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Abstract 
In this study, a finite element formulation based on the four-variable refined plate theory (RPT) is presented for forced vibra-
tion analysis of laminated viscoelastic composite plates integrated with a piezoelectric layer. To the best of the authors’ 
knowledge, this is the first time that the proposed approach is extended for study of the dynamic behavior of the smart vis-
coelastic plate. The utilized RPT which works for both thick and thin plates predicts a parabolic variation for transverse shear 
stresses across the plate thickness. Considering a linear viscoelastic model for the substrate material, the relaxation module 
is predicted by the Prony series. Using Hamilton’s principle, the weak form equation is constructed and a four-node rectan-
gular plate element is utilized for discretizing the domain. The Newmark scheme is employed for advancing the solution in 
time. A MATLAB code is developed based on the formulations and several benchmark problems are solved. Comparing the 
findings with existing results in previous studies confirms the accuracy and efficiency of the proposed method. The dynamic 
response of the smart viscoelastic plates under various electromechanical loads is investigated and the results show that the 
vibration can be passively controlled by adding and actuating the piezoelectric layer. The damping effects of viscoelastic 
parameters on the results are investigated, too.

Keywords  Forced vibration · Refined plate theory · Viscoelastic material · Piezoelectricity · Smart structure · Finite 
element method

List of symbols
A,As, Ȧ, Ȧ

s	� A matrix defined in vector form of weak 
form governing equation

a	� Plate length
B,Bs, Ḃ, Ḃ

s	� A matrix defined in vector form of weak 
form governing equation

b	� Plate width
C	� Damping
Cij	� Material matrix components
D,Ds, Ḋ, Ḋ

s	� A matrix defined in vector form of weak 
form governing equation

d	� Electrical displacement vector
D

�
 to D

�
	� Differential operator vectors

e	� Piezoelectric constant matrix
e�xp to e�xp	� Piezoelectric constant vectors
Ei	� Elastic modulus
Ėi	� Rate of elastic modules

F	� Force vector
Fq	� Sub-vectors for the force vector
Feff 	� Effective force vector
f	� Defined function in displacement field
Gij	� Shear modulus
Ġij	� Rate of shear modules
g	� Defined function in strain tensor
Hs, Ḣ

s	� A matrix defined in vector form of weak 
form governing equation

h	� Substrate thickness
hp	� Piezoelectric layer thickness
ht	� Total plate thickness
I0 to I5	� Inertia terms defined in vector form of weak 

form governing equation
K	� Stiffness matrix
Kij	� Elastic sub-matrices for stiffness matrix
K̇ij	� Viscoelastic sub-matrices for stiffness 

matrix
Kip	� Piezoelectric constant sub-matrices
M	� Mass matrix
Mij	� Sub-matrices for mass matrix
Meff 	� Effective mass matrix

 *	 Jafar Rouzegar 
	 rouzegar@sutech.ac.ir

1	 Department of Mechanical and Aerospace Engineering, 
Shiraz University of Technology, Shiraz, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s10409-020-00964-1&domain=pdf


934	 J. Rouzegar, M. Davoudi 

1 3

N	� Shape function vector for the transverse 
displacement

n	� Shape function vector for the in-plane 
displacement

ne	� Number of elements per plate edge
nl	� Layer number
p	� Length of the rectangular plate element
Q	� Elastic coefficients
Q̄	� Transformed elastic coefficients
Q̇	� Viscose coefficients
̇̄Q	� Transformed viscose coefficients

q	� External mechanical load
r	� Width of the rectangular plate element
T 	� Kinetic energy
t	� Time
u	� In-plane displacements in x-direction
u0	� In-plane displacements of mid-plane in the 

x-direction
V	� Volume of the plate
V0	� Activated voltage applied to the piezoelec-

tric layer
v	� In-plane displacements in the y-direction
u̇	� Velocity
ü	� Acceleration
v0	� In-plane displacements of mid-plane in the 

y-direction
w	� Transverse displacement
wb	� Bending component of transverse 

displacement
ws	� Shear component of transverse displacement
x	� First coordinate
xc	� First coordinate of the midpoint of the 

element
y	� Second coordinate
yc	� Second coordinate of the midpoint of the 

element
z	� Third coordinate
�m	� Inverse of the retardation time
�	� Newmark constant
�	� Newmark constant
�	� Strain
�	� Dielectric constant matrix
�	� Rotation angle between the reference and 

local coordinate system
�i	� Non-conforming Hermit cubic interpolation 

functions
�	� Second generalized coordinate
�ij	� Poisson’s ratio
�	� First generalized coordinate
�	� Mass density
�	� Normal stress

�	� Shear stress
�	� Electrostatic potential
�0	� Electrostatic potential applied on the piezo-

electric surface
�i	� Lagrangian linear interpolation functions
�	� Frequency of applied loading
Δt	� Time step size
Δu0	� In-plane nodal DOF vector in the x-direction
Δv0	� In-plane nodal DOF vector in the y-direction
Δwb	� Bending DOF vectors
Δws	� Shear DOF vectors
Δ�0	� Electrostatic potential DOF vector
�	� Electrical field intensity vector
�	� Total potential energy
�e	� Middle plane area of the plate

1  Introduction

There is no pure elastic material in nature and most of the 
materials have viscoelastic properties to some extent. The 
time-dependent behavior and damping effect are two inter-
esting characteristics of viscoelastic materials. The superior 
properties of piezoelectric materials such as their coupled 
electromechanical properties, vacuum capability and work-
ing at very low temperatures, large power generation and 
quick response make them be frequently used as actuators 
and sensors in different smart structures. Using the piezo-
electric layers in laminated viscoelastic plates can lead to a 
structure that has both intrinsic viscoelastic damping proper-
ties and damping due to the piezoelectric layer’s electrome-
chanical effects. Such a structure can have excellent function 
in controlling the excited vibrations.

