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Abstract

Generalized Kelvin—Voigt and Maxwell models using Prony series are some of the most well-known models to charac-
terize the behavior of polymers. The simulation software for viscoelastic materials generally implement only some material
models. Therefore, for the practice of the engineer, it is very useful to have formulas that establish the equivalence between
different models. Although the existence of these relationships is a well-established fact, moving from one model to
another involves a relatively long process. This article presents a development of the relationships between generalized
Kelvin—Voigt and Maxwell models using the aforementioned series and their respective relaxation and creep coefficients
for one and two summations. The relationship between the singular points (maximums, minimums and inflexion points) is

also included.

Keywords Viscoelasticity - Dynamic mechanical analysis - Mechanical vibrations

1 Introduction

The mathematical models that characterize mechanical
properties of materials are a continuing issue in engineer-
ing research. The simplest and more friendly models for
this proposal are the Kelvin—Voigt and Maxwell models
[1-5] because of their linearity. The models are not
equivalent: the first can explain creep, but not relaxation
phenomena, and the second does the opposite. Both models
correspond to materials that show only one characteristic
time. In order to fit a model to materials showing several
characteristic times, generalized linear viscoelastic models
are used, connecting several Kelvin—Voigt or Maxwell
elements. Every generalized Maxwell (GM) model has an
equivalent generalized Kelvin—Voigt (GKV) model. These
models correspond to the use of Prony series to adjust
creep and relaxation functions. This is a usual option in a
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variety of engineering applications involving viscoelastic
materials [6—16], and the identification of the parameters of
the material models is nowadays still a challenging issue
[17-28].

The engineering practitioner, when using different tools
for calculation, must use these viscoelastic models under a
specific form [29]. This fact can be relatively important,
because commercial software is usually implemented with
only some specific viscoelastic models. Therefore, it is
necessary for the user to know the conversions to pass from
one model to another. Although the existence of these
relationships is a well-known fact [4, 5, 30-32], it usually
implies some numerical methods. A number of these
numerical methods have been developed and published
[32-37]. A recent work [37] offers an interconversion
method between the different models by explicit expres-
sions, except for the determination of the zeros of certain
polynomials. For some cases it is possible to establish quite
explicit formulas of interconversion, which are presented in
Ref. [4], but only for the simplest cases.

This work presents the complete set of explicit expres-
sions of the relationships between GKV and GM models of
first and second, as well as relaxation and creep coeffi-
cients. To the best of our knowledge, there is not a set of
explicit formulas published as we propose. From this study,
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it is also possible to study singular points as maximums,
minimums or inflexion points. These relationships allow to
move from one model to another equivalent easily and
quickly.

2 Characterization of Prony series

In this section, the GKV and GM models as combination of
springs and dashpots are characterized.

In the GKV model, only creep, storage and loss com-
pliances are presented. The other way round occurs in the
GM model, which presents values for relaxation, storage
and loss moduli. As the number of terms 7 in the models is
increased, the equations found in the Laplace domain are
more complicated to express in the time or frequency
domains. Only in two cases (in the GKV model with
compliances and in GM model with moduli), these trans-
formations are simple, since every term in the Laplace
domain can be separately transformed in an inverse expo-
nential in the time domain.

The difficulty arises when passing from the coefficients
of the creep function to the relaxation moduli, for example.
Conversely, the same happens when it is interesting to
obtain the compliance coefficients from the relaxation
function. In this work, these interconversions are solved
when n = 1 or n = 2, in an explicit form. However, in other
cases, with n > 2, the expressions as a function of »n in the
Laplace domain contain a denominator with a polynomial
equation of degree n. There is no expression to pass easily
from Laplace domain to time domain when a polynomial
equation of degree three or more appears in the denomi-
nator. For this reason, all coefficients are just solved for
n=1andn=2.

In the following sub-sections, the explicit expressions to
obtain the coefficients of the relaxation function from the
GKYV model for n =1 and n =2 have been developed.
Also, explicit expressions for the creep coefficients from
the GM model up to second order have been obtained.
Moreover, the general expressions of compliances for
GKYV models and moduli for GM models are shown.

2.1 GKV model

A Kelvin—Voigt element is a set of one spring and one
dashpot connected in parallel. The GKV model is a series
of Kelvin—Voigt elements with a spring, all them connected
in series (Fig. 1). The elastic (E) and viscous (1) parame-
ters are defined as usual

oc=E-¢g, (1a)
de

= - —_ lb

a=1o (1b)
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Fig. 1 GKV model of order n

where o is the stress and ¢ is the strain, and the prime
indicates the time derivative. The stress along the model is
the same for each block in Fig. 1, and the total strain of the
model results of the strain summation of every block.

2.1.1 First order GKV model

By definition, the GKV model of first order has the rep-
resentation of Fig. 2. This is a commonly used material
model and is also known as a linear standard model, or
three-parameter model.

Considering Eq. (1), the Laplace transform leads to

Eo, - Lleo) = (E1 +m - 5) - L], (2a)
Cld] = Llso] +Elf7% - Lfza]. (2b)

And, taking L[o] = Ey, - L[], one has

1 1

Lle] = —+ > - L|a]. 3
[] (EOK E1K+'l1,<'s [ ] ( )
Then, the mechanical resistance Z, the transfer function

of the system, considering the stress as the input and the

strain as the output is

1 1

Z(§) =—+—""".
( ) EOK Elk +’1]K S

(4)
Also, from Eq. (3), the differential equation associated
to the GKV model with n =1 is

7]1K .dO'_ EOKEIK

T EOK"IIK %
E0K+E1K dr E0K+E1K

E()K +E]K dt.

o+ (5)

The relaxation modulus is the stress response for a
constant strain. This is L[¢] = 1/s in the Laplace domain.
Therefore, the relaxation modulus is the transfer function
from strain to stress. This is the inverse of the product
between the mechanical resistance and s. Through

B 7]11('_._
Ox 1 I

T

Fig. 2 GKV model with n =1
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conversion from Laplace domain to time domain, the
relaxation modulus for the GKV model with n = 1 gives

v=o[1-p(1-¢7)], (6a)
with

E
Y() = GO = E()K7 p] = Ok 1 rllK (6b)

LT = .
Ey, + Eq, Ey, + E1,

The creep compliance in the Laplace domain is the
strain of the material under a constant unitary stress:
6=1,t>0. This means L[o]=1/s. Therefore,
Y(s)-J(s) = s72, as it is pointed out in Ref. [37]. From
Eq. (3), and converting from Laplace domain to time
domain, the creep compliance J for the GKV model with
n=1Iis

J:J0{1+q1(1—e_ﬁ)}, (7a)
with
1 Ey Ui
J = — = K l = LS . 7b
0 EOK y 41 E]K ) 1 ElK ( )

The frequency response function can be easily found
from the expression of the mechanical resistance Eq. (4)
just changing the s parameter by iw, where “i” is the
imaginary unit. After algebraic operation, the result is a
complex function of . This function of the angular fre-
quency o describes the response (strain) of the material
under harmonic stresses. The storage compliance (J') is the
real part of this number

q1
J =1+ ———|. 8a
0( 1—|—}€w2> (8a)

The loss compliance (J”) is the absolute value of the
imaginary part
qi - /l](l)

J'=lh——.
01—&—),%0)2

(8b)
Storage and loss moduli, in the frequency domain, are
defined as the real and imaginary part of the inverse of the
creep compliance. This is the response (stress) of the
material under harmonic strains. The storage modulus is

G = Gy (1 pi‘). (9a)

1+ do?

