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Abstract
A dynamic frequency-based parameter identification approach is applied for the nonlinear system with periodic responses. 
Starting from the energy equation, the presented method uses a dynamic frequency to precisely obtain the analytical limit 
cycle expression of nonlinear system and utilizes it as the mathematic foundation for parameter identification. Distinguished 
from the time-domain approaches, the strategy of using limit cycle to describe the system response is unaffected by the influ-
ence of phase change. The analytical expression is fitted with the value sets from phase coordinates measured in periodic 
oscillation of the nonlinear systems, and the unknown parameters are identified with the interior-reflective Newton method. 
Then the performance of this identification methodology is verified by an oscillator with nonlinear stiffness and damping. 
Besides, numerical simulations under noisy environment also verify the efficiency and robustness of the identification 
procedure. Finally, we apply this parameter identification method to the modeling of a large-amplitude energy harvester, 
to improve the accuracy of mechanical modeling. Not surprisingly, good agreement is achieved between the experimental 
data and identified parameters. It also verifies that the proposed approach is less time-consuming and more accuracy in 
identification procedure.

Keywords  Parameter identification · Dynamic frequency · Nonlinear system · Energy harvester

1  Introduction

Parameter identification plays an important role in the field 
of mechanics and engineering, which is concerned with 
estimating a model to the system based on the measured 
data. However, the characteristic parameters are difficult to 
be evaluated directly in practice due to the complexity, non-
linearity of the system, which means an accurate approach 
for extracting the unknown parameters from the observed 
behavior is a more challenging target. In other words, the 
identification of parameters in nonlinear system requires a 
deep understanding of the system’s dynamic behavior [1, 2].

Parameter identification techniques can be classified into 
two main categories, namely parametric and non-parametric 

methods. Methods that seek to determine the value of param-
eters in an assumed model of the physical system are called 
parametric methods. Unlike parametric methods, non-para-
metric methods produce the best functional representation 
of the physical system without a priori assumptions about 
the model [3]. In recent years, parameter identification for 
nonlinear system has received broad attentions, and various 
methodologies have been proposed.

For example, Xu [4] identified the parameters of dynam-
ical systems by a gradient iterative estimation algorithm. 
Moore et al. [5] introduced a nonlinear system identification 
method based on the primary wave scattering to measure 
the damping of the split Hopkinson pressure bar system. Do 
et al. [6] used an optimization method and different types 
of input signals to identify the parameters of nonlinear sys-
tem in tendon-sheath mechanism. Although, to some extent, 
these methods can realize parameter identification for non-
linear system, they are complex and sometimes cannot be 
easily implemented.

For nonlinear systems, parameter identification meth-
ods that take less time to process the collected data and can 
utilize the characteristics of the responses are of particular 
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interest [7]. The time-domain approaches, employed in para-
metric method, have the advantage of taking less time and 
effort to acquire or process the data since the signals are 
directly provided. The linear variant of the time-domain 
approach based on auto regressive moving average (ARMA) 
models has long been used for prediction purpose. Mean-
while, there also have been numerous attempts to gener-
alize the model structure to the nonlinear cases. Arguably 
the most versatile and enduring structure is the NARMAX 
(nonlinear ARMA with exogenous input) model proposed 
by Leontaritis and Billings [8]. Another effective approach 
to time-domain identification is the restoring force surface 
(RFS) method, given by Masri and Caughey [9]. Other time-
domain techniques have also been proposed, such as the 
energy balance [10, 11], harmonic balance [12, 13], direct 
parameter estimation methods [14]. However, these meth-
ods have some limitations. For example, the energy balance 
method may not be able to obtain the explicit expression 
of the energy equation for some systems. The accuracy of 
harmonic balance method is affected by the truncation error 
of Fourier transform.

This paper presents a time-domain approach to iden-
tify nonlinear coefficients by exploiting the principle 
mode resonant response. Based on the governing equa-
tion, we use dynamic frequency method [15] to determine 
the approximate solution of the response to a principal 
mode resonant excitation. We argue that the character-
istic nonlinear response of the system predicted by the 
method of dynamical frequency as approximate solution 
and steady state amplitude response relations can be used 
for estimating nonlinear parameters and propose a param-
eter identification scheme. Typically, the accuracy of the 
approximate solution of a nonlinear system determines the 
result of unknown parameter identification. And based on 
the characteristics of high accuracy and simple calcula-
tion process of dynamic frequency method, the proposed 
approach of this article may achieve good performance of 
identification.

