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Abstract
Theonset of frictionalmotion couples complex spatiotemporal dynamics of discrete contactswith different orders ofmagnitude
at time and length scales. In order to reveal how these individual scales affect the frictional sliding, we establish a 2Dmultiscale
spring-block model for the frictional sliding at an elastic slider-rigid interface. In this model, the rupture of frictional interface
is described by three different types of locally microscopic motion: pinned, sliding and dislocated states. By using realistic
boundary conditions, our numerical results can precisely reproduce the loading curves found in previous experiments. The
precursor events, corresponding to a discrete sequence of rapid crack-like fronts propagating partially in the contact zone,
can also be shown in our simulation. From the analysis of the microscopic motion, we characterize the evolution of the
real contact area and the corresponding interface motion at the mesoscale level, and show that the evolution corresponds
to four distinct and inter-related phases: detachment, fast and slow slip motion, as well as the rest of slip. These mesoscale
behaviors are completely consistent with the existing experimental results and their physical mechanisms can be explained
by the detailed information of the numerical simulation. The study is established on a bottom-up multiscale model which
provides a comprehensive picture about the complex spatiotemporal dynamics of frictional sliding.

Keywords Friction · Multiscale model · Simulation

1 Introduction

Since the seminal work of Bowden and Tabor [1], it has been
recognized that the relative motion of two contacting bod-
ies under applied shear forces is controlled by the discrete
contacts that make up their interface. Based on this knowl-
edge, many studies have been performed for bridging the gap
between the microscopic interactions that define local fric-
tional resistance and the macroscopic motions that appear
in large blocks [2,3]. Among them, the onset of frictional
sliding is central to understanding the physical mechanisms
involved in tribology [4–9], mechanics of fracture [10,11],
and earthquake dynamics [12–14].

The onset of sliding is related to the failure of the ensemble
of discrete contacts at the interface. Detailed measurements
in recent experiments have revealed that the rupture process
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is mediated by the propagation of crack-like microscopic
fronts (rupture fronts) [2,7,15]. These rupture fronts arrest
before the overall slidingof the interface is initialized [16,17],
and the length and number of these precursors significantly
depend on the spatial stress distribution at the interface [7].
Whereas the average motion of large, slowly sliding bodies
is well-described by empirical friction law, interface overall
strength is a dynamic entity that should be determinedbyboth
the real contact area and the contacts’ shear strength. Recent
experiments have examined how the real contact areas evolve
with the corresponding interface motion, and found that the
local motion experiences fast slip as well as slow slip over
different characteristic timescales [15].

Theoretically, these experimental observations can be
studied using various combined models with elastodynamic
descriptions (bulk models) for contacting bodies and friction
laws characterizing the local shear strength at the interface.
The bulkmodels play a role of relating themacroscopic load-
ing conditions to the stress field along the contact interface at
a mesoscopic scale level. This scale level requires discretiza-
tion of the macroscopic interface treated with a 1D [18,19] or
2D model [20–24]. The simplest bulk model is probably the
1D spring-block model, which has been popular in the fric-
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tion [18] and earthquake [25]. In this model, the total mass
of the slider is distributed among a linear chain of blocks
that interact with their neighbors. The main limitation of 1D
models is that it is unable to accurately reproduce realistic
stress distribution at the interface. In order to reproduce the
heterogeneous stress distribution at the interface easily, the
2D spring-block model is often used to discretize the linear
elastic contact body [20].

Due to the complexity of the microscopic mechanisms in
the contact shear strength, some simple friction laws, such as
Amonton−Coulomb (A–C) description with slip-weakening
or velocity-weakening [26,27], rate-and-state friction laws
[22,28–30], are often used to describe the friction strength
at the level of a mesoscopic region or an individual micro-
contact. While each of these friction laws could reproduce
some aspects of the experimental phenomenon exhibited in
the onset of friction sliding, they, by their nature, cannot
explain how the individual contacts evolve and interact to
produce the overall friction behavior.

Recently, Trømborg et al. [20] developed anovelmodel for
studying the spatiotemporal features of the rupture dynamics
observed in the experiments [16]. In this model, the elastic
slider is represented by a2Dspring-blockmodel consisting of
lattice and springs connecting them. Themulti-contact nature
of the interface is modeled through an array of tangential
springs attached in parallel to each interface block. The indi-
vidual spring behavior is characterized as two motion states,
pinned state and sliding state. A pinned spring stretches lin-
early elastically as the block moves, while a sliding spring
takes a tangential force proportional to the normal force on
the corresponding block. In addition, the sliding spring is
modeledwith a characteristic timescale controlling the relax-
ation of sliding micro-junctions. Namely, after a random
time interval, the sliding spring is replaced immediately by a
pinned, unloaded spring representing a new junction formed
elsewhere and a new cycle starts. The simulation based on the
model can successfully reproduce the short-time slip dynam-
ics, and can spontaneously produce both slowand fast rupture
fronts and the transitions between them.

