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Abstract 
The phenomenological flow theory of higher-order strain gradient plasticity proposed by Fleck and Hutchinson (J. Mech. 
Phys. Solids, 2001) and then improved by Fleck and Willis (J. Mech. Phys. Solids, 2009) is used to investigate the surface-
passivation problem and micro-scale plasticity. An extremum principle is stated for the theory involving one material length 
scale. To solve the initial boundary value problem, a numerical scheme based on the framework of variational constitutive 
updates is developed for the strain gradient plasticity theory. The main idea is that, in each incremental time step, the value 
of the effective plastic strain is obtained through the variation of a functional in regard to effective plastic strain, provided 
the displacement or deformation gradient. Numerical results for elasto-plastic foils under tension and bending, thin wires 
under torsion, are given by using the minimum principle and the numerical scheme. Implications for the role of dissipative 
gradient effect are explored for three non-proportional loading conditions: (1) stretch-passivation problem, (2) bending-
passivation problem, and (3) torsion-passivation problem. The results indicate that, within the Fleck–Hutchinson–Willis 
theory, the dissipative length scale controls the strengthening size effect, i.e. the increase of initial yielding strength, while 
the surface passivation gives rise to an increase of strain hardening rate.

Keywords Strain gradient plasticity · Dissipative length scale · Passivation · Size effect · Non-proportional loading

1 Introduction

A number of experiments at small scales have revealed that 
metallic materials display significant size effects related to 
plastic deformation involving plastic strain gradients [1–10]. 
It is well known that conventional (local) plasticity theo-
ries cannot capture the experimentally observed change in 
the mechanical behavior with diminishing size. One way 
to predict size effects in polycrystalline metals is to intro-
duce gradient effects in the governing equations. To date, 
various strain gradient theories of isotropic plasticity have 
been developed, mainly based on the relationship between 
geometrically necessary dislocations (GNDs) and the gradi-
ent of plastic strain [11, 12], see for example, Aifantis [13], 
Fleck and Hutchinson [14, 15], Fleck and Willis [16, 17], 

Gudmundson [18], Gudmundson and Dahlberg [19], Gurtin 
and Anand [20, 21], Gurtin [22], Nix and Gao [23], Gao 
et al. [24], Kuroda and Tvergaard [25], Chen and Wang [26], 
etc. In most of these theories, one or more material length 
scales are introduced through the definition of the gradient-
enhanced effective plastic strain, which combines the con-
tributions from the effective plastic strain and the effective 
plastic strain gradient. A general review of strain gradient 
plasticity (SGP) in both theoretical and experimental aspects 
has been recently given by Voyiadjis and Song [27].

It is now well accepted that the strain gradient plasticity 
theory should be higher-order [15, 28], not only by incor-
porating strain gradient into the frameworks but also in pos-
sessing higher-order stresses which are work-conjugate to 
the plastic strain gradients. The higher-order theories open 
up one way to model the extra boundary conditions beyond 
the scope of conventional plasticity theory. In each theory 
some measure of the plastic strain (rate) and its spatial gra-
dient enter a statement of the principle of virtual power, see 
the works of Gudmundson [18], Gurtin et al. [29], and Voyi-
adjis and Song [27] in detail. An attractive formulation of 
higher-order strain gradient plasticity is the one proposed by 
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Fleck and Hutchinson [14]. The Fleck–Hutchinson theory 
[14] is a phenomenological extension of the classic J2 flow 
theory, which shares several common features with an ear-
lier model developed by Muhlhaus and Aifantis [30]. How-
ever, Gudmundson [18] and Gurtin and Anand [31] found 
that, under non-proportional straining, the Fleck–Hutchin-
son theory violates the thermodynamic requirement that 
plastic dissipation must be non-negative. The theory has 
then been improved by Fleck and Willis [17] and Hutch-
inson [15] for satisfying the thermodynamic restriction. 
To ensure a positive plastic dissipation, the requirement 
of energetic (or recoverable) and dissipative (or unrecover-
able) gradient contributions is needed for the vast majority 
of the modern SGP formulations. However, as indicated by 
Fleck and Willis [32], the degree to which size effects are 
mainly energetic or dissipative remains an open issue. On 
the one hand, GNDs may be considered to translate into 
an increase in free energy of the solid [33]. On the other 
hand, experiments suggest that the core energy of dislo-
cations stored during plastic deformation is much smaller 
than the plastic work dissipated in dislocation motion, such 
that GNDs movement in the lattice may contribute more to 
plastic dissipation [17]. The different qualitative responses 
with decreasing size have been observed in experiments at 
micron-meter scale. For example, the torsion experiments 
on thin metallic wires by Fleck et al. [1] and Liu et al. [2] 
reveal a significant increase in the yield strength; while 
additional hardening is seen in other measurements [7, 34]. 
Moreover, some experiments, e.g. the micro-bending tests 
[8] and micro-torsion tests [3], even show a combination 
of strengthening and hardening. The role of higher-order 
energetic and dissipative stresses has been numerically 
investigated in several works [35–42]. It is shown that the 
higher-order energetic stresses lead to higher strain hard-
ening while the dissipative counterparts increase the yield 
strength. Also, the role of higher-order boundary condi-
tions has been highlighted by Evans and Hutchinson [28], 
Panteghini and Bardella [43], and Niordson and Hutchinson 
[44]. However, the role of dissipative gradient effect on the 
boundary passivation problem remains to be investigated 
in detail.

Recent theoretical and experimental works demonstrate 
that the appearance of the passivated layer significantly 
elevates the yield strength and (or) the strain hardening of 
thin foils and wires [28, 32, 34, 39, 40, 45–48]. However, 
the strengthening of small-scale structures due to surface 
passivation cannot be captured by the standard continuum 
plasticity theory or the lower-order SGP theory since the 
boundary conditions imposed by the classical or lower-order 
SGP theory make no difference between conditions at the 
unpassivated surface and at the passivated surface [28, 46]. 
Additional boundary conditions are requisite for plastic strains 
or higher-order stresses, which make it possible to enhance 

the description of the solid near interfaces or surface bound-
ary [49].