There are many investigations on different analysis of 
plate structures bonded with piezoelectric layers. Mallik 
and Ray [1] performed the static analysis of laminated 
composite plate integrated with an actuator layer using 
a finite element approach based on the first-order shear 
deformation plate theory (FSDT). The structure consists 
of a cross-ply or angle-ply laminated substrate attached 
with a piezoelectric fiber-reinforced composite (PFRC) 
layer. They [2] also presented an exact solution for the 
bending analysis of the mentioned smart composite struc-
ture. Topdar et al. [3], using the finite element method, 
determined the free vibration characteristics of hybrid 
plates consisting of laminated composite plate or sand-
wich plate with surface-bonded or embedded piezoelec-
tric layers. Bending, free vibration and forced vibration 
analysis of functionally graded piezoelectric (FGP) plates 
was investigated by Behjat et al. [4]. Governing equations 
were obtained by considering the FSDT assumptions and 
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Hamilton’s principle and they were solved by the finite 
element method. The material of the structure was var-
ied from PZT4 (PZT stands for lead zirconate titanate) 
to PZT5H through the plate thickness and the plate was 
subjected to electrical and mechanical loadings. Loja et al. 
[5] utilized the B-spline finite strip method to determine 
the bending and free vibration behavior of functionally 
graded (FG) plates bonded with piezoelectric layers. The 
FG material properties were obtained by Mori–Tanaka 
scheme and the results were compared with experimen-
tal tests. Sreehari et al. [6] investigated the bending and 
buckling analysis of laminated composite plates integrated 
with piezoelectric layers bonded to the top and bottom 
faces using a finite element approach based on the inverse 
hyperbolic shear deformation theory. They also examined 
the effect of internal flaws on the deflection and critical 
buckling load of the structure. A finite element formula-
tion for dynamic analysis of the smart sandwich plate was 
developed by Araujo et al. [7]. The structure was com-
posed of a soft core and two laminated composite faces 
integrated with two piezoelectric layers at the top and 
bottom surfaces. Considering a layerwise approach, the 
displacement field of the core plate and two face layers 
was assumed based on the higher-order shear deforma-
tion theory (HSDT) and the FSDT, respectively. Selim 
et al. [8] employed the element-free IMLS-Ritz method for 
active vibration control of FG plates integrated with piezo-
electric layers. Their formulation was based on the HSDT 
and at each node, seven mechanical degrees of freedom 
and one electrical degree of freedom were considered. A 
finite element approach based on the four-variable refined 
plate theory was developed for bending analysis of func-
tionally graded and laminated composite plates integrated 
with the piezoelectric layer by Rouzegar and Abbasi [9, 
10]. Abad and Rouzegar [11] performed the free vibra-
tion analysis of an FG plate integrated with piezoelectric 
layers using the spectral element method. Based on the 
Mindlin plate theory assumptions and utilizing Maxwell’s 
relation and Hamilton’s principle the governing equations 
were obtained for a levy-type plate. The equations were 
converted to the frequency domain using the fast Fourier 
transform and a closed-form solution was proposed for 
them. The accuracy of the presented approach was con-
firmed by solving several benchmark problems.

The mechanical behaviors of plate structure with vis-
coelastic material properties have been investigated by 
many researchers. Wang and Tsai [12] developed a finite 
element formulation based on the Mindlin plate theory 
assumptions for the quasi-static and dynamic analysis 
of linear viscoelastic plates. They changed the integral 

form of governing equations to several algebraic equa-
tions through the finite difference approach in order to 
reduce the computational cost. Zenkour [13] performed 
the buckling analysis of the fiber-reinforced laminated 
composite plate under different in-plane loading condi-
tions. He employed different plate theories such as classi-
cal, first-order and sinusoidal shear deformation theories 
and compared the obtained results together. Also, he [14] 
proposed a closed-form solution for thermo-viscoelastic 
analysis of fiber-reinforced composite plates subjected to 
non-uniform temperature distribution based on a refined 
plate theory. Eshmatov [15] performed the nonlinear 
vibration and dynamic stability analysis of rectangular 
viscoelastic plates using the quadrature numerical method. 
He employed the classical and first-order shear deforma-
tion theories and considered the effect of rotary inertia, 
too. Abdoun et al. [16] conducted the forced vibration 
analysis of the viscoelastic beam and plate structure under 
harmonic excitation. A general formulation that can be 
implemented to various viscoelastic models was presented 
and the governing equations were solved by the finite ele-
ment method. Moita et al. [17] developed an efficient and 
simple finite element formulation to optimize the damp-
ing properties of a multi-layered sandwich plate consist-
ing of a viscoelastic core and two elastic face layers. The 
fundamental natural frequencies of the structure were 
obtained by solving an eigenvalue problem and then using 
the gradient-based algorithm, an optimization process was 
performed to find the maximum modal loss factor. The 
cylindrical bending analysis of an angle-ply piezoelectric 
laminated plate with viscoelastic interfaces was performed 
by Yan et al. [18] using the state-space method. It was 
assumed that the bonding between piezoelectric layers has 
weak (or high) electrically conducting behavior and its 
viscoelastic properties were defined by the Kelvin–Voigt 
law. Hosseini et al. [19] presented an analytical nonlinear 
solution to determine the natural frequencies and dynamic 
response of a cantilever viscoelastic beam integrated with 
several piezoelectric patches. The piezoelectric patches, 
acting as the actuators, were bonded on the top surface of 
the beam and the hybrid beam was rested on a nonlinear 
elastic foundation. The Euler–Bernoulli and Kelvin–Voigt 
models were used for beam theory and viscoelastic mate-
rial behavior. Using the Kirchhoff and Donnell assump-
tions, the free vibration analysis a multilayered viscoe-
lastic plate with constrained damping properties was 
investigated by Wan et al. [20]. The obtained equations 
were solved using an improved transfer matrix method. 
The effect of number, thickness, and sequence of layers 
was studied on the results and the conditions resulting in 
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the optimum frequency were determined. Rouzegar and 
Gholami [21] employed the dynamic relaxation method for 
bending analysis of a viscoelastic plate. The material prop-
erties were defined by the Prony series and the governing 
equations based on two-variable refined plate theory were 
obtained using the principle of virtual work. The finite 
difference method was utilized for solving the equations. 
Considering various loading conditions, the creep and 
recovery responses of isotropic plates were determined 
and a parametric study was performed, too. Amoushahi 
[22] performed the bending and buckling analysis of thick 
viscoelastic plates using the finite strip method. Polyno-
mial and trigonometric functions were used in transverse 
and longitudinal directions. The formulation was based on 
the FSDT and the material properties of the viscoelastic 
plate were described using the Prony series. Moita et al. 
[23] employed the finite element method for vibration 
analysis of a pure FG plate and a sandwich plate con-
sisting of a viscoelastic core and two FG faces. The FG 
faces and core layer were modeled based on the classical 
plate theory (CPT) and the third-order shear deformation 
theory (TSDT), respectively. The natural frequencies were 
obtained from dynamic analyses of the structures in the 
frequency domain. Also, the dynamic response of the sys-
tems under steady-state harmonic motion was determined. 
Several benchmark problems were solved by the presented 
approach and the obtained results were examined.

There are few studies on vibration analysis of smart vis-
coelastic structures. The free vibration analysis of laminated 
viscoelastic composite panels integrated with piezoelectric 
actuator patches was performed by Luis et al. [24]. Employ-
ing the direct multi-search solver, a multi-objective opti-
mization process was performed to determine the optimal 
distribution of the patches. The design variables were the 
position and number of piezoelectric patches and the goals 
were minimizing the required patches and maximizing the 
fundamental modal loss factor and natural frequency. The 
objective functions were validated by the finite element 
method.

Developing a finite element (FE) formulation using a 
refined plate theory (RPT) for the viscoelastic plate inte-
grated with a piezoelectric layer could be mentioned as a 
novelty in the present study. Furthermore, employing the 
four-variable refined plate theory in the FE formulation, 
which is a new, efficient and simple HSDT and predicts 
a parabolic variation for transverse shear stresses across 
the plate thickness, is an improvement in comparison with 
FSDT and other conventional HSDTs. For this purpose, a 
finite element MATLAB code is developed based on the 
four-variable RPT and a 4-node rectangular plate element 

with 36 degrees of freedom (DOFs) at each node is intro-
duced. The effects of the piezoelasticity and viscoelasticity 
on the damping behavior of dynamic responses are investi-
gated, too. Though there is no active vibration control strat-
egy in this research, the vibration can be passively controlled 
by the piezoelectric layer. This layer, which is attached to the 
top surface of the structure, plays a key role in controlling 
the vibration of the plate.

