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Abstract
Pipe-in-pipe (PIP) structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues. A PIP 
structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration. The 
total response of the system is related to the dynamics of both pipes and the interactions between these two concentric 
pipes. In the current work, a theoretical model for flow-induced vibrations of a PIP structure system is proposed and 
analyzed in the presence of an internal axial flow and an external cross flow. The interactions between the two pipes 
are modeled by a linear distributed damper, a linear distributed spring and a nonlinear distributed spring along the pipe 
length. The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators. 
The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s 
technique, resulting in a set of ordinary differential equations. These ordinary differential equations are further numeri-
cally solved by using a fourth-order Runge–Kutta integration algorithm. Phase portraits, bifurcation diagrams, an Argand 
diagram and oscillation shape diagrams are plotted, showing the existence of a lock-in phenomenon and figure-of-eight 
trajectory. The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of 
a single-pipe structure.

Keywords Cantilevered PIP structure · Theoretical model · Flow-induced vibration · Cross flow · Internal flow

1 Introduction

Pipe-in-pipe (PIP) structures are widely used in offshore oil 
and gas pipelines due to their outstanding thermal insula-
tion property. The PIP structures used in offshore industry 
can be divided into two types [1–5]: (1) fully compliant PIP 
structures, (2) non-compliant PIP structures. In the case of 
a fully compliant PIP structure, the whole annulus is filled 
with insulation materials, and the deformations of inner and 
outer pipes are completely the same. In the case of a non-
compliant PIP structure, the inner pipe is wrapped by insula-
tion pads for insulation, and there may be a relative motion 
between the inner and outer pipes.

Due to the wide application of PIP systems, the literature 
on PIP systems has expanded in recent years. The integrity 
of a PIP system in the event of accidental collapse of the 
outer pipe was studied by Kyriakides [6] using an experi-
mental method. The experimental results demonstrated that 
the outer pipe will generate a propagating collapse for any 
external pressure higher than the propagation pressure of 
the outer pipe with a solid rod insert. It was shown that, 
in most cases, the collapse of the outer pipe could lead to 
another collapse of the inner pipe. In a special case, an 
interesting phenomenon in which the outer pipe collapses, 
leaving the inner pipe intact, may occur. The property of 
three models for estimating the two propagating collapses 
reported by Kyriakides [6] was further evaluated by Kyri-
akides and Vogler [7]. The numerical simulation results 
of the models agreed well with experimental results with 
acceptable engineering accuracy. Experiments and large-
scale numerical simulations on the dynamics and the sup-
pression of buckling propagation in PIP systems were con-
ducted by Kyriakides and Netto [8]. It was observed from 
their experimental results that the quasi-static controlling 
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efficiency was lower than the dynamic one in all cases. 
The same phenomenon was also obtained by numerical 
calculations. It was shown that the internal ring buckling 
controller designed by a quasi-static design criteria should 
be conservative. A three-dimensional (3D) model was 
established by Gong and Li [9] to simulate the buckling 
propagation of experimental samples using the ABAQUS 
software. The good agreement between numerical and 
experimental results illustrates that the whole buckling 
propagation process of PIP systems under external pres-
sure can be accurately predicted by the numerical model 
proposed. It should be mentioned that all the abovemen-
tioned investigations of PIP systems mainly focused on the 
buckling propagation problems.

It is a common phenomenon that marine riser/pipe 
structures are always subjected to vortex-induced vibra-
tions (VIVs) due to presence of external cross flow. VIV 
is one typical type of flow-induced vibration (FIVs) and 
can lead to decrease of the expected design lifetime and 
even lead to damage. Therefore, it is of great signifi-
cance for researchers and engineers to study the VIVs of 
pipe systems. In many cases, a pipe structure may also 
contain internal fluid flow. In the presence of internal 
fluid flow, a slender pipe suffers an axial FIV when the 
internal fluid velocity becomes high. The axial FIV is 
another typical type of FIV. In the past decades, indeed, 
a number of studies on FIVs of the system of a sin-
gle pipe subjected to both internal and external f luid 
flows were reported [10–18]. However, the studies on 
the FIVs of PIP systems were relatively limited. Due to 
the favorable FIV suppression property and significant 
advantage in terms of fatigue life span of PIP systems, 
Yettou et al. [1] proposed a fluid–structure interaction 
(FSI) model to obtain numerical results. Their numerical 
results were further compared with experimental results. 
It was shown that the numerical results achieved using 
the LS-DYNA arbitrary Lagrangian–Eulerian (ALE) 
penalty coupling algorithm were of excellent engineer-
ing accuracy. Slight modification of the conventional 
PIP system was undertaken by Bi and Hao [19] with the 
inner and outer pipes being connected with springs and 
dashpots. They simplified the PIP structure as a non-
conventional tuned mass damper (TMD) system. The 
springs and dashpots were optimized for the proposed 
PIP systems. It was shown that the proposed PIP sys-
tems can obtain better seismic-induced vibration con-
trol [20–22] than that of traditional PIP systems. Using 
the modified PIP system model suggested by Bi and 
Hao [19], Matin et al. [23] studied the effectiveness of 
an optimized PIP system to mitigate VIVs of cylindri-
cal structures, and compared the VIV responses of the 
optimized PIP system with that of a single-pipe system. 