The structure of this paper is as follows. In Sect. 2, 
dynamic frequency method is briefly introduced to obtain 
the analytical expression of limit cycles for nonlinear sys-
tems. In Sect. 3, the obtained analytical expression is applied 
to identify the parameters of nonlinear oscillator. And by 
choosing a numerical example, we validate the proposed 
identification scheme. Finally, we estimate the parameters 
governing the nonlinear behavior in a energy harvester in 
Sect. 4.

2 � Dynamic frequency method

To illustrate the basic idea of dynamic frequency method, 
the following general nonlinear equation is concerned

where x is the displacement of the system, the over dot repre-
sents differentiation respect to time t, �0 is the fundamental 
frequency of the system, f1(x) is a nonlinear function of x, 
f2(x, ẋ) is a polynomial function of x and ẋ , M , K are integers 
satisfying M > 1 , K ≥ 0 . The harmonic excitation force is 
characterized by the force amplitude F and excitation fre-
quency �.

According to dynamic frequency method, the periodic 
solution of Eq. (1) can be given in a compact form like

where a0 is the amplitude, � represents a periodic phase 
component, and b is the bias and equals to zero for those Z2 
symmetry systems.

The amplitude is assumed to be a slow variable while the 
frequency is a fast variable. Thus we have

in which x� = dx∕d� and � depends on the parameter p . 
Expanding � in the powers of p results in

where a small non-dimensional parameter p has been intro-
duced as a bookkeeping parameter and sets equal to unity in 
the result, �1,0 is the undetermined fundamental frequency 
and �1,i(�) is the dynamic frequency to be decided.

Therefore, Eq. (1) can be rewritten as

Considering the response in the principal resonance ( � 
represents the resonance frequency) and letting �t = � , the 
integral of Eq. (5) is

where E∗ is an average mechanical energy over the whole 
period.

The  va lues  o f  t hese  unknown va r i ab le s 
( a0, b, �1,0, �1,n(�) ) can be determined in the energy equa-
tion. Substituting Eqs. (2) and (4) into Eq. (6), performing 
the integration and collecting the power series of p lower 
than k for each order, we obtain the following equations:

(1)

ẍ + 𝜔2

0
x = f1(x) + f2(x, ẋ) + F cos𝛺t,

f1(x) =

M
∑

i=2

𝛼ix
i
, f2(x, ẋ) =

K
∑

i=0

K−i
∑

j=1

𝛽i,jx
iẋj,

(2)x = a0 cos � + b,

(3)ẋ = x�
d𝜃

dt
,

(4)d�

dt
= �(�) = �1,0 +

k
∑

i=1

pi�1,i(�),

(5)�2(�)x�� + �2
0
x = f1(x) + f2(x,�(�)x

�) + F cos�t.

(6)

1

2
�2(�)x�

2
=E∗ −

1

2
�2

0
x2 + ∫ f1(x)dx

+ ∫ f2(x,�(�)x
�)x�d� + ∫ x�F cos �d�,
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•	 Order 1

•	 Order 2

•	 Order k

Perform the integration and collect the power series of 
p lower than k in Eq. (9). Then, expand and balance the 
trigonometric function terms. It follows a five-step balancing 
algorithm. The basic algorithm is

(7)

1

2
(−a0 sin �)

2(�2

1,0
+ 2�1,0p�1,1(�))

= E∗ −
1

2
�2

0
(a0 cos � + b)2 +

M
∑

i=2

�i

i + 1
(a0 cos � + b)i+1

+ ∫
K
∑

i=0

K−i
∑

j=1

�i,j(a0 cos � + b)i(−a0 sin �)
j+1�1,0d�

+ ∫ (F cos �)(−a0 sin �)d� + O(p2),

(8)

1

2
(−a0 sin �)

2

(

2
∑

i=0

2−i
∑

j=0

pi+j�1,i(�)�1,j(�)

)

= E∗ −
1

2
�2

0
(a0 cos � + b)2 +

M
∑

i=2

�i

i + 1
(a0 cos � + b)i+1

+ ∫
K
∑

i=0

K−i
∑

j=1

�i,j(a0 cos � + b)i(−a0 sin �)
j+1

(

�1,0 + p�1,1(�)
)

d�

+ ∫ (F cos �)(−a0 sin �)d� + O(p3),

(9)

1

2
(−a0 sin �)

2

(

k
∑

i=0

k−i
∑

j=0

pi+j�1,i(�)�1,j(�)

)

= E∗ −
1

2
�2

0
(a0 cos � + b)2 +

M
∑

i=2

�i

i + 1
(a0 cos � + b)i+1

+ ∫
K
∑

i=0

K−i
∑

j=1

�i,j(a0 cos � + b)i(−a0 sin �)
j+1

(

�1,0 +

k−1
∑

i=1

pi�1,i(�)

)

d�

+ ∫ (F cos �)(−a0 sin �)d� + O(pk+1).