In this paper, the role of dissipative gradient contribution 
is assessed within the higher-order strain gradient plasticity 
theory developed by Fleck and Hutchinson [14] and Fleck 
and Willis [17]. The basic problems including tension of 
thin foils, bending of thin foils, and torsion of thin wires 
are analyzed under micro-free (unpassivated) and micro-
hard (passivated) boundary conditions. The effect of surface 
passivation on the mechanical responses of thin wires and 
foils under different loading conditions is highlighted. The 
current work is structured as follows. The theory basis is 
briefly introduced in Sect. 2. The constitutive model and the 
associated minimum principle for the elasto-plastic solid are 
stated. In Sect. 3, the numerical method based on the frame-
work of variational constitutive updates is introduced to 
solve the initial boundary value problem for Fleck–Hutch-
inson–Willis theory. The theoretical analyses of foil ten-
sion, foil bending, and wire torsion problems are carried 
out in Sect. 4. Numerical results and discussion are given 
in Sect. 5. Finally, some conclusions are provided in Sect. 6.

2  Theory basis

2.1  Principle of virtual work and balance equations

We introduce the Fleck–Hutchinson–Willis higher-order 
SGP theory [14, 17] briefly. The theory is a natural extension 
of J2 flow theory for the classical elastic–plastic solid. Small 
strain, rate-independent plasticity is assumed throughout the 
paper. With u̇i as the rate of displacement vector, 
�̇�ij =

1

2

(
u̇i,j + u̇j,i

)
 is the strain rate, and �̇�ij = �̇�EL

ij
+ �̇�PL

ij
 , 

where �̇�EL
ij

 is elastic strain rate and �̇�PL
ij

 plastic strain rate; 

�̇�P =

√
2�̇�PL

ij
�̇�PL
ij

/
3 is the rate of effective plastic strain, and 

𝜀P = ∫ �̇�Pdt ; �ij is the symmetric Cauchy stress, sij is its 

deviator, and the effective stress �e =
√

3sijsij
/
2 . In a 

domain with non-vanished �P , the principle of virtual power 
for the body with volume V  and surface S reads

where q is a scalar microstress power-conjugate to �̇�P , �i is a 
vector microstress power-conjugate to �̇�P,i . Both the conven-
tional traction Ti and the high-order traction t contribute to 
the external virtual power when applied on the boundary S.

A main hypothesis of the Fleck–Hutchinson–Willis the-
ory is the conventional co-directionality constraint. That is, 
the direction of the plastic strain rate �̇�PL

ij
 coincides with the 

direction of the deviatoric Cauchy stress sij , i.e.

(1)∫V

(
𝜎ij�̇�

EL

ij
+ q�̇�P + 𝜏i�̇�P,i

)
dV = ∫S

(
Tiu̇i + t�̇�P

)
dS,
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Here, mij denotes the direction of the plastic strain 
increment. The local balance equations and traction con-
ditions follow directly from the principle of virtual power

and ni is the unit normal on the boundary. By the second law 
of thermodynamics under isothermal conditions, Fleck and 
Hutchinson [14] achieve the requirement of positive plastic 
work at each point within V ,

It should be mentioned that, as noted by Gudmundson 
[18] and Gurtin and Anand [31], the requirement Eq. (5) 
may be violated for certain non-proportional strain his-
tories. However, as discussed by Hutchinson [15], such 
a requirement can be always met for the plastic loading 
condition which we focus on here.

2.2  Generalized effective plastic strain rates

Two versions of generalized effective plastic strain rates 
are considered. One is introduced by Aifantis [13, 50], 
which is expressed as

It contains one dissipative material length scale, � , 
which is required for dimensional consistency. The other 
is the three-parameter version introduced by Fleck and 
Hutchinson [14], which is defined as

Here, �I(I = 1, 2, 3) are three dissipative material length 
scales, 𝜌ijk = �̇�PL

ij,k
 is the plastic strain gradient tensor, and 

�ijk = �jik , �iik = 0 . According to Smyshlyaev and Fleck 
[51], �ijk can be decomposed into three orthogonal tensors 
�
(I)

ijk
 , i.e.

The explicit expressions of �(I)
ijk

 for I = 1, 2 or 3 in terms 
of �ijk have been provided by Fleck and Hutchinson [14]. 
Considering Eq. (2), we have the relation

(2)�̇�PL
ij

= �̇�Pmij where mij ≡ 3

2

sij

𝜎e
.

(3)�ij,j = 0, q − �i,i = �e in V ,

(4)�ijnj = Ti, �ini = t on S,

(5)q�̇�P + 𝜏i�̇�P,i ≥ 0.

(6)ĖP =

√
�̇�2
P
+ �2�̇�P,i�̇�P,i.

(7)ĖP =

√√√√
�̇�2
P
+

3∑
I=1

(
�I

)2
𝜌
(I)

ijk
𝜌
(I)

ijk
.

(8)�ijk =

3∑
I=1

�
(I)

ijk
, and �

(I)

ijk
�
(J)

ijk
= 0 if I ≠ J,

By performing the orthogonal decomposition (8) of �ijk and 
considering Eq. (9), one can recast the generalized effective 
plastic strain rate as

The coefficients Aij , Bi , and C are dependent on three mate-
rial length scales �I and on mij . Explicit expressions for these 
coefficients can be found in Ref. [14]. As indicated by Fleck and 
Hutchinson [14], the one-length scale version (6) is not a spe-
cial case of Eq. (7), but formally included in Eq. (10) by assum-
ing Aij = �

2
∗
�ij , Bi = 0 and C = 0 . For convenience, Fleck and 

Willis [17] simplify the above notations by introducing the 
four-dimensional strain rate vectors ė =

[
�̇�P, �̇�P,1, �̇�P,2, �̇�P,3

]
 . 