The loss modulus is
pP1-T1w

G =Gy———.
01—|—r%a)2

(9b)

The tangent of the phase angle is the ratio of loss
modulus (Eq. (9b)) to storage modulus (Eq. (92))

0
'W_ By, I

Fig. 3 GKV model with n = 2

pPinio
1+ 0?

1 J

- 1+72w?

tan d = (10)

2.1.2 Second order GKV model

Adding a new Kelvin—Voigt element, the GKV model with
n = 2 (second order) has the representation of Fig. 3.
Following a deduction analogous to that of the previous
section, for the mechanical resistance, the GKV model with
n =72 gives
1 1

1
Z=—+ + . 11
EOK Elk + ’711( -8 E2K + ’721( ©S ( )

The differential equation for the GKV model with n = 2,
using Laplace transform, presents the following form

+E0K (M, + 12y) + Ergiag + Eagily, do
Eo E, + Eo Esy + E1 By, dt
4 N1y .dz_o'
Eo E1, + EoyEa, + E1 Ea,  d72
= EocErc B e (12)
Eo E\ + Eo By + E Es,
Eo (Evghy, + Exey)  de
EooE1, + Eo Ea, + E1 s, dt
n Eox M1, M2, ﬁ
EoEi, + Eo Esy + E By d?”

The creep compliance is Z(s)/s, which is, for the time
domain

J :10{1 +aq (1 - e*ﬁ) +q2(1 - e*i)}, (13)
with
Jo= (14a)
0 E0K7

Ey

i=—, i=12, 14b
U=, (14b)
)L,fgi, 1,2 (14c)

ix
Following the same procedure as explained to obtain the

relaxation modulus in Sect. 2.1.1, the relaxation modulus
for the GKV model with n = 2 is defined as
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Y = Yo[l —pl(l —e‘f> —p2<1 —e‘é)] (15)

For this model, when analyzing the relaxation coeffi-
cients, these coefficients are found as a function of the
auxiliary coefficients used in the previous expressions.

The storage compliance and the loss compliance are,
respectively

J'Jo<1+ @, P ) (21)

1+ )%wz 1+ )éa)z

Following the same procedure as explained to obtain the
storage modulus in Sect. 2.1.1, the storage modulus and the
loss modulus are

14! P2
G =Gol1— - , 18
O( 1+ %0 1+ T%a)z) (18)
12101 P22
G'=¢G 19
0(1+r%w2+1+r%w2>7 (19)
where
Go = Eo, . (20)

@ Springer

Creep :oefﬁments can be related to spring and dashpot o QLo . G2 )
rameter: = .
parameters 0 1+ifa)2 1+/1§a)2
Y(] = E()K, (163)
The tangent of the phase angle is the ratio of loss modulus
C2, (Cay + Cs5, — C3;)
=K K K K 16b (Eq. (19)) to storage modulus (Eq. (18))
h 2C4K(C]K + CZK) ( )
p]‘Czl(Hz + pz‘[g(l)z
by = CZK(C4K - C51< + C3K) (16(;) tan & — I+t I+ . (23)
20 (C+ Ca) 1= () - (749)
1
T = ﬁ, (16d)
3 T 2.1.3 GKV model with n elements
1
=, (16e) . o . .
C3, + Cyy This subsection is devoted to the general case (Fig. 1) with
th n Kelvin—Voigt elements. The elastic (E) and viscous (1)
Wi parameters are defined as usual Eq. (1). The stress along
Ci — Eo Ev B>, (17a) the model is the same for each block in Fig. 3, and the total
Lk Eo E\ + Eo Eo + E Eoy ’ strain of the model results of the strain summation of every
block
c Ej (Ei, + Ex;) (17b) o
2k — ) n
: EOKEIK + EOKEZK + ElKEZK e=¢& + Z &, (24&)
Co — Eo, (1, + o) + Exgio, + Engily (17¢) =
o 211,12 ’ o=0, i=01,...,n (24b)
2
c \/(EOK (171K +772K) +E1K772K +E2K’11K) _4’71,<772K(E0KE1K +E0KE2K +E1KE2K) (17d)
4 = )
8 2’71K’12K
E? n, +E3 . .
Cs, = Lg 2k 2 Uk (17e) For every block, i = 1, 2, ..., n, the stress is
Moy (Ere + Eo ) de.

0= Eo, -e0 = Ej - & +1;, - i=12..,n (25

dr’

Taking Laplace transformation of Eqs. (24) and (25) and
combining them, one can define the mechanical resistance
Z, the transfer function of the system (considering the stress
as the input and the strain as the output)
Z(s) = £le] _! + ;
[6] EOK i—1 Eik + Mig =S

1

(26)

o

Coming back to time domain, one can obtain the fol-
lowing differential equation
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Bde Cd’¢c Dd vyd ¢ zd'e
TAa A Taws T AT Taar
a bde cd’ dd yd' e zd%
At Aa A Taas T TAdw T Taam

(27)

The constant values in Eq. (27) can be found in
Appendix A. 1.

The creep compliance in the Laplace domain is the
strain of the material under a constant unitary stress:
o =1, > 0. This means L[g] = 1/s. From Eq. (26), and
converting from Laplace domain to time domain, the creep
compliance J for the GKV model results

=J, 1+iqi-(1—eﬁ)], (28)
i=1

with
1
Jo=—, 29a
b (29a)
Ey
; K 29b
%=, (29b)
Ji Z— (29¢)

U
As in previous sections, the frequency response function
can be found from the expression of the mechanical
resistance Eq. (26). The storage compliance (J') is the real
part of this number

. qi
J=J|1+ — . 30
0( ;l—l—iiza)z) (30)

The loss compliance (J”) is the absolute value of the
imaginary part

1;‘1
J’LJ)Z diti @ (31)

/12 w?’

2.2 GM model

A Maxwell element is a set of one spring and one dashpot
connected in series. The GM model (also known as Max-
well-Wiechert model) is a set of n Maxwell elements with
a spring, all connected in parallel (Fig. 4).

The elastic (E) and viscous (1) components are defined
as usual Eq. (1). The strain along the model is the same for
each block in Fig. 4, and the total stress of the model
results of the stress summation of every block.