Step 1 ∶ balance the constant term,

Step 2 ∶ balance the term of � or sin � cos �,

Step 3 ∶ balance the term of cos �,

Step 4 ∶ balance the term of sin2 �,

Step 5 ∶ balance the remaining terms.

2.1 � Dynamic frequency solution

Dynamic frequency method is quite general and can be 
applied to many nonlinear vibration systems. Here we illus-
trate this approach by applying it to the following system 
with nonlinear stiffness and damping

which, in other words, f1(x) = �2x
2 + �3x

3 + �4x
4 + �5x

5 , 
f2(x, ẋ) = (𝛽0,1 + 𝛽2,1x

2)ẋ.
Letting �t = � , the relationships between x and ẋ are in 

the form of Eqs. (2), (3) and (4) respectively. Substituting 
them into the energy equation, one obtains

If we stop at the first-order approximation, i.e. k = 1, 
the variables can be obtained from the following algebraic 
equations according to the algorithm. According to the basic 
algorithm, p2 component is neglected and ẋ on the right is 
regarded as u̇ = −a0𝜔10 sin 𝜃 to keep the first order approxi-
mation. Finally, it demands to balance the same order terms 
on both side of Eq. (7), such as the constant term, time t, 
and those terms including sin � and cos � . That comes to 
the unknown variables a0,b,E∗,�1,0,�1,1(�) in this problem.

Step 1: constant term → E∗

Step 2: time � or sin � cos �→ a0

Step 3: cos � → b

Step 4: sin2 � → �1,0

(10)
ẍ + 𝜔2

0
x = (𝛼2x

2 + 𝛼3x
3 + 𝛼4x

4 + 𝛼5x
5) + (𝛽0,1 + 𝛽2,1x

2)ẋ + F cos𝛺t,

(11)

1

2
�2(�)x�

2
= E∗ −

1

2
�2

0
x2 +

5
∑

i=2

�ix
i

+ ∫ (�0,1 + �2,1x
2)�(�)x�x�d� + ∫ x�F cos �d�.

(12)

E∗ = −
1

60
[(30Fa0 + 60a2

0
b�2 + 20b3�2 + 15a4

0
�3

+ 90a2
0
b2�3 + 15b4�3 + 60a4

0
b�4

+ 120a2
0
b3�4 + 12b5�4 + 10a6

0
�5 + 150a4

0
b2�5

+ 10b6�5) − 30a2
0
�2
0
− 30b2�2

0
],

(13)a2
0
= −4

(

b2 +
�0,1

�2,1

)

,

(14)

(5a2
0
�2 + 15b2�2 + 15a2

0
b�3 + 15b3�3 + 3a4

0
�4

+ 30a2
0
b2�4 + 15b4�4 + 15a4

0
b�5

+ 50a2
0
b3�5 + 15b5�5) − 15b�2

0
= 0,
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Step 5: remaining terms → �1,1(�)

The values of a0, b, �1,0, �1,1(�) can be determined from 
Eqs. (13), (14), (15) and (16). The first-order approximation 
of limit cycle solutions can be expressed as

It is clear that Eq. (17) only gives the implicit solutions 
on the phase diagram for theoretical studies. The explicit 
drivetrain relation between (x, ẋ) can be permitted through 
the integration:

and finally gives the standard solution

In the same way, one can follow the above procedure to 
determine the variables in the second-order approximation:

Step 1: constant term → E∗

Step 2: time � or sin � cos �→ a0

(15)

�2

1,0
=�2

0
− (

F

a0
+ 2a0b�2 + a3

0
�3 + 3a0b

2�3

+ 4a3
0
b�4 + 4a3

0
b3�4 + a5

0
�5 + 10a3

0
b2�5 + 5a0b

4�5),

(16)

�1,1(�) =

[

−

(

1

3�1,0

a0�2 +
1

�1,0

a0b�3 +
2

5�1,0

a3
0
�4

+
2

�1,0

a0b
2�4 +

2

�1,0

a3
0
b�5 +

10

3�1,0

a0b
3�5

)

cos �

+

(

1

4�1,0

a2
0
�3 +

1

�1,0

a2
0
b�4 +

1

2�1,0

a4
0
�5

+
5

2�1,0

a2
0
b2�5

)

sin
2 � −

1

6�1,0

a4
0
�5 sin

4 �

+
1

4
a2
0
�2,1 sin � cos � +

2

3
a0b�2,1 sin �

+

(

1

5�1,0

a3
0
�4 +

1

�1,0

a3
0
b�5

)

cos � sin2 �

]

.