2 � Theoretical formulation

2.1 � Geometry

This research deals with the forced vibration analysis of 
rectangular viscoelastic laminated plates integrated with a 
piezoelectric layer. The piezoelectric layer which is made 
of PFRC material acts as an actuator and is attached on the 
top surface of the plate. As illustrated in Fig. 1, the length 
and width of the hybrid plate is a and b, and the thickness 
of the viscoelastic laminate and the PFRC layer is h and hp, 
respectively. A Cartesian coordinate system is considered at 
the corner of the middle plane of the plate.

2.2 � Constitutive equations

The stress–strain relation for linear viscoelastic plate accord-
ing to the Boltzmann superposition principle is described as:

which means that the stress in the specific time (t) would 
be obtained by the summation behaviors of the plate from 
the initial time until t. It is assumed that each lamina 
of the cross-ply substrate is a fiber-reinforced compos-
ite and has an orthotropic property. Elastic behavior 
is considered in the direction of fibers and viscoelas-
tic behavior is considered in other directions due to the 
polymeric characteristics of the matrix. The Prony-series 
is utilized for describing the relaxation module of vis-
coelastic material:

in which 1
/
�m is called the retardation time.

As it was shown in Fig. 1, the main structure is a lami-
nated plate which consists of several viscoelastic orthotropic 
laminas. The constitutive equations for each viscoelastic 
layer (for instance nl) are introduced as below:

(1)�(t) = E(0)�(t) − ∫
t

0

d

dk
[E(t − k)�(k)]dk,

(2)E(t) = E0 +

Mt∑
m=1

Eme
−�mt,
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where ̇̄Q and Q̄ is the transformed viscose coefficient and 
transformed elastic coefficient in the reference coordinate 
system, respectively. The viscose and elastic coefficients in 
the local coordinate system are defined in Eqs. (4) and (5), 
respectively:

where E1 and E2 are elastic modules, G12 , G13 and G23 are 
shear modules, and �12 , �21 are the Poisson’s ratio in the 
principal directions.

Based on the rotation angle between the reference and 
local coordinate system, which is depicted by � , the trans-
formed coefficients are: 

(3)

⎧
⎪⎪⎨⎪⎪⎩

𝜎x

𝜎y

𝜏xy

⎫
⎪⎪⎬⎪⎪⎭

(nl)

=

⎡⎢⎢⎢⎣

Q̄11(0) Q̄12(0) Q̄16(0)

Q̄12(0) Q̄22(0) Q̄26(0)

Q̄16(0) Q̄26(0) Q̄66(0)

⎤⎥⎥⎥⎦

(nl)⎧⎪⎪⎨⎪⎪⎩

𝜀x(x, y, t)

𝜀y(x, y, t)

𝜀xy(x, y, t)

⎫
⎪⎪⎬⎪⎪⎭

− ∫
t

0

⎡
⎢⎢⎢⎣

̇̄Q11(t − k) ̇̄Q12(t − k) ̇̄Q16(t − k)

̇̄Q12(t − k) ̇̄Q22(t − k) ̇̄Q26(t − k)

̇̄Q16(t − k) ̇̄Q26(t − k) ̇̄Q66(t − k)

⎤
⎥⎥⎥⎦

(nl)⎧⎪⎪⎨⎪⎪⎩

𝜀x(x, y, k)

𝜀y(x, y, k)

𝜀xy(x, y, k)

⎫
⎪⎪⎬⎪⎪⎭

dk,

⎧
⎪⎨⎪⎩

𝜏yz

𝜏xz

⎫
⎪⎬⎪⎭

(nl)

=

�
Q̄44(0) Q̄45(0)

Q̄45(0) Q̄55(0)

�(nl)⎧⎪⎨⎪⎩

𝛾yz(x, y, t)

𝛾xz(x, y, t)

⎫
⎪⎬⎪⎭

− ∫
t

0

�
̇̄Q44(t − k) ̇̄Q45(t − k)

̇̄Q45(t − k) ̇̄Q55(t − k)

�(nl)⎧⎪⎨⎪⎩

𝛾yz(x, y, k)

𝛾xz(x, y, k)

⎫⎪⎬⎪⎭
dk,

(4)
Q11(0) =

E1(0)

1−�12�21
, Q12(0) =

�12E2(0)

1−�12�21
, Q22(0) =

E2(0)

1−�12�21
,

Q44(0) = G23(0), Q55(0) = G13(0), Q66(0) = G12(0),

(5)
Q̇11(t − k) =

Ė1(t−k)

1−𝜐12𝜐21
, Q̇12(t − k) =

𝜐12Ė2(t−k)

1−𝜐12𝜐21
,

Q̇22(t − k) =
Ė2(t−k)

1−𝜐12𝜐21
, Q̇44(t − k) = Ġ23(t − k),

Q̇55(t − k) = Ġ13(t − k), Q̇66(t − k) = Ġ12(t − k),

The same relations can be written for ̇̄Q components.
On the other hand, the coupled electro-mechanical con-

stitutive equations for a piezoelectric layer are stated by:

where d , e , � , [Q] and � are electrical displacement vector, pie-
zoelectric constant matrix, dielectric constant matrix, stress-
reduced stiffness matrix, and electrical field intensity vector, 
respectively. The electric field components are defined as:

Due to the small thickness of the piezoelectric layer, 
the electrostatic potential, � , is considered to be linear in 
z-direction:

The elastic coefficients Qij for the PFRC layer in the prin-
cipal material directions can be obtained as:

According to the structure of the PFRC layer, the effec-
tive piezoelectric and dielectric constant matrices can be 
defined as:

(6)

Q̄11 = Q11 cos4 𝜃 + 2 (Q12 + 2Q66) sin
2 𝜃 cos2 𝜃 + Q22 sin

4 𝜃,

Q̄12 = (Q11 + Q22 − 4Q66) sin
2 𝜃 cos2 𝜃 + Q12

(
sin

4 𝜃 + cos4 𝜃
)
,

Q̄22 = Q11 sin
4 𝜃 + 2 (Q12 + 2Q66) sin

2 𝜃 cos2 𝜃 + Q22 cos
4 𝜃,

Q̄16 = (Q11 − Q12 − 2Q66) sin 𝜃 cos3 𝜃 + (Q12 − Q22 + 2Q66) sin
3 𝜃 cos 𝜃,

Q̄26 = (Q11 − Q12 − 2Q66) sin
3 𝜃 cos 𝜃 + (Q12 − Q22 + 2Q66) sin 𝜃 cos3 𝜃,

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66) sin
2 𝜃 cos2 𝜃 + Q66

(
sin

4 𝜃 + cos4 𝜃
)
,

Q̄44 = Q44 cos2 𝜃 + Q55 sin
2 𝜃,

Q̄45 = (Q55 − Q44 ) sin 𝜃 cos 𝜃,

Q̄55 = Q55 cos2 𝜃 + Q44 sin
2 𝜃.