Then, Eqs. (6) and (10) can be rewritten in the form

where the coefficients in the symmetric, positive definite 
4 × 4 matrix 

[
ĀIJ

]
 are related straightforwardly to 

(
AIJ ,BI ,C

)
 

through Ā00 = 1 + C , Ā0I = ĀI0 =
1

2
BI for I ∈ {1, 2, 3} , and 

ĀIJ = AJI for I, J ∈ {1, 2, 3} . By choosing reasonable param-
eters �I , Eq. (10) can be reduced to the form containing one 
length scale, whereas it is different from Eq. (6) in some cases, 
see discussion in Appendix in detail. It should be noted that 
we don’t intend to discuss the physical interpretation or the 
magnitude of the length scale introduced in the strain gradient 
plasticity. Several attempts in this direction can be found in 
works [28, 52, 53]. Here, we are simply trying to clarify the 
role of dissipative length scale, especially for the passivated 
cases. Following other works [14, 15, 17–19, 24, 36–41], we 
employ the dimensionless ratio between the material length 
scale and the geometrical dimension (e.g. the foil thickness, 
the wire radius, etc.), instead of giving a specific value of the 
length scale, to analyze the problems in what follows.

2.3  Constitutive equations and minimum principle

We restrict our attention to the dissipative model and empha-
size that neither �PL

ij
 nor �PL

ij,k
 contributes to a free energy. An 

isotropic elasto-plastic constitutive model is assumed that 
accounts for internal energy storage due to elastic straining, 
and for dissipation due to plastic straining and its spatial gradi-
ent. The elastic behavior is characterized by

where U
(
�EL
ij

)
 is the internal energy density of the solid, and 

Lijkl is an isotropic elastic stiffness tensor.

(9)�̇�PL
ij,k

= 𝜌ijk = mij�̇�P,k + mij,k�̇�P.

(10)ĖP =
(
�̇�2
P
+ Aij�̇�P,i�̇�P,i + Bi�̇�P,i�̇�P + C�̇�2

P

)1∕ 2
.

(11)ĖP =
(
ĀIJ ėI ėJ

)1∕ 2
, (I, J) sum over 0, 1, 2, 3,

(12)�ij =
�U

(
�EL
ij

)

��EL
ij

= Lijkl�
EL

kl
= Lijkl

(
�kl − �PL

kl

)
,
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It is assumed that the plastic dissipation depends upon ĖP 
within V  . The notation can be further simplified by intro-
ducing a four-dimensional stress vector r =

[
q, �1, �2, �3

]
 , 

where �i is the higher-order stress, and q is the microstress 
work-conjugate to the effective plastic strain �P [17, 54]. 
Fleck and Willis [17] refined the generalized effective 
stress for satisfying the thermodynamics requirement. In 
the original Fleck–Hutchinson model [14], the generalized 
effective stress is exactly work-conjugate to �P , while in the 
Fleck–Willis model [17], it comprises both the work-conju-
gate to �P and the work-conjugate to �P,i . Correspondingly, 
the generalized effective stress is given by

where D ≡ Ā
−1 . For the incremental plasticity, we have

In order to guarantee a positive dissipation, an associative 
plastic flow is assumed, whereby the strain-rate vector ėI is 
taken to be normal to a convex yield surface defined in the 
space of stress vectors. So,

Here, �y
(
EP

)
 is the uniaxial flow strength of the solid, 

evaluated at EP = ∫ ĖPdt . The strength is therefore enhanced 
by the presence of plastic strain gradients. Note that 
Ṡ = ṙIrI∕S is the projection of the generalized stress rate on 
the yield surface. During plastic loading, Ṡ > 0 and the con-
tinued yield implies the consistency relation Ṡ = h

(
EP

)
ĖP 

with h
(
EP

)
 being the hardening modulus of the material. 

Therefore, the dissipation rate is rI ėI = 𝜎y
(
EP

)
ĖP ≥ 0 , as 

required by thermodynamics. The solid with h
(
EP

) ≤ 0 
needs a special treatment which is not considered here.

2.3.1  Minimum principle

The minimum principle for the incremental boundary value 
problem for the theory is similar in structure to that for clas-
sical J2 flow theory except that it involves the contributions 
from the gradients of plastic strain rate. Following Fleck and 
Hutchinson [14], we obtain the minimum principle which 
requires that the functional I to be minimized with respect 
to u̇i and �̇�P , i.e.

(13)S =
(
DIJrIrJ

)1∕ 2
,

(14)rI =
S

ĖP

ĀIJ ėJ .

(15)f
(
rI ;EP

)
= S − �y

(
EP

)
= 0.

(16)

I
(
u̇i, �̇�P

)
=

1

2 ∫
V

[(
�̇�ij − mij�̇�P

)
Lijkl

(
�̇�kl − mkl�̇�P

)
+ h

(
EP

)
Ė2

P

]
dV

− ∫
ST

(
Ṫ0

i
u̇i + ṫ0�̇�P

)
dS.

Here, the first term in V  represents the elastic part of the 
work, and the second term represents the plastic expenditure of 
work, due to a gradient enhanced measure of effective plastic 
strain EP . Ṫ0

i
 and ṫ0 are given traction rates on ST.

2.4  Kinematic boundary conditions

The classical kinematic boundary conditions are

Specifically, we consider essential higher-order kinematic 
boundary conditions, called microscopically hard boundary 
conditions by Gurtin and Anand [21], asserting that

The microscopically hard condition Eq. (18) corresponds 
to a boundary surface which cannot pass dislocations. So, Eq. 
(18) can be used to model the passivation problem in which, 
for example, the surface of the solid is passivated by a hard 
layer that deforms elastically, but not plastically.

3  Numerical method

The minimization of functional I can be implemented on basis 
of framework of variational constitutive updates [55]. The dis-
placement rate u̇i is assumed to be tentatively provided, which 
suggests that the strain rate �̇�ij is determined. By Eq. (16), one 
can see that the effective plastic strain rate is the only primary 
kinematic variable to be determined. Correspondingly, during 
the finite element implementation, it is not necessary to solve 
any classical displacement equilibrium equations.