Fig. 4 GM model

Fig. 5 GM model with n =1
2.2.1 First order GM model

The GM model with n = 1 has the representation of Fig. 5.
It is also known as the Zener model.

The mechanical resistance Z is the transfer function of
the system, considering the stress as the input and the strain
as the output

E s\ 7!
o + anlM ) (32)
ElM + My oS

The differential equation for the GM model with n = 1,
leads to

n, do ny de
R - v (E +Ep)—. 33
O-+E1M dr 8+E1M( M+ lM)dl ( )
As in the previous section, the relaxation modulus can
be determined by the relationship Z(s) - Y(s) = 1/s
Y:Y()[l—pl(l—e*%)]. (34)

Also, the storage modulus and the loss modulus are the
real and imaginary parts of Y (iw)

P1
G =Go1-—L1 ) 35
0( l+r%w2> (35)
G =Gy 36
01+T%w2 (36)
with
Y0:G0:EooM+E1M, (3721)
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P = L, (37b) The differential equation for this model, using Laplace
Eco, + E1y transform, shows the following expression
T = % (37¢) 0+E1M7,2M + Eay iy, .d_a+ My M2y _dz_g
lu E\,E, dt  E\,E,, df
The tangent of the phase angle is the ratio of loss ou
modulus (Eq. (36)) to storage modulus (Eq. (35)) =Ex e+ Ei, E, (E'MWZM +E2M'71M> T, + 1,
pPinio 2
2 de  n 7 d“e
1+720? Ly 12y
— i —t M (E  +E Ey,) —.
tand = [ —_n (38) dr +E1ME2M ( w T EL, T+ ZM) a2
l+rf(u2

Since J(s) = Z(s)/s and J(iw) = J (w) +1i-J"(w), the
creep compliance, the storage compliance and the loss
compliance are

J:J0[1+q1(1—e*ﬁ)]7 (39)
q1
J=J1+—L ), 40
0( 1+ }.%aﬂ) (40)
/hw
I =Jy . LHe 41
‘ 1+ jw? 1)
with
1
Jo=———, (42a)
EOOM +E1M
E;
=l 42b
q1 EooM ) ( )

1 1
)\.1 = i’[lM (E—OOM—‘FE) (42C)

2.2.2 Second order GM model

The GM model with n = 2 has the representation of Fig. 6.
The mechanical resistance of the GM model with n = 2

is

(43)

Eyn, s Eyn, s >‘

Z=\|Ey, +
<OCM E\, +1, s Ey +n, s

EIM ThM
EZM TIzM

Fig. 6 GM model with n =2
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(44)

The relaxation modulus, the storage modulus and the
loss modulus, are defined as follows

Y:YO[I—pl(l—{%) —pz(l—e*é)}, (45)
P1 P2
G =Gol1- - , 46
0( 1+ 0?1+ T%wz) (40)
PITI® PrTr
G' =G 47
O(l—s—r%wz—i_l—i—r%wz)’ (47)
with
YOZGOZEOOM+E1M+E2M, (4821)
E;
= u L i=1,2, 48b
Pi Ew, + E1, + Es, ( )
=m0, (48¢)
Eiy

For this model, when analyzing the creep coefficients,
these coefficients are found as a function of auxiliary
coefficients used in the previous expressions. Creep coef-
ficients can be related to spring and dashpot parameters.
The creep compliance, the storage compliance and the loss
compliance are

J:Jo[l +q1(1 —e‘f) +q2(1 —e‘i)}, (49)
q1 q2
J =01+ + , 50
0 ( 1+ )v%coz 1+ )éaﬂ) (50)
Y !
N s L L (51)
1+ 2w 14 Le?

The tangent of the phase angle is the ratio of loss
modulus (Eq. (47)) to storage modulus (Eq. (46))

PiTIO | PrTa®
+720? 1+de?
with
Jo = ClM + CQM, (533)
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C2M<C4M + C5M - C3M) n
= — 53b 5
a Ot T (53b) ¥y =1 Zl:p,-(l —e)|, (57)
C2M (C4M B CSM + C3M)
9@ = - (53¢) n i
2C4M(C1M + C2M> G G() 1 Z(ﬁ) (58)
Ty
l 1
)hl C C ) (53d)
3u 4u Pitiw
59
; 1 (530) z;l + tw?’ (59)
ly = ————, e
Cay + Cay with
with n
! =Gy =Ex, + Y _Ei, (60a)
Cy, = " (54a) i=1
oom EjM
I 60b
Gy, = — Ev, ¥ Eay , (54b) P Eu + Y0 En, (60)
EDOM(EOOM +E1M +E2M) n;
T = (60c)
Cs, = Eooy (EanzM + EZM;/IIM) + Eyy, Eay (nlM + '72M) Ei,
o 2ny,,Ma,, (Ecy, + Eny, + Enyy) ’
(54¢)
2
Ca — \/[EOC‘M (EanZM + EZMWIM) + EIME2M (771,\4 + 772,\4)] _4EOCME]ME2M171anM (EOOM + E]M + E2M) (54d)
e 2771M'/]2M (EOOM + EIM + EZM) ’
E E +
C5M — 12y (’71M ’72M) (546) 3 PlOtS

’71M772M(E1M +E2M) .

2.2.3 GM model with n elements

The mechanical resistance of the GM model, in the fre-
quency domain, is defined as follows

-1
n E, 0. -5
Z=\|Ex,+ )y ——2—| . (55)
( " lZI:Em‘i"?iM'S)

The differential equation of the GM model,
Laplace transforms, presents the following form

+Bda+Cd26+Dd3a+ +Yd”’lo+Zd"(r
Adt AdP  AdP Adrm1  Ade
a bde cd’ dde yd* e zd'

—attia A TAw T T AaT A
(56)

using

The values of the constants in Eq. (56) can be found in
Appendix A.1.2.

The relaxation modulus, the storage modulus and the
loss modulus for the GM model are defined

It is possible to plot the relaxation modulus vs time, or the
creep compliance vs. time, for every viscoelastic model.
Also, it is possible to plot storage/loss modulus/compliance
and phase angle in the frequency domain. These plots, for
each viscoelastic material model, related to a differential
Egs. (27) and (56), have some characteristics that can be
determined and can allow to recognize the kind of model
one is dealing with.

It is worth noting that the plots for GKV and GM models
with n = 1 and with n = 2 are the same, as a function of
either relaxation or creep coefficients, regardless of whe-
ther they are subsequently expressed as a function of the
creep or relaxation coefficients. The reason is that,
although the dispositions of springs and dashpots are dif-
ferent for each model, the general expression for moduli
and compliances for this number of terms is identical,
expressed as relaxation or creep coefficients, respectively.