Despite the remarkable success of the model in repro-
ducing many features of friction dynamics, there are still
ambiguities in the interpretation of some experimental phe-
nomena. From Trømborg’s model, it can be seen that the
slow slip is due to the micro-contacts being in pinned state,
while the fast slip is due to themicro-contacts being in sliding
state. Correspondingly, the local contact area in the slow slip
phase would be different from that in the fast slip phase. Nev-
ertheless, the experimental measurements shew that the local
contact area remains almost constant during the fast and slow
slip phases [15,16]. Trømborg’smodel assumes that the num-
ber of micro-contacts per block remains unchanged, while its
stiffness varies with pressure. This assumption seems to be
consistent with the case where the interface is in an elas-

tic regime. In addition, Trømborg’s model only introduces
a single time scale controlling the fast dynamics. Experi-
mentally, there are two characteristic time scales [15]: one
is the short scale of the fast slip phase controlled by the fast
dynamics, and the other is the relative large time scale of
the slow slip phase that controls the slow sliding motion
of the block. Researchers from Fineberg’s group explained
that the local motion of the slow slip may be analogous to
large-scale frictional motion governed by the contact dynam-
ics of “rigid” micro-contacts [15,31]. Also, the slow slip
events widely studied in earthquake community corresponds
to a phenomenon that a relative large displacement exists
on the interface [32,33]. We therefore surmise that the slow
slip motion may be related to the dislocation of interlocking
micro-contacts.

In order to better understand the existing experimental
phenomena,we develop a novel asperitymodel that describes
the individual spring behavior as three distinct motion states:
pinned, sliding and dislocated. Compared to the Trømborg’s
micro-contact model, a dislocated state is added, and two
time scales are introduced: one for the sliding state, and the
other for the dislocated state. Furthermore,we specify that the
number of the tangential springs per block is not a constant,
but depends on the block pressure. The model is applied to
numerically study the experiments of Maegawa et al. [7],
and found that the model could reproduce the experimental
loading curve fairly well. We also use this multi-scale model
to investigate how the non-uniform normal loading affects
the propagation of precursor events. In addition, how the real
contact area and the corresponding interface motion evolve
from extremely short to large time scales will be discussed
in detail.

The paper is organized as follows. The numerical model
is introduced in Sect. 2, where the description for the friction
law of an individual asperity and the law for the deforma-
tion of the bulk material is given in detail. In Sect. 3, we
perform numerical investigation for the experiments done
by Maegawa et al. [7]. Comparison between the numerical
and experimental results for the loading curves are given.
How the properties of the precursor events are affected by
the non-uniform normal loading will be discussed in this
section. In Sect. 4, a detailed analysis is performed for the
evolution of local real contact area and the corresponding
interface motion. The physical mechanisms in connection
with the fast and slow slip motion are exposed based on the
numerical simulation. A conclusion is drawn in Sect. 5.

2 Model description

In this section, we first present an elastodynamic description
for the contacting bodies, then propose an asperity model
to characterize the microscale junction dynamics. In order
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Fig. 1 Schematic diagram of friction experiments under non-uniform
normal loading. The load is supported by the asperities having heights
greater than the separation between the reference planes (bottom)

to describe the heterogeneous stress field induced by the
macroscopic loading conditions, a 2D spring-block model
is established to discretize the elastic contact body [34]. The
normal interaction of the micro-contacts at the interface is
modeled using the method proposed by Bowden and Tabor
[1]. The tangential interaction of the micro-contacts is based
on a novel asperity model in which the micro-contact expe-
riences three distinct states: pinned, sliding and dislocated
states.

2.1 Elastodynamic descriptions of contacting body

We study the onset of frictional sliding that appears in a sys-
tem shown in Fig. 1, where the frictional interface is formed
between two polymethylmethacrylate (PMMA) blocks. This
system is consistent with the experiment done by Maegawa
et al. [7]. The base block is fixed and can be modelled as a
rigid surface. The slider is made of linearly elastic material
with elastic modulus E and poison ratio ν, and it has mass
M and sizes L and H in the horizontal (x) and vertical (z)
directions, respectively. We use B to represent the width of
the slider along y direction. The normal load is applied on the
top surface of the slider through two load cells. The normal
forces in the left and right load cells are denoted as FZA and
FZB, respectively. If FZA and FZB are equal, it is considered
as uniform loading. Otherwise it is called non-uniform load-
ing. A tangential load which is applied at the trailing edge of
the slider increases from zero.

The slider is modeled as a square lattice of N = Nx Nz

point masses (of mass m = M/N ) connected by internal
springs, thus rotational degree of freedom within the bulk
is not included. As shown in Fig. 2, each internal block is
coupled to its four nearest neighbors by four straight springs
of equilibrium length ls = L/(Nx − 1) = H/(Nz − 1). The

W1 W41W2 Wj

Slider

Block

Linear
springs

Nonlinear
springs Substrate

V

Fig. 2 Elastodynamics of the elastic slider is described by a spring-
block network, and the frictional interface is modeled using surface
springs. The enlargement of the ellipse is given in Fig. 3a

block is also coupled to other next-nearest blocks through
four diagonal springs with equilibrium length

√
2ls. Giving

an isotropic elastic model with Poisson’s ratio ν = 1/3, the
straight and diagonal springs take stiffness K = 3BE/4 and
K/2, respectively [34–36].