(7)
d = eT{�} + �� ,

{�} = [Q]{�} − e� ,

(8)�i = −�,i i = 1, 2, 3.

(9)�(x, y, z) = (z −
h

2
)
�0(x, y)

hp
,

h

2
≤ z ≤ h

2
+ hp.

(10)

Q11 =
E1

1 − v12v21
,

Q12 =
v12E2

1 − v12v21
,

Q22 =
E2

1 − v12v21
,

Q44 = G23,

Q55 = G13,

Q66 = G12

.

(11)e =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e32
0 0 e33
0 0 0

0 e24 0

e15 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

, � =

⎡⎢⎢⎣

�11 0 0

0 �22 0

0 0 �33

⎤⎥⎥⎦
.

Fig. 1   Geometry of viscoelastic laminated plate integrated with a 
PFRC layer
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2.3 � Four‑variable refined plate theory

As the name indicates, this theory includes four parameters 
by which the displacement components are introduced as:

where ht = h + hp , u0 and v0 are the in-plane displacements 
of mid-plane in x and y direction, and wb and ws are the 
bending and shear components of transverse displacement, 
respectively. Regarding the displacement field defined in 
Eq. (12), the strain components are obtained as:

where

2.4 � Governing equation

Hamilton’s principle is employed to derive the governing 
equation:

where T  and � describes the kinetic energy and the total 
potential energy, respectively which are defined as below:

(12)

u(x, y, z) = u0(x, y) − z
�wb

�x
+ z

[
1

4
−

5

3

(
z

ht

)2
]
�ws

�x
,

v(x, y, z) = v0(x, y) − z
�wb

�y
+ z

[
1

4
−

5

3

(
z

ht

)2
]
�ws

�y
,

w(x, y) = wb(x, y) + ws(x, y),

(13)

⎧⎪⎨⎪⎩

�x

�y

�xy

⎫⎪⎬⎪⎭
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�u0

�x
�v0

�y

�u0

�y
+

�v0

�x

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

+ z

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−
�2wb

�x2

−
�2wb

�y2

−2
�2wb

�x�y

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

+ f

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−
�2ws

�x2

−
�2ws

�y2

−2
�2ws

�x�y

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

�
�yz

�xz

�
= g

⎧⎪⎨⎪⎩

�ws

�y

�ws

�x

⎫⎪⎬⎪⎭
,

�z = 0,

(14)
f = −

1

4
z +

5

3
z

(
z

ht

)2

,

g =
5

4
− 5

(
z

ht

)2

.

(15)∫
t2

t1

� (T −�) dt= 0,

(16)T =
1

2

N+1∑
nl=1

∫
V

𝜌k
[
(u̇0 − z

𝜕ẇb

𝜕x
− f

𝜕ẇs

𝜕x
)2 + (v̇0 − z

𝜕ẇb

𝜕y
− f

𝜕ẇs

𝜕y
)2 + (ẇb + ẇs)

2

]
dV ,

where V and �e are volume and middle plane area of the 
plate and q is the external mechanical load applied in the 
normal direction. Substituting the stresses and strains in 
terms of displacement components into Eqs. (15)–(17) and 
setting the variation of the total energy with respect to the 
independent variables equal to zero leads to the weak form 
governing equations. The vector form of these equations can 
be written as:

(17)

� =
1

2

⎡⎢⎢⎣

N+1�
nl=1

∫
V

(�k
ij
�k
ij
) dV − ∫

V

(di �i) dV

⎤⎥⎥⎦
− ∫

�e

q (wb + ws) dA,

(18a)

∫
Ωe

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
D

�
𝛿wb

�T

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D(0)
�
D

�
wb(t)

�
− ∫

t

0

[Ḋ(t − k)
�
D

�
wb(k)

�
]dk

+Ds(0)(D
�
ws(t)) − ∫

t

0

[Ḋ
s
(t − k)

�
D

�
ws(k)

�
]dk

−B(0)(D
�
u0(t)) − ∫

t

0

[Ḃ(t − k)
�
D

�
u0(k)

�
]dk

−B(0)(D
�
v0(t)) − ∫

t

0

[Ḃ(t − k)
�
D

�
v0(k)

�
]dk

+e�xp(𝜙0) + e�yp(𝜙0)

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

+
�
D

�
𝛿ws

�T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ds(0)
�
D

�
wb(t)

�
− ∫

t

0

[Ḋ
s
(t − k)

�
D

�
wb(k)

�
]dk

+Hs(0)(D
�
ws(t)) − ∫

t

0

[Ḣ
s
(t − k)

�
D

�
ws(k)

�
]dk

−Bs(0)(D
�
u0(t)) − ∫

t

0

[Ḃ
s
(t − k)

�
D

�
u0(k)

�
]dk

−Bs(0)(D
�
v0(t)) − ∫

t

0

[Ḃ
s
(t − k)

�
D

�
v0(k)

�
]dk

+e�xp(𝜙0) + e�yp(𝜙0)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+(D

�
𝛿ws)

T

�
(As(0)

�
D

�
ws(t)

�
− ∫

t

0

[Ȧ
s
(t − k)

�
D

�
ws(k)

�
]

�
dk

+
�
D

�
𝛿u0

�T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−B(0)
�
D

�
wb(t)

�
− ∫

t

0

[Ḃ(t − k)
�
D

�
wb(k)

�
]dk

−Bs(0)(D
�
ws(t)) − ∫

t

0

[Ḃ
s
(t − k)

�
D

�
ws(k)

�
]dk

+A(0)(D
�
u0(t)) − ∫

t

0

[Ȧ(t − k)
�
D

�
u0(k)

�
]dk

+A(0)(D
�
v0(t)) − ∫

t

0

[Ȧ(t − k)
�
D

�
v0(k)

�
]dk

+e�xp(𝜙0)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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where

in which

(18b)

+
�
D�𝛿v0

�T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−B(0)
�
D�wb(t)

�
− ∫

t

0

[Ḃ(t − k)
�
D�wb(k)

�
]dk

−Bs(0)(D�ws(t)) − ∫
t

0

[Ḃ
s
(t − k)

�
D�ws(k)

�
]dk

+A(0)(D�u0(t)) − ∫
t

0

[Ȧ(t − k)
�
D�u0(k)

�
]dk

+A(0)(D
�v0(t)) − ∫

t

0

[Ȧ(t − k)
�
D�v0(k)