In order to draw the plots, first the mechanical parameter
in question is represented as a function of time or fre-
quency. So, a general plot is represented without any fixed
values in both axes. The coefficients of the equations are
expressed in a general way.
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Once the plot is represented, the maximums and mini-
mums are found with the first order derivative of the
mathematical expression, set equal to zero (Appendices
A.2.1.1 and A.2.2.1). The inflexion points are found with
the second order derivative of the previous mathematical
expression also set equal to zero (Appendices A.2.1.2 and
A2.2.2).

Relaxation moduli and creep compliances do not have
maximums, minimums or inflexion points. In these cases,
the characteristic points are just at zero and at infinite time.

It is important to emphasize that, for models of order
greater than two, the determination of the relative extrema
and inflexion points depends on the obtaining of the roots
of a polynomial of grade greater than four. This avoids
getting analytical expressions for these models.

3.1 Models with n = 1

Figure 7 shows a sketch of the characteristic plots of
relaxation modulus and creep compliance along the time
(Egs. (6a), (7a), (34) and (39). Both curves are monotonic.
The initial values and the limit values for time tending to
infinity are characteristics of the model.

Figure 8a shows the plot of the storage modulus versus
frequency (Egs. (9a) and (35)): there is one inflexion point
and the limits at infinity are also determined. The plot of
the loss modulus vs. frequency (Egs. (9b) and (36)) has
also one inflexion point and one maximum (Fig. 8b). The
loss modulus tends to zero when the frequency tends to
infinity. The plots of the storage and loss compliances
(Egs. (8a), (8b), (40), (41)) have a quite similar structure
(Fig. 8a, b).

Finally, Fig. 9 plots the phase angle along the frequency
(Egs. (10) and (38)). This plot has also a maximum and one
inflexion point (and another theoretical one for frequency
Zero).

Creep compliance

ai Relaxation modulus b 'y

Y

t t

Fig. 7 Relaxation modulus/creep compliance vs. time: characteristic
values. Models with n = 1

@ Springer

3.2 Plots with n =2

The general plots between the different mechanical prop-
erties versus time or frequency are represented in Figs. 10—
12, for the cases when there are two summations in the
corresponding Prony series. Figure 10 shows the relaxation
modulus and the creep compliance vs. time (Egs. (13),
(15), (45) and (49)). Both curves are monotonic and have a
simple value when time tends to infinity.

From the expression of the storage modulus ((Egs. (18)
and (46)), one can calculate the limit values at frequency
zero and tending to infinity. The function is strictly
increasing so there are no relative extrema. There are three
inflexion points (Fig. 11a) that can be calculated by setting
the second derivative of Egs. (18) and (46) equal to zero.
This leads to the fourth grade equation (A.10 found in
Appendix A.2.2.2, set equal to zero)

o 91153 (p1 +p2) — T +pti
3G (i3 + pa7)
3(p1ti 4 per3) — (P73 —poti)
+ 320, 2 2 X
12 (Plfz "‘PZT])
(1 = ©3) (P17l — p273)
A (3 + par))

. Pt +pat _
3113 (plr% —l—pzr%)

(61)

where x = w?. This equation can be solved in explicit
form. The resulting frequencies for the inflexion points are
(Appendix A.3.2)

)

Winfli = \/Xi+1, = 1, 2, 3. (62&)
D1 P2

G ..=Gol 1+ + ) 62b

ol ‘ ( L+ oy 1+ 500 (626)

The loss modulus (Fig. 11b) has two maximums and one
minimum, with three inflexions points (Eq. (A.6) in
Appendix A.2.2.1). The maximums and the minimum can
be localized by deriving the Eqs. (19) and (47) and their
frequencies are the roots of the cubic equation
2 +p1r11'% (21% — ‘E%) + patat? (21% — T%) 2

153 (p112 + pam1)
pioi (5 - 23) + pra (83— 21)
1103 (p172 + pat1)
P1Ti + P22

OBt + )
=0, (63)

where x = w?. This equation can be solved in explicit
form. The resulting frequencies are (Appendix A.3.1)

Wmaxl = \/x—1<wmax2 = \/X—S; (643-)
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a L/ Storage modulus b a Loss modulus
Yo
o === : P
G} Y, —
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Fig. 8 a, b Storage/loss modulus and ¢, d compliance vs. frequency: characteristic values. Models with n = 1. The horizontal axes are in
logarithmic scale

b Loss modulus

tan o

B
2 2/T-p O

Yo(1—p1—p2)

(0] ]

c Storage compliance d

L |e— o1+ a1 +42)

Loss compliance

Fig. 9 Phase angle vs. frequency: characteristic values. Models with .
nfl.

n = 1. The horizontal axes is in logarithmic scale bl 2
Infl. 3
Infl.3
a Relaxation modulus b Creep compliance / / \ /
Infl. 1
Jo(1 + g1 +q2) nfl.2
Yy ,/__ _______________ W T
Jo
> ~ @ 2]
;{ —————————————————— v\ Fig. 11 Sketches of typical graphs of a, b storage/loss modulus and
Yo(1—p, —p2) Jo ¢, d compliance vs. frequency for models with n = 2. The arrows
mark the inflexion points. The horizontal axes are in logarithmic scale
' '

Fig. 10 a Relaxation modulus and b creep compliance vs. time:
characteristic values. Models with n = 2
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P1T1Wmaxi P27T2Wmaxi .
G .=G =1,2
e °<1+=ﬁw%wi l*fﬁw%u)’ o
(64b)
Wmin = \/x_Za (640)
P171Wmin P272Wmin
G'. =G . 64d
= ) (o4

From Eqgs. (19) and (47), using Eq. (A.11) (in Appendix

A.2.2.2) set equal to zero, where x = w2, one obtains the

following expression

3 2 _ 2 _
o (11 — ) (it szl)x3

1 (pit2 + path)
3[(P1T? + T%) =31112(p172 +P2T1)] 5
T (pit2 + pati) g
1T+ P2t = 90T (P11 + pata)
B (P11 + pati)
Pt +
T3 (pita +pati)

+

+

X

The inflexion points correspond to the roots of Eq. (65).
This leads (see Appendix A.3.2) to the next frequencies for
the three inflexion points (Fig. 11b)

WGrinfll = /X2, Ogrinfl2 = /X3, OG7infl3 = \/X4, (66a)
" P1T1WG infli P2T2WG"infli
G" (wgringi) = Go )
1 + 2w? 1 + 222
190G infli 2DGringli
i=1,2,3,
(66b)

where the roots of x;,i = 2,3,4 have explicit expressions
(Egs. (A.20)—-(A.22)); note that the first root, x;
(Eq. (A.19)) is always negative. Figure 11c, shows the
sketch of a typical graph for the storage compliance. This
graph is defined by three inflexion points. By deriving
Egs. (21) and (50) twice (Eq. (A.12), in Appendix A.2.2.2),
and setting equal to zero, the following polynomial equa-
tion is obtained