A one-dimensional, linear (two-noded) element with fully 
integration (two Gauss points) is used here. The effective plas-
tic strain increment at point x is written in terms of the shape 
functions Na and the associated nodal unknowns Δ�a , i.e.

The Backward-Euler time integration scheme is adopted. 
The effective plastic strain at the end of each time step is cal-
culated as

Given the foregoing spatial and time discretization, Eq. 
(16) can be written in the finite element formulation,

(17)u̇i = u̇0
i
on Su.

(18)�̇�P = 0 on Shard
u

.

(19)Δ� =

2∑
a=1

NaΔ�a.

(20)�t+Δt = �t + Δ�.

(21)
I(Δ�) =

1

2 ∫V

E
(
Δ� − NaΔ�a

)(
Δ� − NbΔ�b

)
dV

+
1

2 ∫V

h
(
Et
P

)(
ΔEP

)2
dV ,
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where Δ� is the increment of applied effective strain, E is 
the Young’s modulus, and

is the generalized effective plastic strain increment. Here, 
Na,i denotes the derivative of the shape function with respect 
to the local coordinate, and the coefficients �1 and �2 are 
given in Appendix. Similar to Eq. (20), we have

In order to achieve the minimization, we need to deter-
mine the nodal residuals R , defined as the differentiation 
of Eq. (21) with respect to the incremental nodal variables,

One can obtain the increment of the effective plastic 
strain Δ� by setting R = � and solving a system of linear 
equations

where the consistent stiffness matrix K is obtained by dif-
ferentiating R with respect to the incremental nodal vari-
ables, and

If the strain increment is tentatively prescribed, the effec-
tive plastic increment can be consistently obtained by Eq. 
(25). Here, we adopt Et

P
 instead of Et+Δt

P
 at step t to achieve 

a relatively simple formulation. It has been proved that this 
choice makes no difference for the convergence of the results 
[55]. Furthermore, we set a critical value of EP as a trunca-
tion, e.g. tr = 10−10 , in order to launch the simulation at 
the first step. The convergence of the computation has been 
carefully checked by increasing the number of nodes until 
the results are not affected by further mesh refinement.

4  Numerical examples

Three benchmark problems, foil tension, foil bending and 
wire torsion, are studied. Attention is specifically paid to 
the microscopically hard condition for elucidating the role 
of surface passivation. We work in the rate-independent 
plasticity and the monotonic loading condition. Plane-
strain conditions and material incompressibility ( � = 0.5 ) 

(22)ΔEP =
(
�1NaΔ�aNbΔ�b + �2Na,iΔ�aNb,iΔ�b

)1∕ 2

(23)Et+Δt
P

= Et
P
+ ΔEP.

(24)

Ra = −∫V

EΔ�NadV + ∫V

[(
E + h�1

)
NaNbΔ�b + �2Na,iNb,iΔ�b

]
dV .

(25)KabΔ�b = Fa,

(26)Kab = ∫V

[(
E + h�1

)
NaNb + �2Na,iNb,i

]
dV ,

(27)Fa = ∫V

EΔ�NadV .

are assumed. The hardening function in Eq. (16) can be 
described by the Ramberg–Osgood relation

where �0 = E�0 is a flow stress, and n = 1∕N is a hardening 
exponent. For this choice, Eq. (28) can be reformulated as 
�y
(
EP

)
= �0

(
EP

/
�0
)N , and the hardening modulus reads

Upon loading, plasticity generally evolves from the 
outset throughout the specimen, so that no elastic–plastic 
boundary exists.

4.1  Foil tension

A foil of thickness H  with one or two passivated layers 
(shaded area) is stretched along the x1-axis to a prescribed 
strain �11 , as shown in Fig. 1. The strain is imposed at the 
ends of the foil. The components of the plastic strain rate 
are functions of x2 . The non-vanishing strain components 
can be expressed as

A monotonically increasing uniaxial strain �̇�11 is 
applied. By Eq. (10), the generalized effective plastic 
strain rate has the form of

where (⋅)� ≡ d(⋅)∕dx2 . The tensile stress at the cross-section 
of the foil is

(28)�
/
�0 = �

/
�0 +

(
�
/
�0
)n
,

(29)h
(
EP

)
= NE

(
EP

/
�0
)N−1

.

(30)�̇�PL
11

= −�̇�PL
22

=
√
3

2
�̇�P
�
x2
�
,

(31)�̇�11 = 2�̇�33 =
2√
3
�̇�e.

(32)ĖP =

√
�̇�2
P
+
(
��̇��P

)2
,

Fig. 1  Schematic of the thin foil under plane-strain tension. a One 
passivated surface, and b two passivated surfaces
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In this case, the functional Eq. (16) is reduced to be

Plastic strain gradients come into play in this problem only 
if the top and/or bottom boundaries are assumed to constrain 
the plastic flow. The simulation of this situation must require 
the plastic strain rate to vanish at such a boundary, i.e. �̇�P = 0 
at x2 = 0 or H.

4.2  Foil bending

A foil of thickness 2H which is bent around the x3-axis to a 
curvature � is shown in Fig. 2. A Cartesian coordinate sys-
tem is embedded with the x1-axis along the neutral axis and 
the x2-axis perpendicular to the neutral axis in the plane of 
deformation. Following Stölken and Evans [7], we assume 
that curvature is imposed via displacement boundary condi-
tions at the ends of the foil. The traction-free boundary condi-
tions are adopted at the top and bottom surfaces of the foil, 
i.e. Ṫ0

i
= ṫ0 = 0 at x2 = ±H . We concentrate on the top half 

of the foil, i.e. on the domain 0 ≤ x2 ≤ H , for simplicity. The 
only non-zero components of the total and plastic strain-rate 
tensors can be written as

The stress components and the generalized effective plastic 
strain rate are identical to Eqs. (31) and (32), as discussed in 
Appendix. The functional Eq. (16) for this situation is written 
as

(33)�11 =
4

3
E
(
�11 − �PL

11

)
.