The spring force Fi j exerted on block i by block j is thus
expressed as

Fi j =

⎧
⎪⎨

⎪⎩

ki j (ri j − li j )
�xi j
ri j

,

0, if i and j blocks are not connected.
(1)

where Fi j = (Fx
i j , F

z
i j ), x = (x, z), �xi j = x j − xi , ri j =

|xi j |, and ki j and li j are the stiffness and equilibrium length
of the spring connecting blocks i and j . In order to avoid
the artificial oscillations of the blocks, we introduce viscous
force between blocks,

C i j = η(ẋ j − ẋi ), (2)

where the damping coefficient is set as η = √
0.5Km [20].

The top blocks of the slider are subjected to time-
independent vertical forces as

Wi =

⎧
⎪⎨

⎪⎩

FN
Nx

(

1 + 2i − Nx

Nx
θ

)

, i = 1, 2, · · · , Nx ,

0, otherwise,

(3)

where FN = FZA + FZB is the total normal load, and θ ∈
[−1, 1] is a parameter describing the non-uniformity degree
of the normal loading.

Both vertical boundaries of the slider are free, except for
a time-dependent horizontal driving force FS. The force is
applied to the slider trailing edge (x = 0) through a load
spring with stiffness KS. One end of this spring is attached to
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the trailing edge at height h, whilst the other end of the spring
moves at a constant speed V . The time-varying horizontal
force FS changes as

FS = KS(V t − xh(t)), (4)

where xh(t) represents the horizontal displacement of the
attached point at the trailing edge.

Due to the interaction with the elastic substrate the bottom
blocks are subjected to both normal and tangential (friction)
forces, denoted as Pi (t) and fi (t), respectively. By assuming
that both the slider and the substrate are of the samematerial,
the normal contact stiffness of these blocks with the elastic
base is equal to Kb = K/2. The normal force Pb(t) experi-
enced by each bottom block can be computed by

Pb(t) =
{

− Kbzi , if zi (t) ≤ 0,

0, if zi (t) > 0,
(5)

where zi (t) is the vertical displacement of the i th bottom
block at the interface. It is worth noting that zi (t) > 0 means
that the block detaches from the interface, thus the corre-
sponding tangential force, fi should be equal to zero. For the
case zi (t) < 0, the tangential force fi should depend on the
friction state at the interface. This will be discussed in the
subsequent subsection.

Let us denote F(·)
j and C(·)

j as the resultant forces origi-
nated from the internal springs and dashpots connected with
j th block.Considering the boundary conditions of eachblock
and neglecting the effect of gravity on the frictional motion,
the mesoscale model of the elastic slider is governed by the
following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m ẍu( j, t) = Fu
j + Cu

j + Wu, up blocks,

m ẍd( j, t) = Fd
j + Cd

j + Fd, driving block,

m ẍb( j, t) = Fb
j + Cb

j + Pb, bottom blocks,

m ẍo( j, t) = Fo
j + Co

j , other blocks,

(6)

where Wu=(0,−Wi ), Fd = (FS, 0), Pb=(− fi (t), Pb(t)).
xu( j, t), xd( j, t), xb( j, t), and xo( j, t) represent the dis-
placement vectors of blocks under different boundary condi-
tions.

2.2 Description of the interface roughness

Essentially, the frictional interface is made up of myriad ran-
domly distributed micro-contacts, whose real contact area
is smaller than the nominal contact area by orders of mag-
nitude [1,37]. For understanding the mechanism underlying
the onset of frictional sliding, a description for the interface
asperities should be provided at first.

Bowden andTabor [1] assumed that touching asperities on
the interface are fully plastic, fromwhich they obtained a lin-
ear relation between normal load and real contact area. This
relationship is extended by Greenwood and Williamson [38]
into the casewhere the interface is in elastic regime. Here, we
assume that the interface is in a fully plastic regime. In this
case, the average normal stress σp at the contact tip is approx-
imately equal to the material hardness H . The hardness is
related to the material yield stress as H ≈ 3σy . Suppose
that r̄ represents the average contact radius of these touching
asperities. The normal load applied on each asperity can be
computed as p = π r̄2H . Then the total number of touching
asperities under normal load FN can be roughly estimated as

N = FN
p

. (7)

The number of the asperities on i th bottom block is given
by

N b(i, t) = Pb(t)

p
. (8)

It is worth noting that FN is constant, while Pb(t) changes
dynamically by Eq. (5). This means that N should be con-
stant, while N b(i, t) is time-dependent. The relation between
N and N b(i, t) is as follows:

∑Nx
i=1 N

b(i, t) = N . Generally,
we can use N b(i, t) to represent the local real contact area
of i th bottom block [37].

