obtained. For sim-
plicity, only the strain field ¢, is used for calculation. The
correlation coefficients are shown in Fig. 7.

From Fig. 7, it can be seen that the simulated material is not
completely orthotropic, and a total of 12 coefficients indicate
that the material is bidirectional reinforced orthotropic, and 4
coefficients indicate that the material is isotropic, so the mate-
rial is considered to be bidirectional reinforced orthotropic
(011 = Q27). Therefore, the SCM can determine the material
global properties when the material is bidirectional rein-
forced orthotropic. For the governing equations of VFM are
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Fig.7 a Correlation coefficients of the bidirectional reinforced orthotropic material with strain libraries and b enlarged view of black window

the same (see Eq. (7)), the isotropic VEM can also be used
to identify the parameters (Q11, Q12, and Qge).

3.3 Comparison between SCM and orthotropic VFM

Although the orthotropic VFM can be used directly to char-
acterize the material with unknown global properties, as
described in the introduction. Nevertheless, because the VFM
requires high accuracy of the strain fields, it sometimes may
get wrong results in the real experiment, especially when the
global properties of the materials are isotropic or bidirec-
tional reinforced orthotropic. In this section, the proposed
SCM is compared with orthotropic VFM in terms of the local
errors in strain fields and missing data at the specimen edges.

3.3.1 Effect of local errors in strain fields

The above discussions on the strain fields are considering
the additive Gaussian white noise. Although the standard
deviation is large, it is a homogeneous variance. In real
experiments, due to the systematic errors of the measure-
ment technology and various numerical errors, the obtained
strain fields may have errors locally, as shown in Fig. 8. The
local error in this article is defined as the local fluctuation
of the strain field. Figure 8a is the three-point bending strain
field (e, ) in the DIC experiment. It can be seen that there are
many fluctuations in the strain field, which is not as smooth
as the simulated strain field, as shown in the red window
in Fig. 8a. The enlarged view of the red window is shown in
Fig. 8b. The values of three characteristic points (A, B, and C)
are selected to illustrate the magnitude of the fluctuation. The
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values at points A, B, and C are 2.207 x 1073, 6.70 x 1074,
and 7.12 x 107*, respectively. Therefore, the magnitude of
the fluctuation has reached 10~>. Considering that the mag-
nitude of the fluctuation in the experiment can reach 1073,
to simulate such numerical fluctuations, the Gaussian distri-
bution is used to approximate such fluctuations, as shown in
Fig. 8d. The size of the local errors is 2 mm X 2 mm.

To investigate whether the local errors can affect SCM and
orthotropic VFM to determine the material global properties,
the local errors are added to the isotropic strain fields in Table
1. The final strain fields are shown in Fig. 9. The position of
the black box is where the local errors are added.

First, the orthotropic VFEM is performed for identification.
For comparison, the isotropic VFM is also performed, and
the results are shown in Table 4. From the results in Table
4, if the global properties are not determined before using
VFM, when there are local errors in the strain fields, directly
using orthotropic VFM can get wrong identification results.
The error between Q11 and Oy cannot be negligible, and
it cannot accurately reflect the material mechanical proper-
ties. Nevertheless, if the isotropic property can be correctly
determined and the isotropic VFM is adopted, the correct
parameters can be identified.

Then, the SCM is performed to determine the global prop-
erties of the isotropic strain fields in Table 1. The correlation
coefficients are shown in Fig. 10. For simplicity, only the
comparison results of the strain field ¢, are given here. The
isotropic material is compared with the isotropic library and
two kinds of the orthotropic library (Q11 # Q22 and Q1
= (7). Figure 10 shows that the SCM can successfully
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Table 4 Identified parameters - -
using OP-VEM Isotropic VFM Orthotropic VFM
011/GPa Q12/GPa 011/GPa 02,/GPa Q12/GPa Q66/GPa
Reference 164.84 49.45 164.84 164.84 49.45 57.69
Identified 166.91 48.99 164.85 135.64 40.84 61.32
Relative error (%) 1.26 0.93 0.27 17.71 17.42 6.29

determine the material global properties when there are local
errors in strain fields.

3.3.2 Effect of the missing data at the specimen edges

In addition to various noises in the experiment, there is also
the problem of missing data at the specimen edges caused by
measurement technology. Several studies have shown that the
missing data near the edges will seriously affect the accuracy
of the identification results [13, 18, 29]. At present, the sim-

plest and most effective way is to add the last row of the data
to the edges, and then perform interpolation processing [13].