(34)I
�
�̇�P
�
=

1

2 ∫
H

0

⎡
⎢⎢⎣
E

�
2√
3

�̇�11 − �̇�P

�2

+ h
�
EP

�
Ė2

P

⎤
⎥⎥⎦
dx2.

(35)�̇�11 = −�̇�22 = �̇�x2,

(36)�̇�PL
11

= −�̇�PL
22

=
√
3

2
�̇�P
�
x2
�
.

(37)I
�
�̇�P
�
=

1

2 ∫
H

0

⎡⎢⎢⎣
E

�
2√
3

�̇�x2 − �̇�P

�2

+ h
�
EP

�
Ė2

P

⎤⎥⎥⎦
dx2.

The distribution of plastic strain rate �̇�P
(
x2
)
 can then be 

obtained by using the numerical scheme stated in Sect. 3. The 
bending moment is evaluated as the standard expression

4.3  Wire torsion

We now consider a cylindrical wire of radius R twisted mono-
tonically, as shown in Fig. 3. Here, � is the twist per unit 
length. In the cylindrical coordinates system, the only non-
zero components of the total and plastic strain-rate tensors 
are given by

The shear stress is

The functional Eq. (16) governing this problem for the dis-
tribution of the plastic strain rate is expressed as

with

(38)M = 2∫
H

0

�11x2dx2.

(39)�̇�𝜃z = −�̇�z𝜃 =
�̇�r

2
and �̇�PL

𝜃z
= �̇�PL

z𝜃
=

√
3

2
�̇�P(r).

(40)��z =
2

3
E
(
��z − �PL

�z

)
.

(41)I
�
�̇�P
�
=

1

2 ∫
R

0

⎡⎢⎢⎣
E

�
�̇�r√
3

− �̇�P

�2

+ h
�
EP

�
Ė2

P

⎤⎥⎥⎦
2πrdr,

(42)ĖP =

√(
1 + �2r−2

)
�̇�2
P
+
(
��̇��

P

)2
.

Fig. 2  Schematic of a thin foil under bending
Fig. 3  Schematic of wire under torsion and the corresponding coordi-
nate systems
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Here, (⋅)� ≡ d(⋅)∕dr . For a wire with unpassivated sur-
face, the natural boundary condition associated with the 
variational principle is �ini = 0 , which requires �̇��

P
= 0 at 

r = R . While for a wire with passivated surface, a more 
appropriate boundary condition would be �̇�P = 0 at r = R . 
The torque reads

5  Results and discussion

Passivated boundary conditions are considered as a full con-
straint on the plastic flow. As discussed in Sect. 2.4, within 
the higher-order SGP theory, this situation can be modeled 
as the plastic strain vanishes on the boundaries, i.e. �̇�P = 0 . 
This is an appropriate condition that models the fact that 
dislocations cannot penetrate the boundary surface. In the 
following, numerical results are obtained by choosing the 
parameter N = 0.1 [54, 56].

5.1  Tension of thin foil with passivation

In the tension experiment of Xiang and Vlassak [34], the 
surface of the Cu foils was passivated with a thin  Si3N4/
TaN layer. Therefore, when the foil is stretched, the dislo-
cations can not escape from the foil surface easily. That is, 
only elastic deformation occurs on the passivated layer. The 
measurements show that the flow stress of the passivated 
foils is much higher than that of unpassivated ones. We now 
simulate this phenomenon within Fleck-Hutchinson-Willis 
SGP theory.

The plastic strain distribution is determined uniquely from 
minimizing the Eq. (34) with a prescribed strain �11 = 5�0 . 
Figure 4 shows the distributions of the normalized plastic 
strain across the foil thickness for the one-surface passivated 
case and two-surface passivated case, respectively. It can 
be seen that the plastic strain near the passivation layer is 
greatly constrained, while the plastic strain far from the pas-
sivation layer remain uniform along the thickness. Interest-
ingly, the thickness of the boundary layer(s) at the bottom 
or top surface remains the same as �∕H decreases. Results 
predicted by the classical model, i.e. �∕H = 0 , are also plot-
ted in Fig. 4a, b for comparison. We found that the classical 
plasticity predicts a constant plastic strain throughout the 
thickness, where no gradients emerge. The distributions of 
the normalized plastic strain gradient along the foil thickness 
for one-surface passivation and two-surface passivation are 
displayed in Fig. 4c, d, respectively. In Fig. 4d, only a half 
thickness of the foil ( 0 ≤ x2 ≤ H∕2 ) is shown for symmetry 
reasons. The uniform distribution of the plastic strain near 

(43)Q = 2π∫
R

0

��zr
2dr.

the free surface is a consequence of the higher-order bound-
ary condition which demands a zero higher-order traction, 
and hence a vanishing plastic strain gradient appears, as seen 
in Fig. 4c. A large plastic strain gradient appears near the 
passivation interface ( x2 = 0 ) by employing a passivation 
condition, �̇�P = 0 at x2 = 0 . Interestingly, the width of the 
boundary layer is almost independent of the foil thickness. 
An obvious decrease in the plastic strain gradient is found 
for the ratio �∕H = 1 in the two-surface passivation case 
(see Fig. 4d). A vanishing plastic strain gradient for any val-
ues of �∕H at x2 = H∕2 can be seen due to the symmetric 
boundary conditions.

Plots of normalized stress versus normalized strain for 
different values of �∕H are shown in Fig. 5. For a prescribed 
strain, the average stress is evaluated as (1∕H) ∫ H

0
�11dx2 . 

The applied strain �11 is assumed to be increased monotoni-
cally from zero to 10�0 . From Fig. 5, one can see that both 
the flow stress and the strain-hardening rate increase as �∕H 
increases. Comparing Fig. 5a and b, one may find that a 
relatively smaller size effect is predicted for the one-surface 
passivated case than that for the two-surface passivated case. 
It is because that the passivated layer constraints the disloca-
tion motion more severely for the two-surface passivation 
than that for the one-surface passivation.