4 9'1%75(921 ‘zf' B@) — gk — 612%?3
3)203(q17% + q273)
3(qiy + @223) — @175 — 42l
W35(a175 + a227)
(47 = B) (@14] — 4273) .
2105 (q0173 + 22)
B QA7+ g2l -0
35 (i + q2l7)

@ Springer

where x = w?. Solving this equation (see Appendix A.3.2),
the inflexion points of the graph are

D Jinfll = \/56, Wyinfl2 = \/56, W Jinfl3 = \/561, (68a)
q1 92
J(@pinti) = Jo (1 + 5 + > )»
1+ }'la)%’inﬂi 1+ Az“’%inﬂi
i=1,2,3.
(68b)

Figure 11d is the loss compliance versus frequency. The
curve has two maximums, one minimum and three
inflexion points. Deriving the Eqgs. (22) and (51) (see
Eq. (A.8), Appendix A in First order derivatives), and
setting equal to zero, the resulting polynomial equation is
as follows

En q172(227 = 73) + @221 (225 — 77) 2
222 (q17a + qal)
6]1}4 (}% — 2)%) + C]z)uz ()u% — 2/1%)
) 2373(q172 + q2la)
@it @k
305(q17a + qah)
=0, (69)

X

where x = w?. This allows finding the maximums and
minimum. The resulting values are

@Jjrmaxl = \/-;C—l_a WJ'min = \/552_; Wyrmax2 = \/)5_37 (703)

tan 0

v

(O]

Fig. 12 Sketch of a typical graph of the tangent of phase angle vs.
frequency for models with n = 2. The arrows mark the inflexion
points. The horizontal axes are in logarithmic scale
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lCOH )(}J/r ACUH ) )\.COH' )
JII(UJJ"i)ZJo(C“ Vo | darat >, J"(@prini) = Jo <q1 LO0tinli | 927200 infli ),

1+ /'tzwj,, 1+ }2(1)],, (7Ob) I+ Azwj”mﬂl 1+ lgwg”inﬂi
i = max1, min, max2. i=1,2,3.
With a second derivation of C (Eq. (A.13), Appendix (72b)

A.2.2.2), one obtains The typical curve of the tangent of the phase angle

versus frequency has also two maximums, one minimum
and three inflexion points (Fig. 12). The first derivative of
Egs. (23) and (52) leads to the polynomic equation (where

— (,1)2)

3 P 201 —B3(1 = p1)] + por1 [273 — T3(1 — p2)] + pipotita(T) + Tz)xz
3 (pit2 + path)
Pt 4 pers — 2n1nafpia(1 — pi) 4 poti(1 = p2)] + pip2 [f1 (312 — 1) + 3 (311 — 12)] . (73)
05 (112 + pati)
pip2(t1 + 172) — prai(1 — p1) — pat2(1 — p2)

n —0.
113 (p112 + pati)

‘s ()2 _ )é)(qﬁz — g1) | The maximums and minimum are
X X
)v%)bg(QI;bZ -+ 612/11) Wtan maxl = \/x_h Mtan § min = \/)C_z, Wtan § max2 = \/)6_3,
43 [qli? + qZ)é — 3)»1),2(6]1).2 + qz/ll)] 2 (7421)
)3/13 (qllz + qM ) le:r](Z;m oi + fi?(:j)lm oi
5 (71)  tan O(wensi) = o o
n CIl)-l + qubz 9} /Lz(q]/L] =+ CIQ)Q) 1— 1+TIJ)I . 1+122)l2” (74b)
A )“2(611@ +q2/) i = max1, min, max2.
3
-3 ~5/{Zl(il + Clzﬂz} ; =0, The second derivative of Eqgs. (23) and (52) gives the
425(q1h2 + g2 la following equation

where x = w?. The inflexion points are

Wyrinfll = \/3—5, Wjrinfl2 = \/36—3 y Wjrinfl3 = \/ﬁ, (723)

3 {ninalpiti(1+ p2) + p2r2(1 + p1)] — 1ip2(1 — p2) — Bpa (1 _Pl)}x3
5 (pit2 + path)
+ 3T?P1(1 —p2) +6p2(1 — p1) + tita[piea(4pr + 3p2 — 3) + pati(4p2 + 3p1 — 3)]x2
1303 (p172 + pat1)
5 2,5 2 3 3
n 1pi1(1 = p2) +opa(1 = p1) +pip2un2 [13(1 — p2) + B3 (1 — p1)]
3 (p1t2 + path)

(75)

P171[p2(10 + p1 —p2) — 9(1 — p1)] + pata[pi (10 + pr — p1) — 9(1 — p)] N
55 (p172 + pati)

3 (pr+p2 = D{[p1Ti(1 = p2) + p283(1 — p1)] + pipetiT2(11 + 2) }

=0.
15 (p1t2 + path)

@ Springer



1202 A. Serra-Aguila, et al.

/ DMA test: storage/loss moduli \

storage modulus loss modulus

Wl =pr—p2)

N | /

Identification of the Identification of the
parameters: parameters:
Eqgs. (61)-(62) & App. A Egs. (63)-(66) & App. A

Relaxation parameters

Y0, 01,02, T1, T2

/ \ Generalized Kelvin-Voigt model
Table in Appendix B parameters

Eowr E1pr 20 My M2

Creep parameters

- Jo, 91,92, A1, A2

Generalized Maxwell model parameters

\ — - / EOOMIElMJEZM’nlM'nZM

Fig. 13 Flowchart of an application: obtaining the creep and relaxation parameters, as well as the GM and GKV material models, from a
dynamic thermomechanical analysis (DMA) test

Pakalakal

The inflexion points are PIT Oangini | P20 Onsinl;
I+rjol o o I+t5w; s o
tané((})t Sinfl ) — 1 “tandinfli 2 tandinfli
Onsinfll = VX2, Ogansinfl2 = /X3, Otan §infl3 = /X4, S 7 7 H (76b)
1+720? 1+20?
1" tan dinfli 2 tandinfli

(76a) i=1,2 3.
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4 Relationships between GKV and GM
models and relaxation and creep
coefficients

The equivalence of GKV and GM models of the same
order is well known. Nevertheless, unfortunately, it is not
easy to find the algebraic expressions of this equivalence.
In this section, these expressions are determined and pre-
sented in a closed form, up to second order models.
Moreover, the relaxation coefficients for the moduli
equations and the creep coefficients for the compliance
equations are also found. Furthermore, explicit formulas
are presented for the parameters of the material models
(GKV and GM) from relaxation or creep coefficients.
These relationships, up to second order models, can be
found in Appendices B.1 and B.2.

In the diagram of Fig. 13, an application of the formulas
developed in this work is shown, by way of example. In
this case, starting from a dynamic mechanical analysis
(DMA) test, the parameters of the relaxation model can be
obtained. This is carried out using the equations and their
corresponding expressions in Appendix A. From these
relaxation parameters, by means of the interconversion
expressions of the table shown in Appendix B, the
parameters corresponding to the creep test can be obtained.
In addition, with the same table, the parameters of the
material models are obtained, whether they are of the GM
or GKV model.