(17)

{

x1 = a0 cos 𝜃,

ẋ1 = −a0(𝜔1,0 + 𝜔1,1(𝜃)) sin 𝜃.

(18)� = ∫ �(�)d�

(19)x = a0 cos�.

(20)

E∗ = −
1

5760�2

1,0

(135Fa3
0
�3 + 540Fa3

0
b�4 + 220Fa5�5

+ 1350Fa3
0
b2�5 + 1440Fa0�

2

1,0
− 2880a2

0
�2

0
�2

1,0

− 2880b2�2

0
�2

1,0
+ 5760a2

0
b�2�

2

1,0
+ 1920b3�2�

2

1,0
+ 1440a4

0
�3�

2

1,0

+ 8640a2
0
b2�3�

2

1,0
+ 1440b4�3�

2

1,0
+ 5760a4

0
b�4�

2

1,0

+ 11520a2
0
b3�4�

2

1,0
+1152b5�4�

2

1,0
+ 960a6

0
�5�

2

1,0

+ 14400a4
0
b2�5�

2

1,0
+ 14400a2

0
b4�5�

2

1,0
+ 960b6�5�

2

1,0
),

(21)9a2
0
�3 + 36a2

0
b�4 + 13a4

0
�5 + 90a2

0
b2�5 + 48�2

1,0
= 0,

Step 3: cos � → b

Step 4: sin2 � → �1,0

Step 5: remaining terms → �1,2(�)

where the coefficients �0,i and �1,i are presented in Appendix 
A1.

Then the second-order approximation of limit cycle solu-
tions can be expressed as

The operations to determine x and ẋ in the present method 
are straighter than other perturbation techniques. Mean-
while, like the hyperbolic perturbation method [16], Eq. (25) 
represents the closed orbits around the orbital center, which 
gives quite accurate orbits in phase portraits for theoretical 
studies. That inspires the identification algorithm in Sect. 3.

2.2 � Study of the Duffing‑van der Pol oscillator

To show the efficiency and accuracy of the present method, 
the analytic results will be compared with Runge–Kutta 
method. In this example, the following Van der Pol equa-
tion is considered

(22)

− 25Fa0�2 − 75Fa0b�3 − 24Fa3
0
�4 − 150Fa0b

2�4

− 120Fa3
0
b�5 − 250Fa0b

3�5 − 225b�2

0
�2

1,0

+ 75a2
0
�2�

2

1,0
+ 225b2�2�

2

1,0
+ 225a2

0
b�3�

2

1,0

+ 225b3�3�
2

1,0
+ 45a4

0
�4�

2

1,0

+ 450a2
0
b2�4�

2

1,0
+ 225b4�4�

2

1,0
+ 225a4

0
b�5�

2

1,0

+ 750a2
0
b3�5�

2

1,0
+ 225b5�5�

2

1,0
= 0,

(23)

�2

1,0
= −

1

225a0�
2

1,0

(25a3
0
�2
2
+ 150a3

0
b�2�3 + 225a3

0
b2�2

3
+ 60a5

0
�2�4

+ 300a3
0
b2�2�4 + 180a5

0
b�3�4 + 900a3

0
b3�3�4 + 36a7

0
�2
4

+ 360a5
0
b2�2

4
+ 900a3

0
b4�2

4
+ 300a5

0
b�2�5 + 500a3

0
b3�2�5

+ 900a5
0
b2�3�5 + 1500a3

0
b4�3�5 + 360a7

0
b�4�5 + 2400a5

0
b3�4�5

+ 3000a3
0
b5�4�5 + 900a7

0
b2�2

5
+ 3000a5

0
b4�2

5
+ 2500a3

0
b6�2

5

+ 225F�2

1,0
− 225a0�

2

0
�2

1,0
+ 450a0b�2�

2

1,0
+ 225a3

0
�3�

2

1,0

+ 675a0b
2�3�

2

1,0
+ 900a3

0
b�4�

2

1,0
+ 900a0b

3�4�
2

1,0
+ 225a5

0
�5�

2

1,0

+ 2250a3
0
b2�5�

2

1,0
+ 1125a0b

4�5�
2

1,0
),

(24)

�1,2(�) =

n
∑

i=1

�0,i sin
i �+

(

n
∑

i=0

�1,i sin
i �

)

cos �, n = 8,

(25)
{

x2 = a0 cos 𝜃,

ẋ2 = −a0(𝜔1,0 + 𝜔1,1(𝜃) + 𝜔1,2(𝜃)) sin 𝜃.