2.3 Modeling the friction of a touching asperity

For each micro-contact, it is subjected to both normal and
tangential forces. Here a nonlinear spring is used, as shown
in Fig. 3a, to represent the tangential force applied in each
micro-contact. On the basis of previous models [18,20] and
existing experimental observation [15], we consider that the
following physical aspects are essential to model the individ-
ual spring behavior of the touching asperity.

A pinned state In this state the micro-contact behaves
elastically and deforms with the motion of the slider. It
bears a shear force f (t) that is smaller than a certain
threshold fthr.
A time-controlled shear-relaxation process When fthr is
reached, a microscopic fracture-like event occurs, and
activates a thermal process, leading to time-controlled
shear-relaxations [31]. This process experiences a time
interval with a typical value, which correlates the fast slip
dynamics of the frictional interface [15].
A time-controlled dislocated stateThe touched asperities,
after the time-controlled shear-relaxation, are imme-
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Fig. 3 a Tangential springs attached on the bottom block. b Three
micro-scale interacting states between a pair of asperities on the con-
tact surface (top) and the corresponding force curves (bottom). c The
probability density function P(ts) and P(td) of the micro-contacts in
the sliding state and the dislocated state, respectively

diately dislocated from each other, resulting in new
micro-contacts with time-controlled slip motion [31].
Stick rejuvenation The cessation of the time-controlled
dislocated state marks the initiation of the stick rejuvena-
tion and strengthening that are generally associated with
a pinned state.

Figure 3bdescribes the physical aspects of amicro-contact
that consists of two contacting sphere-like asperities. Due
to the initial compression, the two touching asperities are
flattenedwith the same plane (pinned state). Separation com-
mences on the compressed plane when the micro-contact
enters into a time-controlled shear-relaxation process (slid-
ing state). After that, a new micro-contact is formed and
it immediately enters into a time-controlled dislocated state
(dislocated state), and then the following stick rejuvenation
makes the micro-contact enter into a pinned state (pinned
state). Unless otherwise stated, we specify that the velocity
to the right is positive.

Each micro-contact is subjected to the same constant nor-
mal load p and its tangential interaction is represented by a
tangential spring attached in parallel to the relevant interfa-
cial block. The static friction threshold fthr is assumed to be
time independent, and its value is given by fthr = μs p, where
μs is the static coefficient of micro-contact friction. As the

micro-contact is in a sliding state, the sliding friction force of
the micro-contact is determined by a time-independent slid-
ing coefficient μd. Thus, the friction force of a sliding spring
j on block i is given by

f si j = μd p. (9)

According to the two characteristic coefficients of micro-
contact friction, the friction relations of micro-contact in
different motion states can be obtained. For the pinned spring
j of block i , the tangential force on the block is computed as

f pi j (xi j , t) = f 0i j + ks(xi (t) − xi j ), (10)

where xi j is the displacement of block i at the instant when
spring j enters into a pinned state and xi (t) is the temporal
position of the block, ks is the tangential stiffness, which
can be determined by Mindlin theory [39]. f 0i j is the initial
tangential force of pinned spring j . It is worth noting that the
value of f 0i j is tightly linked with the history of the normal
and tangential loading of the system. If the pinned state is
initialized through a dislocated state, the initial friction force
is related to a sliding friction (see Fig. 3b), thus we should
have f 0i j = μd p.

For the micro-contact in a dislocated state, the contact
geometry of the two touching asperities should be considered
in modeling. The touching asperities are assumed to take the
same sphere-like shape, and the contact angle between them
is ϕ. Let us denote by fn and ft as the normal and tangential
components along the contact surface, respectively, and they
satisfy ft = μd fn, corresponding to the friction relation of
the micro-contact in the sliding state. Noting that the vertical
force of eachmicro-contact is equal to p, we therefore should
have fn(cosϕ − μd sin ϕ) = p, and the horizontal force
f di j (ϕ, t) of spring j on block i can be written as

f di j (ϕ, t) = μd

1 − μd tan ϕ
p + tan ϕ

1 − μd tan ϕ
p ≡ f ti j + f ni j ,

(11)

where f ti j and f ni j are the horizontal components induced by
the tangential and normal forces, respectively. It is clear that
f di j (ϕ, t) decreases as ϕ gets smaller and it becomes as large
as the sliding force f si j when ϕ equals zero.

We use ts and td to characterize the time scales of the slip
and dislocated states, respectively. Due to the random dis-
tribution of micro-contacts, the two time scales essentially
should satisfy certain probability. Here both ts and td are
supposed to follow Gaussian distribution (see Fig. 3c). Not-
ing that the negative time should be excluded, we modify the
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probability density function of ts and td as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P(ts) = 1√
2πσs

e

−(ts − t s)2

2σs2 , ts > 0,

P(td) = 1√
2πσd

e

−(td − td)2

2σd2 , td > 0,

(12)

where t s and td are average time, σs and σd are mean square
deviation of P(ts) and P(td), respectively.We assume that all
the micro-contacts in a dislocated state take the same initial
contact angel ϕ0, and the angle decreases linearly with time,
namely

tan ϕ(t) = td − t

td
tan ϕ0. (13)

As tan ϕ(t) becomes zero, the asperities get pinned, then
next cycle starts. The pinned-sliding-dislocated cycle would
repeat again and again in the motion of micro contacts.