Results for the foils with one passivated surface and with 
two passivated surfaces under tension are given in Fig. 6. 
It is shown that, for the same ratio of �∕H , the normalized 
plastic strain for the one-surface passivated case is generally 
larger than that for the two-surface passivated case. The dif-
ference between the two cases diminishes as the ratio �∕H 
decreases. Again, it confirms that the two passivated sur-
faces constraint the plastic flow much more severely than 
the one passivated surface. For a given normalized strain, 
the normalized stress for the two-surface passivated case is 
greater than that of one-surface passivated case, as shown 
in Fig. 6b. This result is consistent with the formation of a 
boundary layer of high dislocation density near the interface.

The boundary value problem is characterized by impos-
ing microhard boundary conditions at the foil top and bot-
tom surfaces or micro-free conditions. Fleck et al. [45] 
found that, after switching the higher-order boundary con-
ditions, the non-incremental SGP theory (e.g. Gudmund-
son [18], and Gurtin [22]) predicts an unexpected delay 
in plastic flow, referred to as an “elastic gap” by Fleck 
et al. [57], while the incremental SGP theory (e.g. Fleck 
and Hutchinson [14], Hutchinson [15]) does not suffer this 
apparent drawback. It should be mentioned the difference 
between non-incremental and incremental theories lies in 
the fact that the constitutive law for the non-incremental 
theory has certain stress variables expressed in terms 
of strain increments, whereas the incremental theory 
expresses stress increments in terms of strain increments. 
Similar to Fleck et al. [45], we perform an analysis on 
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the stretch-passivation problem by switching the higher-
order boundary conditions, from micro-free to micro-hard, 
after an amount of plastic deformation. The simulation 
results are shown in Fig. 7. Figure 7a shows the normal-
ized stress–strain curve in which, at �11 = 5�0 , the increase 
in strain hardening rate due to passivation is evident. Also, 
the numerical evalution of the ratio Δ�PL

11

/
Δ�11 across the 

foil thickness immediately after switching the higher-order 
boundary conditions is illustrated in Fig. 7b. Prior to pas-
sivation, the stress and strain distributions are uniform. 
After passivation the distributions become non-uniform 
and the problem needs an incremental step-by-step solu-
tion procedure. The results in Fig. 7 confirm the findings 
of Fleck et al. [45, 57]. The “incremental” Fleck–Hutchin-
son–Willis theory predicts no elastic gap in plastic strain-
ing following passivation, while the passivation mainly 
gives rise to a rapid rise in strain hardening.

5.2  Bending of thin foil

In this section, we explore the dependence of bending 
response on the ratio of material length scale � to the half 
thickness of foil, H , with accounting for the effect of sur-
face passivation. The distributions of the normalized plastic 
strain across the foil thickness for different values of �∕H 
are shown in Fig. 8. Here, the surface strain is assumed to be 
�H = 40�0 . Generally, the plastic strain �PL

11
 increases with 

decreasing the value of �∕H . For the classical plasticity 
theory ( �∕H = 0 ), the plastic strain is found to be linear 
with the thickness. For the unpassivated cases, as shown in 
Fig. 8a, one may find that there is a prominent decrease in 
the slope of �PL

11

(
x2
)
 with x2 as �∕H increases. For a given 

value of �∕H , the plastic strain �PL
11

(
x2
)
 increases linearly 

with x2 at the beginning, and then tends to a plateau around 
the free surface. This is a consequence of the homogeneous 

Fig. 4  Distributions of the normalized plastic strain and its gradient across the thickness at �
11

= 5�
0
 for various values of �∕H . a, c One-passi-

vated surface; b, d two-passivated surfaces



848 F. Hua, D. Liu 

1 3

micro-free boundary conditions which require �PL
11,2

= 0 at 
x2 = H . This fact means that there must be an elastic bound-
ary layer develops near the top or bottom surface of foil. As 
�∕H approaches to zero, the strain gradient effect becomes 
less important, the distribution of the pastic strain across the 
thickness of the foil is similar to the conventional result, as 
shown in Fig. 8a. If the surfaces of foil are passivated, due to 
the restriction of the micro-hard boundary condition, there 
must be a sharp decline in the value of �PL

11

(
x2
)
 near the pas-

sivated surface, as shown in Fig. 8b. Accordingly, distinct 
boundary layers appear in the plastic-strain distributions.

Plots of bending moment versus curvature, normal-
ized by �0H2 and �0

/
H , respectively, for different values 

of �∕H  are shown in Fig. 9. The response predicted by 
the classical J2 flow theory (i.e. �∕H = 0 ) is also given. 
For both unpassivated (Fig. 9a) and passivated (Fig. 9b) 
cases, a significant size effect with increasing �∕H on the 

initial yielding and the flow stress is present. For example, 
the flow stress at deep plastic deformation �H

/
�0 = 40 is 

elevated by a factor about two for the unpassivated case, 
while a factor about four for the passivated case, as the 
ratio �∕H increases from zero to unity. This is in agree-
ment with the elevation of strength observed in Ni foils 
[7, 58] and Cu thin beams [59]. Comparing Fig. 9a and b, 
one can see that a lager bending moment is required for the 
passivated foil to reach the same curvature as the unpas-
sivated foil. Taking the ratio �∕H = 1 as an example, for a 
prescribed strain �H

/
�0 = 40 , the magnitude of bending 

moment for the passivated foil is nearly twice lager than 
the unpassivated one.