(26)ẍ + x = 𝛼2x
2 + 𝛼3x

3 + (𝛽0,1 + 𝛽2,1x
2)ẋ + F cos𝛺t,



610	 Z. Zhang, et al.

1 3

which is a special case of the oscillator in Eq. (10) with 
�0= 1 , �4= 0 , �5= 0.

Then we compare the results obtained by the present 
method with Runge–Kutta method in Fig. 1 in terms of the 
parameter values from Table 1. The analytical solutions, 
especially the second-order approximations are in excellent 
agreement with those obtained by the Runge–Kutta method 
from G1 to G4. Hence dynamic frequency method has been 
demonstrated to be an efficient method to determine the rela-
tionship between x and ẋ on the phase diagram.

3 � Identification from dynamic frequency 
approximate solutions

As mentioned in Sect. 2, we verify that dynamic frequency 
method determine accurate relationship between x and ẋ on 

Fig. 1   Limit cycles under different group parameters from G1 to G4 for Eq. (26): the black solid line denotes the limit cycle predicted by Runge–
Kutta method; the blue dotted line denotes the limit cycle predicted by the first-order dynamic frequency; the red dashed line denotes the limit 
cycle predicted by the second-order dynamic frequency

the phase diagram that will prompt the feasibility analysis 
of this method in the fields of nonlinear system parameter 
identification.

3.1 � Basic idea for parameter identification

(I)	 As shown in Fig. 2, the black square points are the set 
of phase coordinates for the system response. x̃(tk) and 
̃̇x(tk) represent the displacement and velocity responses 
respectively. The blue dot points represent the phase 
coordinates ( (x(𝜃k), ẋ(𝜃k) ) calculated based on dynamic 
frequency method. Here, it is assumed that the coordi-
nate pair (x̃(tk), ̃̇x(tk)) is consistent with the approximate 
analytic solutions (x(𝜃k), ẋ(𝜃k)) on the phase diagram.

(II)	 The analytical relationship expression between x and ẋ 
is determined based on dynamic frequency method

(III)	Collect the phase coordinates (x̃(tk), ̃̇x(tk)) of the system. 
Based on the sample data x̃(tk) and the assumption (I), 
we can determine the amplitude,

	   the bias and the sequence of �k in Eq. (27)

(27)

{

x = a0 cos 𝜃 + b,

ẋ = −a0𝜔(𝜃) sin 𝜃.Table 1   Parameter values in Eq. (26)

Groups �
�

�
�

�
�

�
�,� �

�,� F

G1 1 0 − 0.5 0.2 − 0.3 0
G2 1 0 − 1 2 − 3 0
G3 1 1 − 2 2 − 3 0.2
G4 1 − 1 − 2 4 − 3 0.2



611Parameter identification of nonlinear system via a dynamic frequency approach and its energy…

1 3

where x̃(tk) represents the collected data at the kth point 
in time domain.

(IV)	Since there is an error between the analytical solution 
and the actual response, substituting the sequence of 
�k into ẋ in Eq. (27), the following deviation will be 
obtained 

(V)	 Calculate the sum of the squares of the above errors, 
we get

	 
where N is the total number of the collected data sam-
ples. Thus, the unknown parameters in nonlinear oscil-
lator can be identified by the above equation in a least-
squares sense.

It can be seen from the above procedure that the accuracy 
of parameter identification results depends on the accuracy 
of the optimization algorithm and analytical expression fit-
ting to the response data. Here, the algorithm uses a trust 
region approach to optimize based on the interior-reflec-
tive Newton method. And higher-order analytical approxi-
mations can be constructed by using dynamic frequency 
method.

(28)a0 =
max[x̃(t)] −min[x̃(t)]

2
,

(29)b =
max[x̃(t)] +min[x̃(t)]

2
,

(30)𝜃k = arccos[(x̃(tk) − b)∕a0],

(31)Rk = ̃̇x(tk) − ẋ(𝜃k).