5 Conclusions

The GKV and GM models of the same order are related to
each other. These relationships can be helpful for the
engineering practitioner because computational simulators
are implemented with just some specific combinations of
springs and dashpots. The explicit relationships between
the GKV and GM models, up to order two, are found.
Moreover, explicit formulas are found for the position of
the characteristic points (maxima, minima and inflexion
points) of the storage and loss compliances/moduli.

The interconversion formulas for models of first and
second order have also been developed. The complete set
of interconversion formulas between GKV, GM, relaxation
coefficients and creep coefficients have been presented.
Therefore, the engineering practitioner can easily have a
simple guide to change from one model to another if
necessary.

Appendix A
A.1 Constants of differential equations

A.1.1 Constants of Eq. (27) in the text

I NICEYD pes

i=0 j=0 i=0 Tk
J#
n
with 4 = [ E,,
i=0
A n; 1
B = k. A- JK
oS lea Syt
/#i
A n—1 nl 0, n n—1 n i
CcC=_". K /K +A _ bk Tkg
j>i ]761 k>J

ki
A n—2 n—1 n

i Mix Mk
D:E_w.zzzﬁﬂn

i=1 j=2 k=3
j>ik>]
S
p s e e 2P0 « B Bl
iti k>jl>k
7 ki I#i
n n
Y = (EOK +Eil<)H17jK y
i=1 =
J#i
n
Z= niKa
i=1
a=A4,
b= A - Mig.
i=1 EiK
—1
c=A- \ - Mix Mje
i=1 j=2 EixEjy
j>i
J ”’“i N M M
i=1 j=2 k= %E E; EkK
j>ik>j
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n n
y=Eoc 3 Ei [
=1 j=1

J#i

n
= EOK ' H Wig
i=1

A.1.2 Constants of Eq. (56) in the text

n

B=4-3 T
i=1 EiM
n—1 n 0N
C: A . M m ,
j>i
Do "’“i MM Tk
i=1 j=2 k= 3E E./MEkM
j>ik>j

J>1 /sél
n—2n—1 n n
71M’1]M17kM ’71M77,M77kM
d=d-1Exd > D 2 g T +ZZZiE
1112k3 kv =1 =1 k=1 ku
j>ik>j Ji ki

k>j

n n n n n
y= EooM ZEiM Hn.fM + ZEiMniM ZEJM H Miy s
=1 =l =1 = k=l

J#i J# ket
ki
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n n
=1 j=1

A.2 Derivatives of Prony series

In this Appendix, the mathematical expressions of the first
and second order derivatives of Prony series are shown.

A.2.1 Derivatives as a function of time

A.2.1.1 First order derivatives Mathematical expressions
to calculate maximums or minimums in relaxation modulus
and creep compliance as a function of time, using Prony
series, are shown in Eqgs. (A.1) and (A.2), respectively

dy & pi -+

— =Y, — T Al
dr 0;‘[,‘6 ’ ( )
dJ g L

7:‘] — %, A2
dr OZ;Lie ( )

A.2.1.2 Second order derivatives Mathematical expres-
sions to calculate inflexion points in relaxation modulus and
creep compliance as a function of time, using Prony series,
are shown in equation Eqgs. (A.3) and (A.4), respectively

d Y L

YOZ” e T, (A3)
dz_l__] zn:ﬁe*% (A.4)
a2 = 0 2 )2 . .

A.2.2 Derivatives as a function of frequency

A.2.2.1 First order derivatives Mathematical expressions
to calculate maximums or minimums in storage modulus, loss
modulus, storage compliance, loss compliances and tangents
of the phase angle as a function of frequency, using Prony
series, are shown in equations Egs. (A.5)—(A.9), respectively

dGg’ " pTo

=2G,y — L (A5
dw P (1 +Tl-2(l)2)2 )
dG// n piti 1 — ,Clng
do i1 (1 +770?)
gikio
— = —2J, (A7)
Z (1+ 2 e?)

47" n q:it(l _ ilsz)
= 7 A S Ry
da 0; (1 +)L?w2)2
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dg” / v dag
dtan5:m~G G" -4 (A9)
dw G* . '

A.2.2.2 Second order derivatives Mathematical expres-
sions to calculate inflexion points in storage modulus, loss
modulus, storage compliance, loss compliances and tan-
gents of the phase angle as a function of frequency, using
Prony series, are shown in equations Egs. (A.10)—(A.14),
respectively

dZG’ , 137202
= 2G, Zp, 11e w2)3 (A.10)
de” 26, ZP 3w -3) (A1D)

— l 1 + 2 w2)3 [} .

dZJ’ x —3/0?
OZCL +}2 2) (A12)

d2J” Lo =3
Jqu, 3 . 2)3)7 (A.13)

1 .

dw? dw? do \dw

dw? - G/3

Lens G (de” G —G"- dZG’> ~dG' (dG” G —G"- dG’)

(A.14)

A.3 Roots of polynomial equations

In this Appendix, the resolution of cubic and quartic
polynomial equations is presented.

A.3.1 Roots of the cubic equation x3 +ax? +bx+c=0

1 24/3(1+\/§i)(a23b)+22/3(1+\/§i)H24Ha}

X1 =——=

12 H ’
(A.15)
1 '24/3(1+\/§i)(a23b)22/3(1+\/§i)H24Ha]
Xp=—= )
12 H
(A.16)
1 [2%/3(a?® — 3b) + 223 H? — 2H.
o L2 )+ a. (A.17)
6| H
with

H= {/—2a3 +9ab—27c+3V3\/—a2b? +4b3 +4a3c — 18abc+27¢2.
(A.18)

dw

A.3.2 Roots of the quartic equation x* + ax3 + bx?> + cx +d =0

L 3a+VBH, V6
= 12 12
2H; 3v/3(a® — 4ab + 8¢)
3a2 — 8b — — V/4H
\/ a \3/PT2 2+ H4 ’
(A.19)
3a++3Hy V6
= T v
12 12
2H, 34
s sy 2 g, 33 ab+8c)
JH> H,
(A.20)
r— — 3a — \/§H4 _ ﬁ
3 12 12
2H; 3v/3(a® — 4ab + 8¢)
3a2 — 8b — — V/4H
\/ ¢ VH 2 Hy ’
(A.21)
361 — \/_H4 f
X4 = —_—
12 12
2H, 34
g2 gy 2 . 4H2+3\/§(a ab—|—8c)7
JH> H,
(A.22)
with
Hy = —4(p* — 3ac + 12d)°
: ( ) (A.23)

+ [26° — 9b(ac + 8d) + 27(c* + a*d)]’,

H, = 2b> — 9abc + 27¢* + 27a*d — 72bd + /H,,

Hsy = V2(b* — 3ac + 12d),

4H,
Hy = 1 [3a2 —— + /32H,.
4 \/ a 3H2 2

Appendix B
B.1 Relationships with n = 1

See Table 1.