Note that block i may reverse its motion due to the block
oscillation, namely, the velocity of the block changes its
direction. At the instant of the reverse motion occurring,
spring j attached at the block i may be in a sliding or dis-
located state. In this case, we should consider the effect of
the deformation relaxation on the friction forces of the these
springs. The tangential force of a slipping spring j on the
reversed block i is modified as

f si j = μd p + ks(xi (t) − xi j ), (14)

where xi j is the displacement of block i at the instant when it
just reverses its velocity direction. The above equation exists
while | f si j | ≤ μd p.

For a dislocated spring attached at a block with a reversed
motion, we assume that the contact angle ϕ is fixed and the
part f ni j in Eq. (11) remains unchanged. Nevertheless, we
consider the effect of the deformation relaxation on the part
f ti j

f ti j = f t,0i j + ks(xi (t) − xi j ), (15)

where xi j is the displacement of block i at the instant when
it just reverses its velocity direction, and f t,0i j is the initial

value of f ti j at that instant. It is worth noting that the above

equality exists while f ti j ≤ f t,0i j . When f ti j decreases to zero,
separation occurs at the current micro-contact. In this case,
we consider that a newmicro-contact is formed immediately,
and its behavior starts from a unloaded pinned state ( f 0i j in
Eq. (10) is equal to zero).

To summarize how the friction force of eachmicro-contact
is determined with respect to different motion state, we plot a

Pinned

Regular Regular

Sliding

Relaxation Relaxation

Dislocated
C1

C6

C4

C2 C5 C3
C1: p

ij thrf f>

C2: s
ij df pμ>

C4: stay st t>

C3: ( ) ( ) 0i ix t x t− +⋅ <

C3

C5: ,0t t
ij ijf f>

C6: stay dt t>

Fig. 4 Flow chart of the motion state of a micro-contact during one
cycle. C1 − C6 represent transfer conditions between different motion
states

flow chart in Fig. 4. In the beginning of the cycle, the micro-
contact is in pinned state, and the friction force offered by this
micro-contact could be calculated by Eq. (10). The micro-
contact changes from the pinned state to the sliding state
once the local threshold is reached, namely | f pi j | > fthr. At
the start of the sliding state, we first use Eq. (9) to compute
the friction force, then check the velocity direction of the
block. If the direction remains unchanged, the friction state
is in a regular case where Eq. (9) is still used to determine
the friction force. If the block reverses its motion, the friction
state enters into a relaxation case where the friction force is
computed as Eq. (14). It is worth noting that the friction state
of the junction may switch between the two cases within a
random time interval ts, a characteristic time scale respon-
sible for the sliding phase. Similar to the sliding phase, we
should consider the relaxation effect induced by the reverse
motion of the block in the dislocated phase. If no reverse
motion appears in the dislocated phase, the friction state is
in a regular case where the friction force can be calculated
by Eq. (11). As the friction state is in a relaxation case, the
friction force should be determined by Eq. (15). The friction
statemay switch between the two cases within a random time
interval td, another characteristic time scale responsible for
the dislocated phase. After td, the dislocated phase will be
transferred into a pinned phase.

In terms of the motion state of each micro-contact behav-
ior, the frictional force exerted on block i can then be
computed as

fi (t) =
Ns∑

j=1

f si j +
Np∑

j=1

f pi j +
Nd∑

j=1

f di j , (16)

where Ns, Np and Nd are the spring numbers of block i in
the sliding, pinned and dislocated states, respectively.
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Table 1 Material constants of the slider and the loading condition

Name Symbol Value

Slider geometry and material

Length (mm) L 100

Height (mm) H 20

Width (mm) B 5

Mass (g) M 11.8

Young’s modulus (GPa) E 3

Poisson ratio ν 0.33

Loading condition

Normal load (N) FN 400

Spring stiffness (N/m) KS 0.8 × 106

Loading height (mm) h 5

Speeds (mm/s) V 0.1

Table 2 Parameters for the spring-block model

Name Symbol Value

Number of blocks (Nx × Nz) (41 × 9)

Block mass (g) m M/(41 × 9)

Internal spring length (mm) ls 2.5

Internal spring stiffness (N/m) K 9.375 × 106

Damping coefficient (kg/s) η
√
0.5Km

3 Numerical results and precursor events

In this section, the multiscale model is used to investigate
the onset dynamics of friction for various loading conditions
reported in Refs. [7,15,16]. Table 1 presents the loading con-
dition and material constants in accordance with Maegawa’s
experiment [7]. The slider is described by a spring-block
model with parameters shown in Table 2. The physical
parametersmodeling themicro-contact interactions are listed
in Table 3.

It has been found from existing experiments that the load-
ing condition significantly influences the onset dynamics
of friction [7]. In this section, we will first give detailed
information on how the system is initialized and the bound-
ary conditions are applied. Then the simulation results are
compared with the existing experiments. Finally, how the
properties of precursor events are affected by different load-
ing conditions will be discussed in detail.