(32)R =

N
∑

k=1

R2
k
=

N
∑

k=1

( ̃̇x(tk) − ẋ(𝜃k))
2,

3.2 � Implementation based on numerical data

Here, we use Eq. (26) to investigate the performance of 
the proposed identification method. The response data is 
collected by the numerical simulation of Eq. (26), and the 
group G2 parameters in Table 1 are taken as the reference 
values. Given the initial value x(0) = 0, ẋ(0) = 1 , we use 
the Runge–Kutta method to obtain the numerical simula-
tion responses of Eq. (26). A total of 1 × 104 data points are 
recorded at a 1 kHz sample rate.

For systems with periodic response, the method of mul-
tiple scales is a common method to construct the theoretical 
models [17]. In order to show the performance and advan-
tage of the presented dynamic frequency-based identification 
approach, we conduct the comparison between the identifi-
cation result by the presented method and that by the method 
of multiple scales.

Firstly, we assume that �3, �0,1, �2,1 are unknown values. 
Then, based on the sampling data at equal time intervals 
from the numerical simulation results, we obtain the param-
eter identification results. The comparison between the iden-
tified results under the first-order estimation and reference 
values is shown in Table 2. Table 3 shows the comparison 
between the identified results under the second-order esti-
mation and reference values. It verifies the efficiency of 
the presented parameter identification method. Moreover, 
the accuracy of the second-order estimation is still higher 
enough even for the strongly nonlinear systems.

Next, we discuss the applicability of this method under 
noisy data. In this case, a uniformly distributed noise with 
a specified noise-to-signal ratio is added to the simulated 
response signal. It is assumed that the noise signal is Gauss-
ian white noise, and its amplitude is proportional to the real 
signal. Denote x(t) as the actual signal, x̂(t) as the noise-
containing signal, and g(t) as the unit intensity Gaussian 
white-noise signal with an average value of zero. It gives

where e reflects the intensity of noise.
In Fig. 3, we obtain the numerical simulation response 

x̂(t) and ̂̇x(t) with the noise intensity of e = 0.05 . The identi-
fied results of �3 under different noise intensity are shown 
in Table 4. It shows that the new method is still valid under 
the noisy environment.

4 � Experiments

Recently, harvesting vibration energy from the environment 
via piezoelectric materials has been a promising technol-
ogy to power macro and micro sensors [18, 20]. Since the 
ambient vibrations tend to be low-frequency and often have 

(33)x̂(t) = x(t) + e ⋅ x(t) ⋅ g(t),

2

1

0

-1

-2

-1.5 -1.0 -0.5 0 0.5 1.0 1.5
x.

Fig. 2   Limit cycle of nonlinear system: the black solid line denotes 
the limit cycle of the actual response; the blue dotted line denotes the 
limit cycle predicted by the first-order dynamic frequency
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a relatively wide spectrum, the intentional introduction of 
nonlinearity into energy harvesters has attracted much atten-
tions because of the potential to combine large responses 
with a wider response in bandwidth as compared to linear 
oscillators [21, 22].

However, the nonlinear systems exhibit multi-scale behav-
ior in both space and time [23], and the value of some param-
eters is very important for the design of energy harvester [24]. 
It must also be assumed that there is uncertainty in the equa-
tions of motion, in the specification of parameters, and in the 

measurements of the system. Accordingly, the viscous damp-
ing, linear and nonlinear stiffness coefficients obtained by the 
theoretical modeling may be not accurate enough to character-
ize the real sense behaviors of oscillators [25]. Therefore, it is 
vital to correctly identify those implicit components.

In this section, we focus on determining the control equa-
tion of an energy harvester architecture with nonlinearity 
caused by cantilever-surface contact.

4.1 � Experimental device introduction

The apparatus described here is used to investigate the appli-
cation of this parameter identification method. The experi-
mental device is shown in Fig. 4. Taking into account the 
elimination of gravity, the cantilever beam is fixed horizon-
tally. The beam’s excitation force is measured by an accel-
eration transducer attached to the base, and the vibration 
response is acquired by Laser displacement sensor. The 
nonlinear oscillator composed of a cantilever beam with a 
proof mass and two symmetric surfaces with given geometry 
is shown in Fig. 5a. The piezoelectric transducer in this har-
vester is composed of a piezoelectric macro-fibre composite 

Table 2   Identification results of 
unknown parameters under the 
first-order estimation

�3 �0,1 �2,1

Value Error (%) Value Error (%) Value Error (%)