(A.24)
(A.25)

(A.26)
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Table 1 Relationships for models with n = 1

GM parameters Relaxation Creep coefficients GKYV parameters
coefficients
Jo= 1
= ®  Ep, +E
N Yo = Eony, + E1yy Mo Eop = Ewoy + Eny
g = E1y g =2 _ Loy
g = M= g Eoyy By = ?(Ew +Eay)
g " R ( L ) AV
S 3 _ M 1= Mhy\— Tz o
O N—
£ 1 1-
O - Jo P1
8 & Eoo\, = Yo(1=p1) ;0 By =Y o
8 Eip = Yop1 G = ﬁ Eop =Yo
= _ 1
g g N1y = YoP1T1 B 7 Ny = YDT—l
c] so: TT1- P1 P1
a7
=}
= 1 1 1
Ep =——-— Yo =— Ey, =+
E > M Jo(1+q) ° " % Jo
fim) ri E, = B p1 = it = L
8 = ™M+ q1) T 14q 7 Joqy
o  © b y 2
o > = liql = 1 -1
:g T Jo(1 +q1)? o 1+q, T = Joq1
O
- Eo E
< g Eopy = KK Y, = E, Jo = x
% L Eop + E1 0 ok O_EOK
g L’:f B = E0K2 pL= EOK EGK
g Lug ™Mo+ ElZK EOKWTKEIK @ = Ery
~— E. - K
i § 771M=171K70K2 Tl Eo + Ey /11=;h_K
© g (o + Ey) 1K
-~
B.2 Relationships with n = 2 %= Ey, (ElM'le T EszM) + E), E, (,71M + ”IzM)-
See Table 2. (b) Case “relaxation coefficients known” (2nd row in the
With the auxiliary constants: table)
(a) Case “GM parameters known” (Ist row in the table) c 1
. | T — y
(Eq. (54) in the text) T Yo(1 = p1 —p2)
1
Cy, ==, Cy = — PLt+p2
Eooy N Yo(1 —p1 —p2)’
E,, + E, B
o = R B, T B, B Cs, =
OOM( ooy T L1, + 2M) R 2‘L'1‘l?27
c o
3y — ’ 2 _ _
Y 2ny, M, (Excy + Ery + Eay,) o — \/ﬁ 41121 = p1 — p2)
R 2 )
T1T2
C \/{x2 - 4EOCME1ME2M7’1M’12M (EOOM +E,, + EZM) +
dy = ) P1T1 T D272
2m,Ma,, (Excy + Enyy + Ey) Csp=—F———,
711 72(p1 + p2)
Ce — EIME2M (rllM + ’72M) ith
SM - E E ) Wlt
My, 772,\4( Iy T 2M)
. B=11(l —p2) +2(l = p1).
with
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Table 2 Relationships for models with n = 2

GM parameters Relaxation coefficients Creep coefficients GK\i
parameters
) —
= 5 YO:EDOM+E1M+E2M ]0_C1M+C2M
c% = _ Eiym _ =Cop(Capg+Csp—C3pp)
g = p1 = =
g2 3 Ecopy+E1y+E2 2C4,(C1p+Capp)
g = Dy = _ Bm gy = “Com(Cap—Csm+Can)
PRy 27 EeopytEiy+Ezy 2 2Ca 0y (C1p+C2pp)
g 3 _ My _ 1
£ 3 Ty =~ A=
g ) Eiy Cay=Capy
= = Ty = e A, = — 1
o .8 27 By 27 C3tC E, ==
= e o =Ty
m:(:l ]0=C1R+C2R ElK:L
5 o q — _CZR(C4R+C5R_C3R) Jods
h% l:):l 1 2C4R(C1R+CZR) 1
o E 2 2C4R(C1R+C2R)
RS 1
g i"/ )[1 = — N = M
g § C3RIC4R K Joas
<
o 2 Ay =——7—
~ § C3p+Cap Mg, = Az
K Joqz
g Eop =Yo(1—p1 —p2) Yo =Ci + Gy
£ _ Cc(CactCsc=Cac)
2 < | By =Yops 1 2040 (C1o+Cag)
5 '; — CZ(;(CA}C_CSC"'CS(;)
;g S| My = Yor171 2 2C4¢(C1ctCag)
PRS =
S 3 L7 cgeC
S S| B2y = Yop2 e e
g 2= Gt
i — 3¢cTh4c
©) N2y = Yop2T2
— 1
£7s Yo =Ciyg+ Gy ]o:a
RN p, = CaCaxc*Coi=Cax) Eo
e 1 24 (C1+Cag) 4 = Fig
E Z 5 — CZK(C4K_CSK+C3K) EOI(
£ o 2o Cric o) G2 =3
S % - M1
< T, = = UK
>Q' LTS‘ 1 C3K_C4K /11 ElK
L 1 n
< .S T, =—— 2, = Tx
o= Cag+Cag 27 By
(c) Case “creep coefficients known” (3rd row in the table) c \/ 5 — 4, Jo(14q1 + q2)
4, =
1 ¢ 21112 ’
le =577
Sl +a1+a) G171+ q2la
SC =, .
C, = _ @ta Z122(q1 + q2)
K
© Sl +q1+q) .
with
0
G =57 0=721(1+q2)+ Z2(1+q1).
T 200 1(1+q2) + 22(1 +q1)
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Sin. 34, 589-599 (2018)

c Eo E\ Ery 15. Bai, T., Tsvankin, I.: Time-domain finite-difference modeling for

Ik = ) attenuative anisotropic media. Geophysics 81, C69-C77 (2016)
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Gy = X s high-temperature ~ gas  wells. Adv. Mech. Eng. 10,
EoEr + EogEn + EyEny 168781401881745 (2018)

Y 17. Baumgaertel, M., Winter, H.H.: Determination of discrete

Gy = o relaxation and retardation time spectra from dynamic mechanical

Mg data. Rheol. Acta 28, 511-519 (1989)
— 18. Nikonov, A., Davies, A.R., Emri, I.: The determination of creep

Cyy = \/V — 4’71K1721< (EOK By + EocBay + BBy ) , and relaxation functions from a single experiment. J. Rheol. 49,

2;711(112[( 1193-1211 (2005)
19. Sorvari, J., Malinen, M.: On the direct estimation of creep and

C E%KVIQK + E%K”Il K relaxation functions. Mech. Time Depend. Mater. 11, 143-157

5¢ = ) (2007)