To investigate whether missing data at the specimen edges
can affect SCM and orthotropic VFM to determine the mate-
rial global properties, the data near the edges of the isotropic
material in Table 1 are removed, as shown in Fig. 11a, and the
M represents the distance to be removed. The simulation also
considers the additive Gaussian white noise with a standard
deviation of 0.001.
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Stiffness coeflicients / GPa

Fig. 11 Missing data at the edges a removal settings in simulation, b Q1 and Q2 identified by orthotropic VEM and isotropic VFM

First, the VFM is performed for identification. Before the
calculation, the data near the edges was supplemented by
linear interpolation. The orthotropic and isotropic VFM are
simultaneously performed. The identified Q1 and Oy, are
shown in Fig. 11b.
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From the identification results in Fig. 11b, if the
orthotropic VFM is directly performed, even if the interpola-
tion near the edges has been adopted, the difference between
Q11 and Q2 is not negligible. In that case, the mechan-
ical properties will be wrongly determined. However, the
isotropic VEM can still obtain reasonable parameters, so it is
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very important to determine the global property before using
VFM.

Then, the SCM is performed to determine the material
global properties considering missing data at the specimen
edges. Similarly, the data near the edges is supplemented by
linear interpolation before the calculation. The correlation
coefficients are shown in Fig. 12. The same conclusion as
in Sect. 3.3.1 can be obtained. Using SCM can successfully
determine the global properties when considering the missing
data at the specimen edges.

This section shows that SCM does not require high accu-
racy of the strain fields when determining the global prop-
erties compared with that using the orthotropic VFM, and
for SCM, the material global properties can be determined
by using only one strain field. Determining the material
global properties is an important step before the parameter
identification, which will bring many conveniences for the
calculation using VEM, such as the determination of the num-
ber of unknown parameters and the selection of the virtual
fields, especially for the isotropic or bidirectional reinforced
orthotropic materials. Furthermore, four-parameter identifi-
cation using orthotropic VFM requires the measured strain
fields to be more accurate than that of isotropic VFM. There-
fore, before using the VFM, constitutive behaviors or global
properties should be determined. This is the significance of
developing SCM.

4 DIC experiments

The simulation experiments are always ideal. To further
illustrate the feasibility of SCM in real experiments, two
experiments are conducted in this section. The first is a
verification experiment, which will characterize the PMMA
(known as the isotropic material). The second is an appli-
cation experiment, which will characterize the Ti-6Al-4V
alloys (unknown global properties) fabricated by selective
laser melting (SLM).

To measure the strain fields of the three-point bending
configuration, DIC technique is utilized. The experiment
setup is shown in Fig. 13. The resolution of the §-bit CMOS
used in this work is 1280 x 1024. The DIC calculation is
conducted by the open-source 2D-DIC MATLAB program,
Ncorr, developed by Justin Blaber of Georgia Institute of
Technology [30]. The displacement and strain resolutions
are 2.6 wm and approximately 1.2 x 1074, respectively. The
bilateral telecentric lens is used to reduce the influence of the
out-of-plane displacements [31].

4.1 PMMA experiment

The PMMA specimen captured by CMOS is shown in
Fig. 14a, and the red window is the area of interest (AOI).
Figure 14b is an enlarged part of the blue window in Fig. 14a,
and the speckle patterns on the surface can be observed. Due
to symmetry, only half of the specimen is calculated. The
subset radius for calculating the displacement is 18 pixels
according to the DIC guide [32], the step size is 2 pixels, and
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Fig. 13 Experimental setup

the step size should not be too large, otherwise, the identifi-
cation errors will increase [13]. The strain window radius is 8
pixels or 14 pixels. The strain fields when the strain window
radius is 14 pixels are shown in Fig. 15.

4.2 Application in SLM-fabricated Ti-6Al-4V alloys

The SLM-fabricated Ti-6Al-4V alloys used in this paper were
manufactured by Wuhan Huake 3-D Technology Co. Ltd.,

Loading end )

China (Huake 3-D HKM125). To explore the effect of the
fabricating routes on the mechanical properties of the Ti-
6Al-4V alloys, we have designed two kinds of fabricating
schemes, as shown in Fig. 16. The first kind is to fabricate the
materials in the x-direction first, and then change the direction
along the y-axis when fabricating the next layer, as shown in
Fig. 16a. The second one is to fabricate the materials along
the positive angle of 135° with the x-axis, and then change
the direction along the positive angle of 45° with the x-axis,
as shown in Fig. 16b.