Reference − 1 – 2 – − 3 –
Presented method − 0.989 1.10 1.982 0.90 − 2.989 0.36
Multiple scales method − 0.975 2.50 1.970 1.50 − 2.975 0.83

Table 3   Identification results of 
unknown parameters under the 
second-order estimation

�3 �0,1 �2,1

Value Error (%) Value Error (%) Value Error (%)

Reference − 1 – 2 – − 3 –
Presented method − 0.997 0.30 1.995 0.25 − 2.994 0.20
Multiple scales method − 0.986 1.40 1.981 0.95 − 2.988 0.36

Fig. 3   System response signal of a displacement and b velocity with noise intensity of e = 0.05

Table 4   Identification results of the parameter �3 under different 
noise intensity

Noise intensity �3 under first-order 
estimation

�3 under second-order 
estimation

Values Error (%) Values Error (%)

e = 0.1 − 0.987 1.3 − 0.997 0.3
e = 0.2 − 0.985 1.5 − 0.996 0.4
e = 0.3 − 0.982 1.8 − 0.994 0.6
e = 0.4 − 0.981 1.9 − 0.995 0.5
e = 0.5 − 0.978 2.2 − 0.992 0.8
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(MFC) and a non-piezoelectric (beryllium bronze) layer, 
which makes it work as a cantilever beam.

The contact surface shape, modified from the Timoshen-
ko’s design, can be expressed as the following form

where ys is the coordinate values of contact surface in the 
y axial direction, Ls is the length of contact surface in the x 
axial direction, dg is the gap distance between undeflected 
cantilever and the contact surface at x = Ls.

The piezoelectric cantilever wraps along the contact 
surfaces are machined from a 2 mm thick aluminum alloy 

(34)ys = dg

(

x

Ls

)5

,

plate. Figure 5b shows the cross-sectional view, and Lc is the 
length of the cantilever beam. The material and geometrical 
parameters of the harvester are listed in Table 5.

4.2 � Identification from dynamic frequency solution

The experimental setup imposes a base excitation yb to the 
harvester, with coordinate y as the displacement. Based on 
Euler–Bernoulli beam theory and series of discretization meth-
ods, the motion equation of the harvester can be written as

where y(t) represents the motion of the tip mass, yb(t) is the 
motion of the base, m is the terminal equivalent mass, c is the 
damping coefficient of the cantilever-surface contact vibra-
tion, Y is the base excitation amplitude, � is the frequency of 
applied vibration, and FR is the restoring force of the mass, 
which can be written as a Z2 symmetric polynomial form. 
Nonlinear terms in different models take various forms. 
According to Ref. [26], the relationship between FR and y(t) 
of this structure can be obtained by the following equations

(35)
mÿ(t) + cẏ(t) + FR = −mÿb,

yb(t) = Y sin(𝛺t),

(36)y(t) =
FRL

3
F

3EI
+

dS

dx

|

|

|

x=xd
⋅ LF + ys(xd),

Fig. 4   Photograph of the experimental device

Fig. 5   a Schematic drawing of the energy harvester and b schematic cross-sectional view of the cantilever beam

Table 5   Material parameters and geometry of the energy harvester

Parameter Value

Beryllium bronze substrate dimension 
(mm × mm × mm)

156 × 15 × 0.4

MFC (M8507 P2) dimension (mm × mm × mm) 100 × 10 × 0.3
Young’s modulus of beryllium bronze (GPa) 128
Young’s modulus of MFC (GPa) 30.336
Tip magnet dimension (mm) 15 × 6×6
Proof mass (g) 8.2
Gravitational constant (m/s2) 9.81
Gap distance (mm) 18
Contact length (mm) 120
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where xd is demarcation point due to the deflection of con-
tact surface and LF = Lc − xd.

However, by analyzing the response of the system, we 
realize that it is not purely symmetrical, especially in the 
case of large-amplitude vibrations, so that the theoretical 
model based on the symmetry hypothesis is inaccurate to 
characterize the movement. Therefore, to correctly identify 
those terms becomes very necessary.