MMy (EIK + EZK) 20. Renaud, F., Dion, J.: A new identification method of viscoelastic
with behavior: application to the generalized Maxwell model. Mech.
Syst. Signal Process. 25, 991-1010 (2011)
y = Eo, (’71;( + ']2,() + E1K7I2K + E2K771K- 21. Bang, K., Jeong, H.Y.. Combining stress relaxation and
rheometer test results in modeling a polyurethane stopper.
J. Mech. Sci. Technol. 26, 1849-1855 (2012)
22. Soo Cho, K.: Power series approximations of dynamic moduli
and relaxation spectrum. J. Rheol. 57, 679-697 (2013)
23. Chen, D.L., Chiu, T.C., Chen, T.C., et al.: Using DMA to

References simultaneously acquire Young’s relaxation modulus and time-

dependent Poisson’s ratio of a viscoelastic material. Procedia

1. Tschoegl, N-W.: Time dependence in material properties: an Eng. 79, 153-159 (2014)
overview. Mech. Time Depend. Mater. 1, 3-31 (1997) 24. Pacheco, J.E.L., Bavastri, C.A., Pereira, J.T.. Viscoelastic

2. Casula, G., Carcione, J.: Generalized mechanical model analogies relaxation modulus characterization using Prony series. Lat. Am.
of linear viscoelastic behaviour. Bolletino di Geofis. Teor. ed J. Solids Struct. 12, 420445 (2015)

Appl. 34, 235-256 (1992) 25. Kim, M., Bae, J.E., Kang, N, et al.: Extraction of viscoelastic

3. Menard, K.P., Peter, K.: Dynamic Mechanical Analysis: a Prac- functions from creep data with ringing. J. Rheol. 59, 237-252
tical Introduction. CRC Press, Washington DC (1999) (2015)

4. Gutierrez-Lemini, D.: Engineering Viscoelasticity. Springer, 26. Jung, J.W., Hong, J.W., Lee, HK., et al.: Estimation of vis-
New York (2014) coelastic parameters in Prony series from shear wave propaga-

5. Drozdov, A.D.: Finite Elasticity and Viscoelasticity. World Sci- tion. J. Appl. Phys. 119, 234701 (2016)
entific Publishing, Hong Kong (1996) 27. Bonfitto, A., Tonoli, A., Amati, N.: Viscoelastic dampers for

6. Chawla, A., Mukherjee, S., Karthikeyan, B.: Characterization of rotors: modeling and validation at component and system level.
human passive muscles for impact loads using genetic algorithm Appl. Sci. 7, 1181 (2017)
and inverse finite element methods. Biomech. Model. Mechan- 28. Rubio-Hernandez, F.J.: Rheological behavior of fresh cement
obiol. 8, 67-76 (2009) pastes. Fluids 3, 106 (2018)

7. Fatemifar, F., Salehi, M., Adibipoor, R., et al.: Three-phase 29. Poul, M.K., Zerva, A.: Time-domain PML formulation for
modeling of viscoelastic nanofiber-reinforced matrix. J. Mech. modeling viscoelastic waves with Rayleigh-type damping in an
Sci. Technol. 28, 1039-1044 (2014) unbounded domain: theory and application in ABAQUS. Finite

8. Matter, Y.S., Darabseh, T.T., Mourad, A.H.L: Flutter analysis of Elem. Anal. Des. 152, 1-16 (2018)

a viscoelastic tapered wing under bending—torsion loading. 30. Gross, B.: On creep and relaxation. J. Appl. Phys. 18, 212-221
Meccanica 53, 3673-3691 (2018) (1947)

9. Forte, A.E., Gentleman, S.M., Dini, D.: On the characterization of 31. Gross, B.: Mathematical Structure of the Theories of Viscoelas-
the heterogeneous mechanical response of human brain tissue. ticity. Hermann & Co., Paris (1953)

Biomech. Model. Mechanobiol. 16, 907-920 (2017) 32. Loy, RJ., Anderssen, R.S.: Interconversion relationships for

10. Ding, H.: Steady-state responses of a belt-drive dynamical system completely monotone functions. SIAM J. Math. Anal. 46,
under dual excitations. Acta Mech. Sin. 32, 156-169 (2016) 2008-2032 (2014)

11. Manda, K., Xie, S., Wallace, R.J., et al.: Linear viscoelasticity— 33. Park, S.W., Schapery, R.A.: Methods of interconversion between
bone volume fraction relationships of bovine trabecular bone. linear viscoelastic material functions. Part I: a numerical method
Biomech. Model. Mechanobiol. 15, 1631-1640 (2016) based on Prony series. Int. J. Solids Struct. 36, 1653-1675 (1999)

12. Nantasetphong, W., Jia, Z., Amirkhizi, A., et al.. Dynamic 34. Schapery, R.A., Park, S.W.: Methods of interconversion between
properties of polyurea-milled glass composites. Part I: experi- linear viscoelastic material functions. Part II: an approximate
mental characterization. Mech. Mater. 98, 142-153 (2016) analytical method. Int. J. Solids Struct. 36, 1677-1699 (1999)

13. Liu, H., Yang, J., Liu, H.: Effect of a viscoelastic target on the 35. Sorvari, J., Malinen, M.: Numerical interconversion between

impact response of a flat-nosed projectile. Acta Mech. Sin. 34,
162-174 (2018)

@ Springer

linear viscoelastic material functions with regularization. Int.
J. Solids Struct. 44, 1291-1303 (2007)



Viscoelastic models revisited: characteristics and interconversion formulas... 1209

36. Luk-Cyr, J., Crochon, T., Li, C., et al.: Interconversion of linearly 37. Loy, RJ., de Hoog, F.R., Anderssen, R.S.: Interconversion of
viscoelastic material functions expressed as Prony series: a clo- Prony series for relaxation and creep. J. Rheol. 59, 1261-1270
sure. Mech. Time Depend. Mater. 17, 53-82 (2013) (2015)

@ Springer



	Viscoelastic models revisited: characteristics and interconversion formulas for generalized Kelvin--Voigt and Maxwell models
	Abstract
	Introduction
	Characterization of Prony series
	GKV model
	First order GKV model
	Second order GKV model
	GKV model with n elements

	GM model
	First order GM model
	Second order GM model
	GM model with n elements


	Plots
	Models with nthinsp=thinsp1
	Plots with nthinsp=thinsp2

	Relationships between GKV and GM models and relaxation and creep coefficients
	Conclusions
	Appendix A
	A.1 Constants of differential equations
	A.1.1 Constants of Eq. (27) in the text
	A.1.2 Constants of Eq. (56) in the text

	A.2 Derivatives of Prony series
	A.2.1 Derivatives as a function of time
	A.2.2 Derivatives as a function of frequency

	A.3 Roots of polynomial equations
	A.3.1 Roots of the cubic equation x^{3} \plus ax^{2} \plus bx \plus c \eq 0
	A.3.2 Roots of the quartic equation x^{4} \plus ax^{3} \plus bx^{2} \plus cx \plus d \eq 0


	Appendix B
	B.1 Relationships with nthinsp=thinsp1
	B.2 Relationships with nthinsp=thinsp2

	References