It was demonstrated that the proposed PIP system can 
dramatically suppress the VIV of offshore cylindri-
cal structures, and hence the optimized PIP system is 
of significant practical value in offshore engineering 
application. Very recently, Matin et al. [24] used a 3D 
two-way FSI analysis to investigate the cross-flow (CF) 
oscillations of both conventional and optimized PIP sys-
tems. First, the reliability of the two-way FSI analysis 
algorithm was validated by introducing previous experi-
mental and numerical results for one single cylinder. 
Then, the numerical method was extended to model a 
PIP system. It was demonstrated that the optimized PIP 
system can significantly suppress the CF VIV of the 
system compared with the conventional PIP system. A 
numerical model was proposed by Yang et al. [25] for 
VIV assessment of sliding PIP systems. The longitudinal 
stress range resulting from VIVs was achieved, and the 
fatigue assessment of the PIP systems was performed in 
accordance with numerical results.

By reviewing the abovementioned valuable studies of 
the PIP systems, to the authors’ knowledge, the literature 
on the nonplanar FIVs of a flexible PIP structure is very 
limited, especially in the case in which the inner pipe is 
conveying fluid flow. This motivates the current study. 
Section 2 of this paper presents the mathematical model 
of a PIP system subjected to both external cross flow and 
internal axial flow. The equations of motion of the inner 
and outer pipes and the governing equations for external 
wake variables are given. These partial differential equa-
tions (PDEs) are further discretized by using Galerkin’s 
method, resulting in a set of ordinary differential equations 
(ODEs). In Sect. 3, the lowest several natural frequencies 
of the PIP system are calculated and analyzed, and the 
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Fig. 1  Schematic of the cantilevered PIP structure system
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nonlinear dynamic responses of the PIP system with or 
without cross flow are investigated. Finally, some conclu-
sions are drawn in Sect. 4.

2  Analytical model and solution

The schematic representation of a horizontal cantilevered 
PIP system under consideration is depicted in Fig. 1, from 
where it is seen that y stands for the in-line (IL) direction 
and z stands for the cross-flow direction. It is assumed that 
the cantilever is a non-compliant PIP system. The exter-
nal cross-flow velocity and internal axial-flow velocity are 
denoted as Uo and U, respectively. In the following analysis, 
some physical and geometric parameters of the PIP sys-
tem are selected as: the Young’s modulus of the two pipes 
E = 210 GPa, the density of the two pipes ρp = 7850 kg/m3, 
the density of external fluid ρo = 1020 kg/m3, the density 
of internal axial fluid ρf = 870 kg/m3 with mass per unit 
length M. All parameters of the outer pipe are designated 
by subscript “o”, and several key parameters of the outer 
pipe are selected as: the length Lo= L = 140 m, the outer 
diameter Do= 0.26 m, the inner diameter do= 0.22 m and the 
mass per unit length mo. All parameters of the inner pipe are 
designated by subscript “i”, and several key parameters of 
the inner pipe are selected as: the length Li= L =140 m, the 
outer diameter Di= 0.20 m, the inner diameter di= 0.16 m 
and the mass per unit length mi. The inner and outer pipes 
are connected by an insulation layer. The effect of the insu-
lation layer may be viewed as a linear damper (Cr) and a 
nonlinear spring along the pipes’ length [23, 24]. The spring 
(K) consists of linear component (Kr) and nonlinear com-
ponent (Krn). The nonlinear component of the spring rep-
resents the possible impact force between the two pipes. It 
was reported by Williams and Kenny [26] that the relative 
motion could be highly nonlinear as the inner pipe would 
contact closely with the inner surface of the outer pipe in 
some cases.