The numerical results for the bending problem after 
switching the higher-order boundary conditions at 
� = 10�0

/
H are displayed in Fig. 10. Here, an unpassivated 

foil in plane strain is first bent into the plastic range with no 

Fig. 5  Normalized stress versus normalized strain with various values 
of �∕H for thin foil under tension. a One-surface passivated case, and 
b two-surface passivated case

Fig. 6  Comparison between the 1P (one passivated surface) case 
and 2P (two passivated surfaces) case with various values of �∕H . a 
Distributions of normalized plastic strain across the foil thickness at 
�
11

= 5�
0
 ; b normalized stress versus normalized strain
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surface constraint followed by surface passivation and con-
tinued bending. An enhancement of the flow stress after pas-
sivation is clearly indicated, as shown in Fig. 10a. In general, 
the dislocations are forced to pile up around the passivated 
surface by imposing the micro-hard boundary conditions. 
The distribution of the incremental plastic strain along the 
thickness of the foil immediately after passivation is given 
in Fig. 10b. Here, the incremental plastic strain is described 
in terms of Δ𝜀PL

11
= Δt�̇�PL

11
 , with Δt being the time increment, 

and it is normalized by Δ𝜅H = Δt�̇�H . It is revealed that set-
ting the dissipative length scale � > 0 leads to an increase of 
the strain hardening after formation of the passivation layer. 
The plastic strain increment across the upper or lower half 
of the foil is nonlinear, in which the plastic strain increment 
approaches to zero near the foil surface.

As pointed out by Hutchinson [15] and Fleck et al. 
[45], the dissipative higher-order micro-forces in 

non-incremental theory always cause the significant elas-
tic gap or stress jump under the non-proportional loading 
conditions. For instance, based on Gurtin’s non-incremen-
tal theory [22], Martínez-Pañeda et al. [40] studied a thin 
foil that is bent into the plastic range, passivated, and then 
subject to further bending. It is found that, if the dissipa-
tive gradient effect is considered, plastic flow would be 
interrupted after passivation. In other words, there is a 
purely elastic incremental response after passivation. By 
contrast, as an incremental theory, the Fleck–Hutchin-
son–Willis theory here predicts that plastic flow is not 
interrupted by passivation, only constrained, giving rise 
to an increase in effective incremental stiffness, as shown 
in Fig. 10. From a physical standpoint, the elastic gap 
predicted by non-incremental theory seems unaccepta-
ble since infinitesimal changes in strains lead to finite 
changes in stress [15]. Therefore, the incremental theory 

Fig. 7  Effect of the application of a passivation layer at �
11

= 5�
0
 for 

�∕H = 0.5 . a Normalized stress versus normalized strain, and b nor-
malized plastic strain increment along the thickness immediately after 
passivation

Fig. 8  Distributions of normalized plastic strain accross thickness 
with various values of �∕H at � = 40�

0

/
H . a Unpassivated surface, 

and b passivated surface



850 F. Hua, D. Liu 

1 3

developed by Fleck, Hutchinson and Willis [14, 15, 17, 
45] is favored. However, critical experiments are needed 
for further clarify the physical relevance of the incremen-
tal and non-incremental theories.

5.3  Torsion of thin wire

The distributions of the normalized plastic shear strain with 
the radial coordinate predicted by Eq. (41) for torsion of 
thin wires with and without surface passivation are given 
in Fig. 11a, b, respectively. For the passivated wires, the 
normalized plastic shear strain decreases with increasing 
the ratio �∕R for a given normalized radius, as shown in 
Fig. 11a. For the classical plasticity (i.e. �∕R = 0 ), the 
normalized plastic shear strain increases linearly with the 
radial coordinate in the plastic zone. While for the cases 
with accounting for strain gradient effect, the plastic shear 
strain increases linearly with the radial coordinate initially, 
and then tends to a plateau around the surface (see the insert 

of Fig. 11a in detail). The slope of the plastic shear strain 
versus the radial coordinate vanishes around the free sur-
face of the wire. This behavior is similar to that observed 
in foil bending, as seen in Fig. 8. It also agrees with our 
assumption that the higher-order traction at the wire surface 
is zero. The presence of a elastic-strain layer around the free 
surface is confirmed, as discussed by Liu et al. [60]. For the 
passivated wires, the plastic shear strain increases linearly 
with the radial coordinate firstly, and then, around the wire 
surface, decreases sharply to be zero, as shown in Fig. 11b. 
The vanishment of the plastic shear strain around the passi-
vated surface is because the passivation layer of a negligible 
thickness prohibits dislocations strongly. It corresponds to 
the micro-hard boundary condition, Eq. (18). Comparing 
Fig. 11a, b, one may find that the effect of passivation on 
the distribution of plastic shear strain in torsion is significant 
since yielding initiates at the wire surface whereby plastic-
ity is rigorously restrained. While, there is no constraint on 
plastic shear strain for the unpassivated surface. Therefore, 

Fig. 9  Normalized moment versus curvature for various ratios �∕H . 
a Unpassivated surface, and b passivated surface

Fig. 10  Pure bending in plane strain with no passivation followed by 
continued bending with passivation at � = 10�

0

/
H for �∕H = 0.5 . a 

Normalized moment versus curvature, and b normalized plastic strain 
increment along the thickness of the foil after passivation
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the plastic shear strain for the passivated wires decreases 
more sharply than that for the unpassivated wires. It should 
be mentioned that, for a small value �∕R , much more finite 

elements are needed to ensure the convergence. Otherwise, 
the plastic strain would be discontinuous near the surface 
for the passivated cases. Actually, we use 400 elements 
for the bending and torsion problems, while 100 elements 
for the tension problem. The issue of convergence has also 
been examined for the wire torsion. Since the exact solu-
tion is unknown, we conduct simulations with increasing 
number of elements until a satisfactory result is achieved, 
i.e. when there is no obvious change. The numerical results 
from the simulations with 50, 100, 200 and 400 elements 
are employed to examine the convergence. In Fig. 11c, the 
distributions of the plastic shear strain for the un-passivated 
wire with �∕R = 0.5 are plotted. It is shown that the conver-
gence is evident, which also demonstrates the robustness of 
the numerical formulation.