�
]dk

+e�yp(𝜙0)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

dxdy

−∫
𝛺e

�
𝛿
�
wb + ws

�T
q
�
dxdy

+∫
𝛺e

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
D�𝛿wb

�T�
I2
�
D�ẅb

�
+ I4

�
D�ẅs

�
− I1

��
D�ü0

�
+
�
D� v̈0

���

+
�
D

�𝛿ws

�T�
I4
�
D�ẅb

�
+ I5

�
D�ẅs

�
− I3

��
D�ü0

�
+
�
D� v̈0

���

+
�
𝛿wb

�T�
I0
�
ẅb

�
+ I0

�
ẅs

��
+
�
𝛿ws

�T�
I0
�
ẅb

�
+ I0

�
ẅs

��

+
�
D

�𝛿u0
�T�

I0
��
D�ü0

�
+
�
D� v̈0

��
− I1

�
D�ẅb

�
− I3

�
D�ẅs

��

+
�
D� 𝛿v0

�T�
I0
��
D�ü0

�
+
�
D� v̈0

��
− I1

�
D�ẅb

�
− I3

�
D�ẅs

��

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

dxdy = 0,

(19)

A =

⎡⎢⎢⎢⎢⎣

A11 A12 0

A12 A22 0

0 0 A66

⎤⎥⎥⎥⎥⎦
, A

s
=

⎡⎢⎢⎢⎢⎣

As
11

As
12

0

As
12

As
22

0

0 0 Ȧs
66

⎤⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎣

D11 D12 0

D12 D22 0

0 0 D66

⎤⎥⎥⎥⎥⎦
,

B
s
=

⎡⎢⎢⎢⎢⎣

Bs
11

Bs
12

0

Bs
12

Bs
22

0

0 0 Bs
66

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎣

B11 B12 0

B12 B22 0

0 0 B66

⎤⎥⎥⎥⎥⎦
, D

s
=

⎡⎢⎢⎢⎢⎣

Bs
11

Bs
11

0

Bs
11

Bs
11

0

0 0 Bs
11

⎤⎥⎥⎥⎥⎦
,

H
s
=

⎡⎢⎢⎢⎢⎣

Hs
11

Hs
12

0

Hs
12

Hs
22

0

0 0 Hs
66

⎤⎥⎥⎥⎥⎦
,

Ȧ =

⎡⎢⎢⎢⎢⎣

Ȧ11 Ȧ12 0

Ȧ12 Ȧ22 0

0 0 Ȧ66

⎤⎥⎥⎥⎥⎦
, Ȧ

s
=

⎡⎢⎢⎢⎢⎣

Ȧs
11

Ȧs
12

0

Ȧs
12

Ȧs
22

0

0 0 Ȧs
66

⎤⎥⎥⎥⎥⎦
, Ḋ =

⎡⎢⎢⎢⎢⎣

Ḋ11 Ḋ12 0

Ḋ12 Ḋ22 0

0 0 Ḋ66

⎤⎥⎥⎥⎥⎦
,

Ḃ
s
=

⎡⎢⎢⎢⎢⎣

Ḃs
11

Ḃs
12

0

Ḃs
12

Ḃs
22

0

0 0 Ḃs
66

⎤⎥⎥⎥⎥⎦
, Ḃ =

⎡⎢⎢⎢⎢⎣

Ḃ11 Ḃ12 0

Ḃ12 Ḃ22 0

0 0 Ḃ66

⎤⎥⎥⎥⎥⎦
, Ḋ

s
=

⎡⎢⎢⎢⎢⎣

Ḃs
11

Ḃs
11

0

Ḃs
11

Ḃs
11

0

0 0 Ḃs
11

⎤⎥⎥⎥⎥⎦
,

Ḣ
s
=

⎡
⎢⎢⎢⎢⎣

Ḣs
11

Ḣs
12

0

Ḣs
12

Ḣs
22

0

0 0 Ḣs
66

⎤
⎥⎥⎥⎥⎦
,

(20)

(
Aij,Dij,D

s
ij
,Hs

ij
,Bs

ij
,Bij

)
=

N+1∑
nl=1

zk+1

∫
zk

(Qij)(1, z
2, zf , f 2, f , z)dz, i, j = 1, 2, 6,

As
ij
=

N+1∑
nl=1

zk+1

∫
zk

(Qij)g
2dz, i, j = 4, 5,

(
Ȧij, Ḋij, Ḋ

s
ij
, Ḣs

ij
, Ḃs

ij
, Ḃij

)
=

N+1∑
nl=1

zk+1

∫
zk

(
̇̄Qij)(1, z

2, zf , f 2, f , z)dz, i, j = 1, 2, 6,

Ȧs
ij
=

N+1∑
nl=1

zk+1

∫
zk

(
̇̄Qij)g

2dz, i, j = 4, 5,

(
I0, I1, I2, I3, I4, I5

)
=

N+1∑
nl=1

zk+1

∫
zk

𝜌k (1, z, z2, f , zf , f 2)dz,

and

where

and finally, the vectors D
�
 to D

�
 are defined as below:

2.5 � Element design

The domain of the variables is discretized by a 4-node rec-
tangular element. According to the degree of the finite ele-
ment differential equations, the in-plane displacements and 
electrostatic potential require the C0 continuity while the 
bending and shear deflections have to satisfy the C1 continu-
ity over the element domain. Hence, the Lagrangian linear 
interpolation function ( �i ) and the non-conforming Hermit 
cubic interpolation function ( �i ) are utilized for these two 
types of variables:

(21)

e�xp =

⎡
⎢⎢⎣

e
1xp

1

0

0

⎤
⎥⎥⎦
, e�xp =

⎡
⎢⎢⎣

e
2xp

1

0

0

⎤
⎥⎥⎦
, e�xp =

⎡
⎢⎢⎣

e
3xp

1

0

0

⎤
⎥⎥⎦
,

e�yp =

⎡
⎢⎢⎣

0

e
1yp

1

0

⎤
⎥⎥⎦
, e�yp =

⎡
⎢⎢⎣

0

e
2yp

1

0

⎤
⎥⎥⎦
, e�yp =

⎡
⎢⎢⎣

0

e
3yp

1

0

⎤
⎥⎥⎦
,

(22)

e
1xp

1
=

h

2
+hp∫
h

2

e31
z

hp
dz, e

2xp

1
=

h

2
+hp∫
h

2

e31
f

hp
dz, e

3xp

1
=

h

2
+hp∫
h

2

−e31
1

hp
dz,

e
1yp

1
=

h

2
+hp∫
h

2

e32
z

hp
dz, e

2yp

1
=

h

2
+hp∫
h

2

e32
f

hp
dz, e

3yp

1
=

h

2
+hp∫
h

2

−e32
1

hp
dz,

(23)

D
�
=

⎧⎪⎨⎪⎩

�

�x

�

�y

⎫⎪⎬⎪⎭
, D

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�2

�x2

�2

�y2

2
�2

�x�y

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

, D
�
=

⎧⎪⎪⎨⎪⎪⎩

�

�x

0

�

�y

⎫⎪⎪⎬⎪⎪⎭

,

D
�
=

⎧
⎪⎨⎪⎩

0
�

�y
�

�x

⎫
⎪⎬⎪⎭
, D

�
=

�
1

0

�
, D

�
=

�
0

1

�
.