3.1 Initialization of the system and the loading
curve

For simulating the onset dynamics of frictional sliding, the
system is initialized in terms of the following process. At
the beginning of the simulation, only the full normal load
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Fig. 5 Distribution of the normal forces (red dashed line) and the tan-
gential forces (blue dash-dotted line) when the slider is just subjected
to a normal load FN = 400 N with a uniform distribution

with no tangential load is applied on the top of the slider. We
then solve Eq. (6) using fourth order Runge−Kutta method,
through which the state of the system is updated step by step
until the system reaches a steady state. This steady state cor-
responds to a scenariowhere the velocity and the acceleration
of each block is close to zero.

The time step size is set as 2× 10−7 s to perform the sim-
ulation. It was found that the steady state can be achieved
after 50,000 steps. Fig. 5 shows the distributions of the nor-
mal and tangential forces when a normal load FN = 400 N is
uniformly distributed on the top blocks of the system. Due to
the frictional effect of the bottom interface and the Poisson
expansion of the block elasticity, the normal force profile of
the bottom interface is symmetric and weakly non-uniform,
while the tangential force profile is anti-symmetric. These
stresses are in excellent agreement with those expected from
contact mechanics and those measured in previous experi-
ments [40].

After the system reaches a steady state, a tangential load
FS is applied to the system for investigating the typical
frictional experiment done by Maegawa et al. [7], where
FS increases linearly for a constant loading rate (KSV =
80 N/s). Figure 6 shows the loading curves obtained from
our numerical simulation and the experimental observation
in Ref. [7]. It can be seen that the time for the occurrence
of the macroscopic sliding and the period of the stick-slip
cycle achieve good consistency between our simulation and
the experiments. Our simulation also reveals that there are a
series of rapid crack-like precursors that propagate partially
through the interface. These precursors occur at imposed
shear force that are well below the maximum static frictional
force, and the propagation length of each precursor event is
shown in the bottom panel of Fig. 6. Clearly, the length of the
first several precursor events is far away from the leading edge
of the slider, and the length of each precursor event increases
successively until the entire interface begins to slide.
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Table 3 Model parameters of micro-contact interaction

Name Symbol Value

Micro-contact property

Pressure on each micro-contact (N) p 0.098

Static coefficient of micro-friction μs 1

Sliding coefficient of micro-coefficient μd 0.38

Interface spring stiffness (N/m) ks 1.92 × 105

Contact angle tan ϕ0 0.25

Two characteristic time scales

Mean (ms) t s(td) 0.5(1.3)

Standard deviation (ms) σs(σd) 0.15 (0.39)

l/L

0.0

0.5

1.0

F S
 (N

)

0

100

200 Simulation
Experiment

0 1 2 3 4 5
Time (s)

Fig. 6 Typical loading curves obtained from the experiment by Mae-
gawaet al. [7] (blue) and the simulation (red) under the loading condition
FN = 400 N, h = 5 mm. The bottom figure shows the normalized
length of precursors obtained from the simulation

Note that our model includes some artificial parameters
whose values, at present, cannot be directly determined from
experiments or theoretical analysis. The uncertainty of these
model parameters inevitably leads to errors in numerical
predictions. From Fig. 6 it is clear that there are visible
differences for the maximum frictional force between our
numerical results and the experimental findings (the coeffi-
cients characterizing the micro-contact friction are different
from the global quantities of the system [41].). In addition,
the number of the precursor events from our simulation is
smaller than the one found from Maegawa’s experiment.
Nevertheless, in most cases onemay expect to obtain qualita-
tive understanding about the characteristics of the frictional
motion, instead of very accurate results. In the following,
we will qualitatively investigate how the precursor events
vary with the system configuration and the loading condi-
tions when the model parameters given in Tables 2 and 3
remain unchanged.
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Fig. 7 Lengths l of precursor events under different normal loads FN
applied at the same position h = 5 mm, and a case of FN = 0.4 kN
at a different position h = 2.5 mm. a l vs. FS in four different loading
configuration. b (l/L) vs. FS/FN in four different loading configuration

3.2 Precursors under different loading
configurations

In order to understand the dynamics of precursors within the
onset of frictional sliding, Rubinstein et al. [16] experimen-
tally investigated how the lengths l of precursors vary with
different normal load FN and different heights h of tangen-
tial load (FS) position. The experiments demonstrated that
l grows approximately linearly with FS until rapid growth
occurs at l—L/2. The 23 different experiments they per-
formed also shew that FS – (l/L)FN can collapse into a
single curve. This simple scaling can be ascribed as a local
generalization of the Amontons−Coulomb law: τS = μSσN,
τS and σN are the local shear and normal stresses, respec-
tively, and μS is the local static coefficient of friction. This
simple scaling can be explained as follows [16]: local slip
redistributes the stress along the precursor length, yielding a
mean stress of τS – FS/l. Meanwhile, along the whole length
of the interface there is amean normal stress of σN – FN/L . If
the generalized Amontons−Coulomb law comes to be true,
the scaling FS – (l/L)FN should collapse into a single curve.