The Ti-6Al-4V specimen captured by CMOS is shown in
Fig. 17. The subset radius for calculating the displacement
is 18 pixels, the step size is 2 pixels, and the strain window
radius is 11-15 pixels. The strain fields when the strain win-
dow radius is 15 pixels are shown in Fig. 18.

5 Results and discussion
5.1 SCM-VFM results of PMMA

Before performing the SCM calculation, the strain fields
obtained in Sect. 4.1 are first interpolated to maintain the
same dimensions as those in the strain library. The size of
the strain fields in the strain library is 160 rows and 480
columns, and the experimental strain fields are calculated to

3
x 10

Fig. 15 Strain fields of a exx, b &y, and ¢ y,, of PMMA with a load of 102 N
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be 132 rows and 379 columns. The SCM results are shown
in Fig. 19.

Figure 19 shows that the PMMA is not completely
orthotropic (Q11 # 022), and a total of 11 coefficients indi-
cate that it is isotropic, and 5 coefficients indicate that it is
bidirectional reinforced orthotropic (Q11 = (022), so it can be
concluded that it is isotropic. The results are consistent with
what we know, so SCM can determine the material global
properties in the real experiment.

Finally, the isotropic VFM and orthotropic VEM are per-
formed to identify the constitutive parameters. Even though
we already know that PMMA is an isotropic material, here
we also use orthotropic VFM. The purpose is to show that for
isotropic materials, using orthotropic VFM (four-parameter
identification) could get wrong identification results. The
identification results are shown in Table 5. From the results
using orthotropic VFM in Table 5, the error between Q1
and Oy, is not negligible, that is to say, it cannot be con-
cluded the material is isotropic, which is unreasonable for
PMMA. When isotropic VFM is used for identification, the
obtained Young’s modulus and Poisson’s ratio are 3.03 GPa
and 0.388, respectively, which are reasonable results com-
pared with Ref. [11].

5.2 Results and analysis of the SLM-fabricated alloys
5.2.1 SCM results of the SLM-fabricated alloys

For the SLM-fabricated alloys, to make the spindle of the
sample material consistent with the spindle of the finite ele-

@ Springer

ment model, the strain field ¢, of the 0°/90° specimen is
used for SCM in this section, and the SCM results are shown
in Fig. 20.

The results in Fig. 20a, c show that the 0°/90° specimen
is not completely orthotropic. In Fig. 20b, d, a total of 11
coefficients indicate that it is isotropic, and 5 coefficients
indicate that it is bidirectional reinforced orthotropic (Q11 =
02), so it can be concluded that it is isotropic. The same
conclusion can be found in Ref. [33], which is obtained by
observing the microstructure of the material through a micro-
graph. The alternative cross routes make the grains more
equiaxed, which make the microstructure tend to be isotropic.
Therefore, it can be known that the 45°/135° specimen is also
isotropic.

Using the SCM, it can be concluded that the specimens
fabricated by alternative cross routes are not orthotropic
materials, which means that the number of unknown param-
eters is not four, but two. In the next section, the 45°/135°
specimen and VFM are used to show that the Ti-6Al-
4V alloys fabricated by alternative cross routes are indeed
isotropic.

5.2.2 VFM results of the SLM-fabricated alloys

Both isotropic and bidirectional reinforced orthotropic mate-
rials can be characterized using the isotropic VFM in this
paper (see Eq. (7)). First, the 45°/135° specimen is utilized
to determine whether the material tends to be isotropic or
bidirectional reinforced orthotropic. For the 45°/135° speci-
men, if it is considered as an orthotropic material, there is an
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Table 5 Identified parameters of — - - - -
PMMA Load/N  Strain window radius (pixels) Isotropic VFM Orthotropic VFM
011/GPa  Q12/GPa  Q;1/GPa (02/GPa Q12/GPa Qgs/GPa
51 4 3.55 1.40 2.92 0.62 0.28 0.50
7 3.60 1.38 2.93 0.68 0.31 0.49
102 4 3.66 1.44 3.00 0.85 0.39 0.61
7 3.68 1.43 3.00 0.93 0.42 0.61
132 4 3.47 1.34 2.92 0.97 0.43 0.66
7 3.50 1.35 2.93 1.07 0.47 0.65
Average - 3.58 1.39 2.95 0.85 0.38 0.59
a (a) Eyx-Correlation 2 (o Exx-Correlation
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Fig.20 a, b Correlation coefficients with the load of 760 N. ¢, d Correlation coefficients with the load of 900 N
angle of 45° between the principal axis (1-2) and the mea-  Table 6 Identified results of 45°/135° specimen
§urgment coordmatf: axis (x—.y). Therefore, the strain fields | -4 (1-2) axis (x—y) axis
in Fig. 18d—f, and virtual strain fields should be converted to
the principal axis. For comparison, the identification results E/GPa v E/GPa Y
under the measurement coordinate axis (x—y) are also listed, 749
as shown in Table 6. Set-1 and Set-2 indicate that the subset Set-1 500.57 —2.156 107.91 0.364
radius is 15 pixels and 18 pixels, respectively. Both the step  go0 516.82 —2.090 109.01 0.367
size and strain radius are 2 pixels and 15 pixels. 801
The rc?sults under the prln.c1pal ax1s, are very ul?reason- Set-1 55420 2971 109.12 0362
able, which are compare'd with Yqugg s modulus in Refs. Set2 57937 2391 109.77 0364
[34, 35]. Besides, the Poisson’s ratio is also very unreason- 900
able. From the results in the x—y coordinate axis, the values
s . y, . Set-1 460.69 — 1.825 105.19 0.366
of Young’s modulus and Poisson’s ratio are reasonable. The
Set-2 462.20 —1.819 106.02 0.367