(24)

�i =
1

4

�
1 + ��i

��
1 + ��i

�
,

�i =
1

8

�
1 + ��i

��
1 + ��i

�⎧⎪⎨⎪⎩

�
2 + ��i+��i − �2 − �2

�

r�i
�
1 − �2

�

− p�i
�
1 − �2

�

⎫⎪⎬⎪⎭
,

� =
2(x−xc)

p
, � =

2(y−yc)
r

,
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where (x, y) is the global coordinate system, (�, �) is the 
generalized coordinate system, xc and yc are the coordinates 
of the midpoint of the element, and p and r is the length and 
width of the element, respectively. Generally, the developed 
rectangular element has 36 DOFs (including 32 displace-
ment DOFs and 4 electrostatic potential DOFs) as below

where Δu0 and Δv0 are the in-plane nodal DOF vectors, Δwb 
and Δws are the bending and shear DOF vectors and Δ�0 
is the electrostatic potential DOF vector. The discretized 
form of the in-plane displacement u0 and v0 , bending and 
shear components of transverse displacement, wb and ws , 
and also the electrostatic potential over the element domain 
are expressed by:

where N and n are the shape function vectors for the trans-
verse and in-plane displacement, respectively. The finite ele-
ment equations based on the four-variable refined plate for 
the forced vibration analysis are obtained by substituting 
Eq. (25) in Eq. (17)

(25)

Δu0 =

⎡
⎢⎢⎢⎣

u1
0

u2
0

u3
0

u4
0

⎤
⎥⎥⎥⎦
4

, Δv0 =

⎡
⎢⎢⎢⎣

v1
0

v2
0

v3
0

v4
0

⎤
⎥⎥⎥⎦
4

, Δw
b
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w1

b�
�wb

�y

�1

�
−

�wb

�x

�1

…�
−

�wb

�x

�4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
12

,

Δw
s
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1
s�
�ws

�y

�1

�
−

�ws

�x

�1

…�
−

�ws

�x

�4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
12

, Δ�0 =

⎡⎢⎢⎢⎣

�1

0

�2

0

�3

0

�4

0

⎤⎥⎥⎥⎦
4

,

(26)

u0(x, y) =

n∑
j=1

Δu0
j
�j(x, y) = nTΔu0,

v0(x, y) =

n∑
j=1

Δv0
j
�j(x, y) = nTΔv0,

wb(x, y) =

n∑
j=1

Δwb
j
�j(x, y) = NTΔwb,

ws(x, y) =

n∑
j=1

Δws
j
�j(x, y) = NTΔws,

�0(x, y) =

n∑
j=1

Δ�0
j
�j(x, y) = nTΔ�0,

while the components of the matrixes are expressed in 
Appendix A.

2.6 � Newmark method

Following the Mü + Cu̇ + Ku = F shape for general dynamic 
problems, u , u̇ and ü in each time step is represented for 
displacement, velocity and acceleration, respectively. Based 
on the Newmark method, the displacement and velocity are 
expanded by the Taylor series

in which � and � are the Newmark constants. Assuming lin-
ear acceleration during the time we will have

So, the final form of the Newmark method can be defined 
as

By substituting ün+1 calculated from Eq.  (29), into 
Eq. (27), displacement and velocity in time n + 1 will be 
determined. By selecting different values for � and � , several 
methods with various features are obtained. In this study, the 
constant average acceleration method is employed in which 
� and � is 0.5 and 0.25, respectively.

3 � Numerical results and discussion

As mentioned, this research deals with the dynamic analysis 
of viscoelastic laminated plates integrated with a piezoe-
lectric layer subjected to different electrical and mechani-
cal loads. A finite element code based on the four-variable 

(27)

⎡⎢⎢⎢⎣

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

M
��

⎤⎥⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

Δü0

Δv̈0

Δẅb

Δẅs

⎫
⎪⎪⎬⎪⎪⎭

+

⎡⎢⎢⎢⎣

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

K
��

⎤⎥⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

Δu0

Δv0

Δwb

Δws

⎫⎪⎪⎬⎪⎪⎭

−

⎡⎢⎢⎢⎣

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

K̇
��

⎤⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

Δu0

Δv0

Δwb

Δws

⎫⎪⎪⎬⎪⎪⎭

=

⎧⎪⎪⎨⎪⎪⎩

K�p Δ𝝋0

K�p Δ𝝋0

K�p Δ𝝋0

K�pΔ𝝋0

⎫⎪⎪⎬⎪⎪⎭

+

⎧⎪⎪⎨⎪⎪⎩

0

0

Fq

Fq

⎫⎪⎪⎬⎪⎪⎭

,

(28)

u(t) = u(t − Δt) + Δtu̇(t − Δt) +
Δt2

2
ü(t − Δt) + 𝛽Δt3u⃛,

u̇(t) = u̇(t − Δt) + Δtü(t − Δt) + 𝛾Δt2u⃛,

(29)u⃛ =
[ü(t) − ü(t − Δt)]

Δt
.

(30)

Meff ün+1 = Feff ,

Meff = M + 𝛾ΔtC + 𝛽Δt2K,

Feff = Fn+1 − C
[
u̇n + (1 − 𝛾)Δtün

]
− K

[
un + Δtu̇n +

1

2
Δt2(1 − 2𝛽)ün

]
.
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refined plate theory is developed. In order to validate the 
introduced approach, two benchmark problems are solved 
and the results of the present FE code are compared with 
those existing in the literature. Since there is no similar study 
for dynamic analysis of smart viscoelastic laminated plate 
in the literature, a problem is solved to prove the accuracy 
of the code in dynamic analysis and another is considered 
to confirm the performance of the method in simulating the 
smart structures.

3.1 � Benchmark problems

First, a simply-supported three-layered [0/90/0] square 
elastic plate with a length of 180 mm, integrated with two 
polyvinylidene fluoride (PVDF) piezoelectric layers at 
the top and bottom surfaces is considered. The piezoelec-
tric layers are activated by a sinusoidal electrical voltage, 
Voltage = V0 sin(πx∕a) sin(πy∕a) sin(�t) . The thickness of 
each piezoelectric layer and the core substrate is 0.1 mm and 
6 mm, respectively. The material properties of each substrate 
lamina and the piezoelectric layer are indicated in Eqs. (30) 
and (31), respectively.

The normalized central deflection of the plate is defined 
as:

After the mesh convergence study, it was found that con-
sidering 10 × 10 elements for the plate sides is sufficient to 
ensure converged results for the dynamic analysis. In Fig. 2, 
considering V0 = 100V , � = 100 rad∕ s and a∕h = 30 , the 
obtained normalized central of the structure is compared 
with the results reported by Ref. [25]. As observed, the pre-
sent results are in good agreement with those obtained by 
layer-wise plate theory.