We expect that the same scaling for FS – (l/L)FN could be
observed from our numerical results. Here, numerical inves-
tigations are performed by remaining the model parameters
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vs FS/FN, and b the number of the precursor events. The meaning of
the symbols are the same as Fig. 7

shown in Tables 1, 2 and 3 unchanged, but vary the normal
load at the range 0.4 kN ≤ FN ≤ 2 kN. Figure 7 shows
that the results for all conditions indeed can be collapsed
on a single curve by plotting l/L as a function of FS/FN.
In particular, we excellently reproduce the transition from
a roughly linear increase up to l/L ≈ 0.5 to a more rapid
growth for longer precursors.

It can be found from Fig. 7 that the results for the case
of FN = 0.4 kN at a height h = 2.5 mm also follow the
same scaling law. This means that the loading position h
seems to have little effect on the scaling. Position h, by its
nature, is associated with the degree of nonuniformity of the
normal distribution induced by the torque (FS × h). When
great nonuniformity of the normal distribution appears in
the interface, the profile of the scaling law would change
definitely. Maegawa et al. [7] performed experimental obser-
vations for the frictional dynamics of a slider subjected to a
linear time-independent distribution of vertical forces. The
degree of nonuniformity of the distribution is described by
θ (Eq. (3)): θ = 0 denotes uniform loading; θ < 0 and
θ > 0 correspond to the nonuniform loading conditions
FZA > FZB and FZA < FZB, respectively. The experiments
demonstrated that both the number of precursor events and
the increasing rate of the propagation length are influenced
by the value of θ . Fig. 8 shows our numerical results about
how the value of θ affects the number of the precursor events
and the profiles of the curves of (l/L) vs FS/FN. The number
of precursor events increases when θ changes from −0.833
to 0.833. Meanwhile, the lower the normal load on the trail-
ing edge, the lower the tangential force required to nucleate
precursors. Nevertheless, the system under different loading
conditions requires the same threshold force to initialize its
global sliding (l/L = 1). Namely, the static friction coef-
ficient of the global sliding seems to be independent of the
loading conditions. These simulated phenomena are the same
as the experimental observation in Ref. [7].

3.3 Local dynamics at the frictional interface

As a precursor passes through the interface, contacts re-
form and strengthen, leading to the variation of the interface
strength. In order to better understand the rupture process
on the interface, Ben-David et al. [15] examined how the
local real contact area A(x, t) and concurrent slip displace-
ment u(x, t) are related throughout the microscopic motion
of asperities. They identified four distinct and inter-related
phases of contact area evolution that exist in a single rupture
event. The first phase (phase I) is termed as detachment, in
which the contact fracture takes place. Then fast slip (phase
II) immediately commences, followed by a slow slip phase
(phase III). Phase IV is related to contact rejuvenation during
which slip ceases.

In essence, the four phases of the evolution that are
observed from experiments can be understood as the col-
lective behaviors of the asperities, which can be simulated
through our simulation. In the following, we focus on the first
precursor event shown in Fig. 6 to understand the relation-
ship between the mesoscale behaviors of the bottom blocks
and the microscale behaviors of the asperities on the rough
interface.

Let us first remind how the real contact area was mea-
sured in experiments [7,15,16,40]. The interface between two
blocks of PMMA is illuminatedwith a laser sheet at a shallow
angle. This results in total internal reflection in the areas that
are out of contact, and transmission only at the points of real
contact. Contact breaking and renewal is seen as changes in
the intensity level of image pixels captured by a fast camera.

Obviously, the measurement principle allows that the evo-
lution of the pinned micro-contacts would be well reflected
by the intensity changes of image pixels. Noting that each
tangential spring in our numerical model can enter a different
state of pinned, slipping and dislocation, the instantaneous
number of pinned micro-contacts is chosen to represent
the evolution of the local contact area of each block. Let
Np(i, 0) be the number of the pinned micro-contacts of bot-
tom block i before the rupture front arrives, and Np(i, t) be
the instantaneous number of pinned micro-contacts during
the rupture wave. Normalized number of the pinned micro-
contacts Ñp(i, t) is then expressed as

Ñp(i, t) = Np(i, t)

Np(i, 0)
, (17)

which can be considered as an index characterizing the evo-
lution of the local real contact area. The concurrent slip
displacement u(i, t) of i th bottom block can be calculated
by u(i, t) = xb(i, t) − (i − 1)ls, where xb(i, t) is the posi-
tion of the block at time t .