The dependence of torsional response on the ratio of 
�∕R is investigated for both unpassivated and passivated 
wires. Plots of the normalized torque versus normalized 
twist for different values of �∕R are shown in Fig. 12. The 
case �∕R = 0 corresponds to the conventional plasticity 

Fig. 11  Distributions of the normalized plastic shear strain across 
the radius for various values of �∕R at � = 40�

0

/
R . a Unpassivated 

surface, b passivated surface, and c convergence of the plastic shear 
strain

Fig. 12  Normalized torque versus the normalized twist with various 
ratios �∕R for a unpassivated surface and b passivated surface
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theory without strain gradient effect. The results for both 
cases show a strong size effect, whereby both the initial 
yielding point and the flow stress increase with increas-
ing �∕R . For instance, the flow stress deep in the plastic 
range is elevated by a factor about 2.5 as the value of �∕R 
increases from zero to unity. Taking the case � = 5 μm 
as an example, the torsional strength of wire with R = 10 
μm is predicted to be 1.6 times larger than that of thick 
wire. This is on the order of size effect found in thin Cu 
wires [2–4, 61]. However, the elastic response predicted 
by the theory is independent of wire diameter since the 
contribution due to elastic strain gradient is not consid-
ered. Similar results for thin wires under torsion predicted 
by SGP theories have also been provided by many other 
authors, e.g. Fleck and Hutchinson [14], Fleck et al. [1], 
Idiart and Fleck [56], Liu et al. [2, 5], Bardella [39], Gud-
mundson [18], etc. However, the passivation effect has 
not yet considered in detail in previous studies, except the 
works by Bardella [39], Gudmundson and Dahlberg [19], 
and Liu et al. [41]. The previous work [41] focuses on the 
energetic gradient effects based on the reduced version of 
Gudmundson theory and the Polizzotto theory. Only ana-
lytical solution for the wire torsion problem is provided 
therein. Here, we perform one-dimensional finite element 
implementation on three benchmark examples based on 
the Fleck–Hutchinson–Willis theory. The roles of dissipa-
tive gradient effects are highlighted, by which one can pre-
dict the size effect at initial yielding and simulate the pas-
sivation effect due to dissipative plastic strain gradients.

Figure 13a shows the normalized torque-twist curve in 
which, at the applied twist level �R

/
�0 = 10 , the abrupt 

change in strain hardening rate due to switching the higher-
order boundary conditions is obvious. It can be seen how the 
torque-twist curve significantly changes for the passivated 
and unpassivated surface. Such an apparent difference corre-
sponds to a very different mechanical response. This is illus-
trated in Fig. 13b, which displays the numerical evaluation 
of the ratio Δ�P∕(Δ�R) along the radial coordinate immedi-
ately after switching the higher-order boundary conditions. 
One can see that the passivation leads to an increase of the 
plastic strain increment firstly, and then a sharp decline 
of the plastic strain increment around the passivated sur-
face. For the unpassivated wire, the plastic strain increment 
increases monotonously with the radial coordinate. It should 
be emphasized that the dissipative SGP theory used here 
allows for an immediate development of plasticity inside the 
wire within the very first twist increment after passivation, 
which is very different from the results predicted by “non-
incremental” SGP theories [39, 45]. For example, by using 
Gurtin’s theory, Bardella and Panteghini [39] investigated a 
cylindrical wire that is twisted into the plastic range, pas-
sivated, and then subject to further twist. It is shown that 
plastic flow is interrupted after passivation. In other words, a 

purely elastic incremental response is observed after forma-
tion of the passivation layer. By contrast, the Fleck–Hutch-
inson–Willis theory used here predicts that plastic flow is 
not interrupted by passivation, only constrained, giving rise 
to an increase in effective incremental stiffness, as shown 
in Fig. 13.

6  Conclusions

A numerical formulation of the variational constitutive 
updates for the Fleck-Hutchinson-Willis higher-order SGP 
theory has been constructed to solve the initial boundary 
value problems. The numerical scheme is relatively simple 
and general in form, which allows for an efficient finite 
element implementation of the problem with a uniform 
displacement field. By using this method, three bench-
mark problems, i.e. the stretch-passivation problem, the 

Fig. 13  Torsion with no passivation followed by continued torsion 
with passivation at � = 10�

0

/
R for �∕R = 0.5 . a Normalized torque 

versus normalized twist, and b normalized plastic strain increment 
along the radial coordinate after immediate passivation
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foil bending, and the wire torsion, have been studied to 
reveal the role of the dissipative strain gradient and the 
effect of surface passivation. It is shown that the dissipa-
tive gradient term controls the strengthening size effect, 
i.e. the increase of initial yielding strength, while the sur-
face passivation mainly gives rise to an increase of strain 
hardening rate. In the present incremental SGP theory, no 
elastic gap occurs after passivation in the plastic regime. 
The theory predicts continued plastic flow following pas-
sivation, although reduced by the constraint imposed by 
surface passivation. The examples considered here pro-
vide some insights for the interpretation of experiments 
on surface passivation. Critical experiments are required 
in future to better understand the passivation effect in 
the plastic flow due to specific non-proportional loading 
conditions.
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Appendix

Three material length scales can be introduced to the 
Fleck–Hutchinson–Willis theory as seen in Eq. (10). We 
restrict attention to the simplest model, containing a sin-
gle material length scale. Following Danas et al. [62], we 
introduce a particular choice for the relative magnitude of 
the length scales �I by allowing

With this choice, one can write the length scales �I in 
terms of a single length scale �.

For the cases of foil tension and bending, the general-
ized effective plastic strain rate Eq. (10) is written as

where the second material length parameter �2 does not enter 
the expression. By (44), Eq. (45) is reduced to be

In Eq. (22), the coefficients read

For the case of wire torsion, the generalized effective 
plastic strain rate Eq. (10) is expressed as

(44)�1 =
√
2∕3�, �2 =

√
1∕6� and �3 = �∕2.

(45)ĖP =

√
�̇�2
P
+
(

1

2
�
2

1
+

8

3
�
2

3

)
�̇��2
P
,

(46)ĖP =

√
�̇�2
P
+ �2�̇��2

P
.

(47)�1 = 1, �2 = �
2.

with

where �3 is not involved in the expression. By (44), Eq. (48) 
is reduced to be

In Eq. (22), the coefficients become
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