Considering the relative ground coordinate y(t) and its 
derivatives, ẏ(t) and ÿ(t) , and the base acceleration ÿb(t) as 
the input of the system, the goal of this section is to recon-
struct Eq. (35) in the form of a non-Z2 symmetric model as 
in Eq. (38) with consideration of the errors in installation 
and machining. Concerning the establishment of this model, 
it is crucial to use the prior expert knowledge of the system 
to select the proper linear and nonlinear basis, and it is com-
mon practice to use polynomials

where �0, �2, �3, … �n, �0,1 are the unknown parameters.
Considering the characteristics of high accuracy and 

relatively low computational complexity, we use the second 
order dynamic frequency method to obtain the expression 
of limit cycles. That is

Then we collect the displacement and velocity response 
sequences at the primary resonance as (ŷ(tk), ̂̇y(tk)) . It is 

(37)FR =
20EIdgx

3
d

L5
s
LF

,

(38)ÿ + 𝛽0,1ẏ + 𝜔2
0
y + (𝛼2y

2 + 𝛼3y
3 +… 𝛼ny

n) = −ÿb,

(39)
{

y = a0 cos 𝜃 + b,

ẏ = −a0(𝜔1,0 + 𝜔1,1(𝜃) + 𝜔1,2(𝜃)) sin 𝜃.

observed that the primary resonance frequency is 9.7 Hz 
when the excitation acceleration is 0.1 g. The collected dis-
placement signal ŷ(tk) is shown in Fig. 6a. In order to obtain 
the estimated velocity signal ̂̇y(tk) in Fig. 6b, cubic smooth-
ing splines are implemented to avoid noise magnification. It 
can be seen that the system has a typical steady-state peri-
odic response. After repeated trials and adjustments, the 
nonlinear order in Eq. (38) is set to n = 5.

After electing the suitable model, we will search for 
the coefficients to decide the terms that remain in the 
model. Based on the displacement signal ŷ(tk) , we obtain 
a0 = 0.0085 , b = 0.0011 and the sequence of �k in Eq. (39). 
Then we use the sequence of �k and ̂̇y(tk) to identify the 
unknown parameters �0, �2, �3, �4, �5, �0,1 in a least-
squares sense

Table 6 gives the estimate results of those unknown 
parameters from Eq. (38); Figs. 7 and 8 give the com-
parison between experimental and numerical simula-
tion results at different frequency. It can be seen that the 
numerical simulation results are in good agreement with 
the experimental results. Moreover, in order to verify the 
validity of the identified parameters, as shown in Fig. 9, 
the stiffness restoring force of the nonlinear oscillator is 
measured by a digital dynamometer. Then the restoring 
force acquired by theoretical and identified model, as well 
as the experimental values are presented in Fig. 10. It 
shows that the identified model provides excellent coher-
ence with the measured data as compared with the initial 
theoretical model.

(40)R =

N
∑

k=1

( ̂̇y(tk) − ẏ(𝜃k))
2.

Fig. 6   Response signal of a displacement and b velocity in the system
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5 � Conclusions

In this paper, we propose a dynamic frequency-based param-
eter identification approach for the nonlinear system. Based 
on the characteristics of high accuracy and a simple calcu-
lation process of dynamic frequency method, the unknown 
parameters can be identified by fitting the expression to the 
collected data, which are the value sets of phase coordinate 
measured in periodic response of the nonlinear oscillator.

The paper then investigates the reliability of the present 
parameter identification method by using a Duffing-van der 
Pol oscillator. Parameters are chosen to cause a periodic 
response that is used for parameter identification. Mean-
while, we study the accuracy of identification under the 
influence of noise. The results also show that the proposed 

Table 6   Results of identification 
based on the second-order 
estimation

�
�

�
�

�
�

�
�

�
�

�
�,�

Estimation 54.9 − 1.39 × 105 1.833 × 107 − 1.44 × 106 1.33 × 107 1.9

Fig. 7   Comparison of a displacement and b phase diagram between experimental results and numerical simulation at excitation frequency of 
9.7 Hz

Fig. 8   Comparison of a displacement and b phase diagram between experimental results and numerical simulation at excitation frequency of 
8.6 Hz

Fig. 9   Photograph for measuring the stiffness restoring force of non-
linear oscillator
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method presented in this paper can accurately identify the 
unknown parameters in noisy environments.

Finally, we investigate the application of this approach to 
a nonlinear beam energy harvester. The unknown parameters 
in control equation are determined by using the proposed 
method, and the identification accuracies are demonstrated 
by comparing restoring force from both simulations and 
experimental data.

In summary, the present method is shown to be an effec-
tive approach for parameter identification of nonlinear 
oscillator. The limitation for the presented work arises for 
nonlinear systems with non-periodic responses. A possible 
future extension of the presented work would be to fit qua-
siperiodic nonlinear systems. That will be the topic for the 
further researches.
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Fig. 10   Comparison of the stiffness restoring force of nonlinear oscil-
lator
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