Figure 9a shows the evolutionof Ñp(6, t) andu(6, t)of 6th
block before, during and after the first rupture event in Fig. 6a.
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In Fig. 9b, we plot the evolution of the contact states of all
micro-contacts in 6th block. Clearly, the local dynamics of
the block experiences four distinct phases that exactly coin-
cide with the experimental observations: detachment (phase
I), rapid slip (phase II), slow slip (phase III) and rejuvena-
tion (phase IV). Phase I features that all the micro-contacts
are in pinned state, and the local displacement of the block
increases gradually. As the elastic displacement is larger than
the threshold of static friction, a rupture event occurs, result-
ing in Ñp(i, t) ≈ 0. Namely, almost all of the micro-contacts
immediately enter into a sliding state after the rupture event.
The subsequent fast slip phase is characterized by a high slip
velocity. Then some sliding springs enter into either pinned
or dislocated state, resulting in a slow slip phase (phase III),
in which the number of dislocated springs increases gradu-
ally. Phase III is characterized by a velocitymuch slower than
that in phase II, and it ends at the instant when the number of
dislocated micro-contacts arrives at its maximum. We con-
sider that phase IV starts when the number of pinned springs
increases gradually.

It was found from the experiments [15] that the features
of the local motion are independent of the magnitude of total
slip displacement (Δtot), the measurement location, details
of loading and the geometry of the blocks. This property is
verified by examining the normalized displacements of 10
bottom blocks when the rupture front passes. The normal-

ized displacement of i th block is defined as Δ/Δtot, where
Δ = u(i, t) − u(i, 0) is the displacement difference of i th

block motion within the time interval from current time t to
the instant when fast slip starts.Δtot is the total displacement
of the block from the beginning of its fast slip motion to
the end of its slow slip motion. These normalized displace-
ments of 10 different blocks are plotted in Fig. 9c, yielding
an approximate collapse of the slip history, which was com-
pletely consistent with the experimental observation [15].

Both our numerical results and the experiments in Ref.
[15] show that there is a sharp transition between phases
II and III. In particular, the transition features a character-
istic that the normalized displacement decreases first and
then increases with time. In order to understand the phys-
ical mechanism underlying the transition behavior between
the fast and slow slip phases, we plot in Fig. 9d the time
histories of the forces exerted on 6th bottom block, where
LFi and RFi represent the forces applied to the left and right
sides of the block, respectively, and fi represents the friction
force. We should have LFi = RFi + fi before the arrival
of the rupture front. The rupture event destroys the equilib-
rium due to the sudden decrease of fi , causing the block to
enter into a fast slip phase. At the end of the fast slip phase,
the local slip displacement reaches maximum, then the block
begins a reverse motion (the block changes the direction of
its velocity). The reverse motion leads to a decrease in fric-
tion and triggers a relatively slow slip fluctuation. With the
increase of the dislocated micro-contacts, the friction of the
block increases slightly at first, and then decreases gradu-
ally, thus the block is in a slow slip motion. After the rupture
wave passes through the block, its motion enters into phase
IV, in which the interface friction is dominated by the pinned
micro-contacts, and the local interface becomes strengthened
gradually.

The local dynamics of the interface is summarized as fol-
lows. The fast slip phase results from the sudden reduction of
the friction force, fi , which is caused from the rupture of the
micro-contacts; The slow slip phase is caused by the dislo-
cation motion of micro-contacts; The transition between fast
slip phase and slow slip phase is related to a slip fluctuation,
triggered by the inertial motion of the block. The intensity of
the inertial motion, in general, increases with the difference
between the static and dynamic friction coefficient μs − μd.
The transition between the slow slip phase and the rejuvena-
tion phase is closely related to the timescale td. The essence
of td is associated with the geometric size of the asperities
on the contact interface.

4 Conclusions

In order to understand the onset of frictional sliding between
two elastic bodies, we have established a multiscale model
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that combines a multi-junction friction law with a 2D spring-
block model. The spring-block model is used to transfer
the external shear and normal loads to the interface defor-
mation, and the frictional interaction is modelled as a set
of junctions attached to each interface unit in the bulk dis-
cretization. Compared to the model proposed by Trømborg
et al. [20], the principal differences are that a dislocated state
is assigned to the junction behavior, and two characteristic
timescales observed from experiments are also introduced
into the junction friction law. Physically, the two timescales
are associated with the thermally activated relaxations of the
slippingmicro-junction and the removal of a dislocated junc-
tion, respectively [31].

By numerically investigating the loading configurations
of experiments done by Maegawa et al. [7], we show that
the model can precisely reproduce the distribution of normal
and tangential forces and the profiles of loading curves. In
addition, the qualitative properties of the precursor events
that have been observed from different experiments can be
captured by the numerical model. How the non-uniform nor-
mal loading affects the precursor dynamics is also examined
numerically.

Finally, we expose the evolution of local real contact area
and concurrent local slip displacement through scrutinizing
the details of a precursor event. It can be seen that the evo-
lution corresponds to four distinct and inter-related phases :
detachment, fast and slow slip motion, as well as the rest of
slip. This is completely consistent with the existing experi-
mental results [15]. In addition, we can clarify the physical
mechanisms underlying the transitions among these phases
through the analysis for the dynamics of an interface unit in
the bulk discretization. We believe that the present study has
made a direct bridge between the interfacemicroscopic inter-
actions and the macroscopic motions of frictional systems.
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