VFM results show that the alloys fabricated by alternative
cross routes are isotropic, rather than bidirectional reinforced
orthotropic. Through the identification results of the 45°/135°
specimen, the same conclusion can be drawn as in Sect. 5.2.1,
and finally, the isotropic VFM can be utilized to identify all
the parameters. The comparison results of the two kinds of
specimens are shown in Fig. 21.

Figure 21 shows a comparison of Young’s modulus, Pois-
son’s ratio, and shear modulus of the two kinds of specimens

under different DIC calculation conditions. In Fig. 21, the
average Young’s modulus of the 0°/90° specimen and the
45°/135° specimen are 107.95 GPa, 107.01 GPa, the Pois-
son’s ratio is 0.292, 0.359, and the average shear modulus is
41.08 GPa and 39.36 GPa, respectively. The direct errors of
these parameters and the values in the literature are shown in
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Fig.21 Comparison of identified results of two kinds of specimens: a Young’s modulus, b Poisson’s ratio, and ¢ shear modulus

Table 7 Comparison with the results in Refs. [34, 35]

E/GPa v G/GPa
0°/90° specimen 107.95+£4.94  0.2924+0.030 41.80+2.40
45°/135° specimen  107.014+2.89  0.359+0.008 39.36+1.06
Ref. [34] 11345 - -

Ref. [35] 109.2+3.1 - -

Table 7. The Young’s modulus of the two materials is very
close, but the Poisson’s ratio is quite different. On the one
hand, it is related to the individual difference of the speci-
men, on the other hand, the experimental conditions, such as
speckle quality and lighting conditions, cannot be completely
consistent.

In summary, for materials with unknown constitutive
behaviors, if they are determined to be isotropic or bidi-
rectional reinforced orthotropic, using SCM can reduce the
number of unknown parameters compared with the assump-
tion of complete anisotropy, which will provide a great
convenience for identification. For VFM, it can improve the
identification capability and the credibility of the results.
Besides, for iterative methods such as FEMU, it can also
reduce a lot of calculation time.

6 Conclusions

For materials with unknown global properties, the
orthotropic VFM can be directly used to identify the mate-
rial parameters. Unfortunately, the original characterization
using this method may lead to wrong identification results.
In order to improve the parameter identification ability using
VFM, the SCM was proposed to determine the material
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global properties before performing the VFM. The following
conclusions are obtained.

1. To identify the material parameters when the global
properties are unknown, the measured strain fields are
correlated with the strain libraries based on the three-
point bending configuration. According to the number
of the maximum values among the three groups of
correlation coefficients (Cjgo, Cc-orth» Cp-orei) the mate-
rial global properties can be determined. The proposed
method can improve the credibility of identification
results using VFM.

2. The feasibility and accuracy of the SCM are verified
using simulations and real experiments using PMMA.
The results indicate that the SCM has good noise immu-
nity and is insensitive to the local errors in the strain fields.
Besides, for the missing data at the specimen edges, after
the interpolation process, there is no effect on the char-
acterization results of SCM.

3. The proposed SCM is compared with the orthotropic
VEM in the determination of the material global prop-
erties. The results show that SCM has better robustness.

4. The global properties of the Ti-6Al-4V alloys fabricated
by SLM can be successfully characterized by SCM.
The results indicate the Ti-6Al-4V alloys fabricated by
alternative cross routes are isotropic, and the identified
material parameters using isotropic VFM are reasonable
compared with those in the literature.
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