In the second benchmark problem, the dynamic response 
of a simply-supported viscoelastic plate under uniformed 
normal pressure ( q = 10N

/
m2 ) is investigated. The time-

variation of loading is rectangular-pulse which means that 
it starts from t = 0 and remains constant during the time. 
The relaxation module and other geometrical parameters are 
defined in Eq. (34):

(31)
E1∕E2 = 25, E2 = E3 = 21.0GPa,

G12 = G13 = 0.5E2, G23 = 0.2E2,

�12 = �13 = �23 = 0.25, � = 800 kg
/
m3,

(32)
E = 2.0GPa, � = 0.25,

� = 100 kg
/
m3, e31 = e32 = 0.046C

/
m2,

e15 = e24 = e33 = 0.0.

(33)wn = w(a∕2,b∕2,0)
E2

V0e31
.

The variation of central deflection of the plate is com-
pared with the existing results [12] in Fig. 3. As seen, the 
obtained results are well matched with those of Ref. [12].

Two investigated benchmark problems proved the capa-
bility of the presented approach in simulating the dynamic 
behavior of viscoelastic plate and laminate integrated with 
piezoelectric layers. In the following sections, the dynamic 
behavior of viscoelastic laminated plate with a piezoelec-
tric actuator layer under various mechanical and electri-
cal loadings is investigated. First, the spatial and temporal 
convergence study is presented and then, by solving several 
examples the effect of various parameters on the results is 
investigated.

(34)
a = b = 10m,

h = 1m,

E(t) = 1.96 × 107 + 7.84 × 107e−t∕ 2.24 Pa.

Fig. 2   Normalized central deflection of the three-layered laminate 
[0/90/0] integrated with two PVDF layers subjected to a sinusoidal 
voltage

Fig. 3   Variation of the central deflection of the simply supported 
square plate under uniform mechanical load
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3.2 � Spatial and temporal convergence study

Consider a square three-layer cross-ply viscoelastic laminate 
[0∕90∕0] with the length and thickness of 1 m and 0.01 m 
which is integrated with a PFRC layer with the thickness of 
250 × 10−6 m on the top surface. The fully simply supported 
hybrid structure is subjected to sinusoidally-distributed 
mechanical and electrical loads with maximum values of 
30 N/m2 and − 150 V as shown in Figs. 4 and 5. These loads 
start from t = 0 and remain constant through the time. The 
mechanical properties of the laminas and mechanical and 
electrical properties of the PFRC layer are listed in Eqs. (35) 
and (36), respectively.

(35)

E1 = 9.8 × 107 Pa, �12 = 0.25,

E2(t) = (1.96 + 7.84e−2t + e−t∕ 2) × 105 Pa,

G12(t) = G13(t) = (0.98 + 3.92e−2t + 0.5e−t∕ 2) × 105 Pa,

G23(t) = (0.784 + 3.136e−2t + 0.4e−t∕ 2) × 105 Pa,

� = 1000 kg/m3,

In order to determine the proper mesh size and time 
step, two convergence studies are performed and the related 
results are illustrated in Figs. 6 and 7. In Fig. 6 the effect of 
the number of elements is investigated. As seen by increas-
ing the number of elements per plate edge (ne) the results 
converge and finally the mesh structure 10 × 10 seems to be 
sufficient. For dynamic analysis, the solution is advanced in 
time and the adequate time step must be determined. The 
effect of time step size is investigated in Fig. 7. As seen by 
decreasing the time step size the diagram becomes smoother 
and Δt = 0.01 s is small enough to present accurate and 
acceptable results. It should be mentioned that for all exam-
ples (previous two benchmark problems and subsequent 

(36)

C11 = 32.6 × 109 Pa, C12 = C21 = 4.3 × 109 Pa,

C13 = C31 = 4.76 × 109 Pa, C22 = C33 = 7.2 × 109 Pa,

C23 = 3.58 × 109 Pa, C44 = 1.05 × 109 Pa,

C55 = C66 = 1.29 × 109 Pa, e31 = −6.76C
/
m2,

� = 3640 kg/m3.

Fig. 4   Distribution of sinusoidal mechanical load applied on the plate in the x and y direction

Fig. 5   Distribution of sinusoidal electrical load applied on the plate in the x and y direction
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examples) the results are presented after satisfying both 
special and temporal convergence criteria.

3.3 � Parametric studies

The force vibration behavior of elastic, viscoelastic and 
smart viscoelastic plates is compared in Fig. 8. Mechani-
cal properties of the viscoelastic plate (shown in Eq. (31)) 
at t = 0 is assumed for the elastic plate. Both elastic and 
viscoelastic are subjected to the sinusoidal mechanical 
load which starts at t = 0 and remains constant through the 
time (rectangular-pulse loading). As seen both plates are 

vibrating with the same frequency but the damping effect 
of viscoelasticity gradually decreases the amplitude of the 
response. By adding the piezoelectric layer and applying the 
sinusoidal voltage (which starts at t = 0 and remains constant 
through the time) to this layer the amplitude of the vibra-
tion is reduced impressively. It shows the convenient elec-
tromechanical effect which can control the amplitude of the 
structural vibration. Nevertheless, the vibration frequency 
increases by attaching the piezoelectric layer to the lami-
nate. The effect of the piezoelectric layer on the vibrational 
behavior of the structure can be controlled by changing the 
applied voltage. In general, viscoelasticity shows a passive 

Fig. 6   Spatial convergence study by considering the different number of elements in the plate sides for the smart viscoelastic laminated plate 
under sinusoidal electrical and mechanical loads

Fig. 7   Temporal convergence study by considering different time step sizes for the smart viscoelastic laminated plate under sinusoidal electrical 
and mechanical loads
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vibration control and, using the piezoelectricity effect the 
vibration can be controlled actively.

3.4 � Harmonic excitation

The prescribed smart viscoelastic laminated plate 
[0∕90∕0∕p] is considered under the action of sinusoidally-
distributed mechanical and electrical loads with a maximum 
value of 30 N/m2 and − 150 V occurred at the plate center. 
It is assumed that the temporal variation of the loadings 
is harmonic with different frequencies. The fundamental 
natural frequency of the structure is calculated as 2.67 Hz. 
The dynamic response of the system when the frequency of 
mechanical and electrical excitation is taken as 0.04 Hz is 
illustrated in Fig. 9. According to this figure, at the start of 
the diagram, the dynamic response is a composition of two 
harmonic waves: excitation vibration and natural vibration. 
The fast Fourier transform (FFT) diagram shows the fre-
quency of these two waves in the dynamic response. After a 
while, the viscoelastic properties of the material damp down 
the natural vibration of the structure and just the excited 
vibration of the system due to the applied loading remains.

Now, the frequency of the harmonic mechanical and 
electrical excitations is considered equal to the fundamental 
natural frequency. In this case, if the plate behavior was elas-
tic, the deflection would increase dramatically and the reso-
nance phenomena would take place. The dynamic response 
of the smart viscoelastic structure is illustrated in Fig. 10. 
As observed, due to the damping property of viscoelastic 
materials, as time goes on, the rate of increase in deflection 
is controlled and the response amplitude does not exceed 
a specified range. The FFT diagram illustrated in Fig. 10 
shows that the frequency of dynamic response is just the 
fundamental natural frequency, as expected.

When the frequency of harmonic excitation is very close 
to the natural frequency of the system, the beating phenom-
enon occurs. Knowing that the natural frequency is 2.67 Hz, 
the frequency of excitation is considered as 2.55 Hz and 
the obtained dynamic response is illustrated in Fig. 11. As 
observed the beating behavior happens but the maximum 
amplitude of beats has a descending trend which is related 
to damping property of viscoelastic material. In the FFT 
diagram, both natural frequency and excitation frequency 
are observed.

In Eq. (2) the retardation time ( 1
/
�m ) was defined as 

the inverse of the coefficient of exponential argument in 
the Prony series. According to Eqs. (2) and (35) two terms 
of the Prony series ( �1 = 2 and �2 = 0.5 ) is considered in 
this study. The effect of first retardation time ( 1∕�1 ) on the 
dynamic response of the smart viscoelastic laminate is 
investigated. The structure is considered under harmonic 
excitation in resonance condition. As illustrated in Fig. 12, 
by increasing �1 , the stabilization time of the vibration is 
reduced.

As mentioned before beside the passive control of excited 
vibration due to the viscoelastic properties of the laminate, 
the dynamic response of the structure can be actively con-
trolled by applying the electrical voltage to the piezoelectric 
actuator. The previous smart viscoelastic laminate is con-
sidered under harmonic excitation in resonance condition 
and the effect of the voltage applied to the PFRC layer is 
investigated. As observed in Fig. 13, by applying − 300 V 
to the PFRC layer the amplitude of vibration decreases sig-
nificantly in comparison to the condition that no voltage 
is applied which means that the induced deflections due to 
electrical load diminish a portion of mechanical deflections. 
When the applied voltage is +300 V, the induced electrical 
deflection amplifies the mechanical deflections.

Fig. 8   Comparison of the forced vibration behavior of elastic, viscoelastic and smart viscoelastic plates
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Fig. 9   a Vibration behavior of the smart viscoelastic laminate under harmonic mechanical and electrical excitation, b FFT diagram

Fig. 10   a Vibration behavior of the smart viscoelastic laminate under harmonic mechanical and electrical excitation with a frequency equal to 
the fundamental natural frequency (resonance condition), b FFT diagram
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In Fig.  14 the effect of boundary condition on the 
dynamic response of prescribed smart viscoelastic lami-
nated plate is investigated. The structure is subjected to 
sinusoidally-distributed mechanical and electrical loadings 
which start at t = 0 and remain constant through the time 
(rectangular-pulse loading). SSSS, SSCC, and CCCC are 
stood for fully simply supported, simply supported-clamped 
and fully clamped plates, respectively. As seen, the SSSS 
plate by the least constraint possesses the highest deflection 
and the amplitude of vibration decreases dramatically by 
increasing the constraints in the SSCC plate. Following that, 
the CCCC plate presents the lowest deflection, as expected. 
The frequency of vibration has a reverse trend which means 
that by increasing the constraint on the plate boundaries and 

consequently increment of the plate stiffness, the frequency 
increases, too.

The effect of the thickness to side ratio on the dynamic 
response of the simply supported smart viscoelastic lami-
nate is investigated in Fig. 15. The loadings are similar to 
the previous problem. The results are obtained for three dif-
ferent thicknesses to side ratio of 0.01, 0.015 and 0.02. By 
increasing this ratio and consequently increasing the plate 
thickness (the plate side is kept constant), both stiffness and 
mass of structure increase but the amount of increase in stiff-
ness is higher than mass and thus as observed by increasing 
the thickness ratio the response frequency increases, too. 
By increasing the thickness ratio the response amplitude 
decreases due to increment of the plate stiffness.

Fig. 11   a Vibration behavior of the smart viscoelastic laminate under harmonic mechanical and electrical excitation with frequency closed to the 
fundamental natural frequency (beating condition), b FFT diagram

Fig. 12   Effect of the inverse of retardation time on the dynamic response of the smart viscoelastic laminate under resonance condition
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4 � Conclusion

In this study, a finite element formulation based on the four-
variable refined plate theory was presented for forced vibra-
tion analysis of cross-ply viscoelastic laminates integrated 
with a piezoelectric actuator. By comparing the obtained 
results for several benchmark problems existing in the litera-
ture, the accuracy and performance of the presented method 
were verified. For all investigated problems by performing 
the spatial and temporal convergence studies, the proper ele-
ment size and time step were determined.

The behavior of elastic, viscoelastic and smart viscoe-
lastic plate was compared and it was concluded that the 

viscoelastic property, like a vibration passive control, causes 
a damping effect on the dynamic response of the plate. Inte-
grating the structure with a piezoelectric actuator gives us 
this possibility to control the mechanical vibration actively 
by applying an appropriate electrical voltage to the PFRC 
layer.

The forced vibration behavior of the smart viscoelastic 
plate under the action of harmonic mechanical and electrical 
excitations was investigated in three conditions. First, the 
frequency of excitations was taken different from the fun-
damental natural frequency of the structure. In this case, the 
dynamic response of the system was a composition of two 
harmonic waves with excitation and natural frequencies but 

Fig. 13   Effect of the electrical voltage applied to the PFRC layer on the dynamic response of smart viscoelastic laminate under resonance condi-
tion

Fig. 14   Effect of boundary condition on the central vibration of the smart viscoelastic laminate plate
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because of the damping effect of viscoelasticity the natural 
response of the system disappeared after a while and the 
system just vibrated according to the excitation conditions. 
When the frequency of excitations was considered equal to 
the natural frequency, the resonance phenomena occurred. 
Thought an unstable behavior is expected in resonance con-
dition of an elastic body, in this case, the viscoelastic prop-
erty prevented plate to vibrate unlimited and the deflection 
was controlled in a specific range. And finally, when the 
frequency of excitation was kept much closed to the natural 
frequency, beating phenomena occurred and again because 
of the viscoelastic properties of the material, a damping 
behavior was observed.

The effect of some other parameters was also investi-
gated. It was observed that by increasing retardation time the 
damping behavior of viscoelasticity increases. The effect of 
the amount of applied voltage to the PFRC layer was inves-
tigated and it was observed that due to the amount and sign 
of applied voltage the vibration amplitude may increase or 
decrease. The effect of the type of boundary condition on the 
dynamic response of the system was studied, too. The SSSS 
plate by the most and the CCCC plate by the least deflection 
demonstrated that increasing constraints on the plate edges 
decreased the vibration amplitude and increased the vibra-
tion frequency. Finally, the effect of thickness to side ratio 
on the plate vibration was studied and results were gained 
for three different thicknesses. As expected, by increasing 
the thickness, the stiffness increased and consequently, the 
vibration amplitude decreased. Also, the mass of structure 
increased by increasing the thickness but the amount of 
increase of stiffness is more than mass and therefore it was 
observed that by increasing the plate thickness the response 
frequency increases, too.

Appendix A

The components of matrices in Eq. (27) are determined as
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��

= ∫
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�
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�
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Fig. 15   Effect of thickness to side ratio on the central vibration of the smart viscoelastic laminate plate
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Ḣ

s
B
�
+ BT

�
Ȧ
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