2.1  Governing equations of the inner pipe

For either an inner or outer cantilevered pipe, two variables 
v(s, t) and w(s, t) stand for the pipe’s lateral displacements 
along the y and z axes, respectively, with s being the cur-
vilinear coordinate along the length of the pipe and t being 
the time. In the present work, unless particularly stated, the 
lateral displacements of the outer pipe are designated by 
subscript “o”, and the lateral displacements of the inner 
pipe are designated by subscript “i”. Following the deri-
vation of Wadham-Gagnon et al. [27] and Liu et al. [28] 

and neglecting gravity, the 3D version of the governing  
equations for the inner pipe may be written as: in the y 
direction

in the z direction

where R denotes the relative motion displacement 
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ẅ�

i
+ v̇

�2

i
+ v

�

i
v̈
�

i

)
ds

+ EI
i

(
w
����

i
w
�2

i
+ w

��3

i
+ 4w�

i
w
��

i
w
���

i
+ w

��

i
v
��2

i

+w��

i
v
�

i
v
���

i
+ 3w�

i
v
��

i
v
��

i
+ w

�

i
v
�

i
v
���

i

)
= 0,



1244 Z. Y. Liu, et al.

1 3

Equations (1) and (2) can be transformed into a dimen-
sionless form through the use of

where u is the dimensionless fluid velocity of the internal 
axial flow.

The dimensionless equations are
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where the prime and overdot on each variable now denote 
the derivative with respect to ξ and τ, respectively.

2.2  Governing equations of the outer pipe

Following the derivation of Wadham-Gagnon et al. [27] and 
Liu et al. [28], the 3D version of the governing equations for 
the outer pipe may be written as:
in the y direction

in the z direction

where the prime and overdot on each variable stand for the 
derivative with respect to s and t, respectively.

The damping coefficient Co of the outer pipe consists of 
a viscous dissipation in the structure cs and a fluid-added 
damping cf  , while the damping coefficient Ci of the inner 
pipe just depends on a viscous dissipation in the structure 
[29], thus we have

where �r is the angular frequency of the pipe, � is the struc-
tural damping ratio, ϑ is a stall parameter usually estimated 
using experiment data, as discussed in Refs. [30, 31]. The 
two key parameters in Eq. (7) will be chosen as: � = 0.001 
and ϑ = 0.8. In Eq. (7), �s is the vortex shedding angular fre-
quency. In addition, the added fluid mass ma per unit length 
is assumed to be independent of time and is given by

(5)
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ẅ�

o

)
dsds

+ Kr

(
vo − vi

)
+ Cr

(
v̇o − v̇i

)

+ Krn

[
R −

1

2

(
|R + Rb| − |R − Rb|

)]3 vo − vi

R

+ EIo
(
v����
o

v�2
o
+ v��2

o
+ 4v�

o
v��
o
v���
o

+ v��
o
w��2

o

+v��
o
w�

o
w���

o
+ 3v�

o
w��

o
w���

o
+ v�

o
w�

o
w����

o

)
= Fy ,

(6)

(m
o
+ m

a
)ẅ
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ẇ

o

+ (m
o
+ m

a
)w�

o ∫
s

0

(
ẇ
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Co = cs + cf = 2�(mo + ma)�r + ��s�oD

2

o
, Ci = 2�(M + mi)�r,
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where Ca is the added mass coefficient, and is chosen to be 
1 for cylindrical structures as reported by Munir et al. [32] 
and Yang et al. [33].

The external hydrodynamic force, Fy and Fz are induced 
by the wake dynamics and may be expressed as [31] 

in which fD is the vortex-induced fluctuating drag force, fD0 
is the average drag force, and fL is the lift force exerted on 
the outer pipe. The two drag forces and the lift force are 
given by [31] 

where CDi is a vortex-induced drag term depending on time, 
CD0 is the drag coefficient for a pipe at rest, and CL is the lift 
coefficient. In the present study, CDi and CL will be written  
as

where p and q are the vortex wake variables in the y and z 
directions, respectively; CD0i and CL0 are the correspond-
ing unsteady drag and lift coefficients of a stationary pipe 
subjected to shedding vortex. In this work, a set of system 
parameter values are set as [29, 30]: CD0i = 0.1, CD0 = 2 and 
CL0 = 0.3.

Equations (5) and (6) can be transformed into dimension-
less form through the use of
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The dimensionless forms of Eqs. (5) and (6) are

where the prime and overdot on each variable stand for the 
derivative with respect to ξ and τ, respectively.

The dimensionless equations of the wake oscillators are 
given by Wang et al. [29] 

in which a set of system parameter values are set as [29] 
�y = 0.02, �z = 0.04, �y = 96, �z = 12.
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2.3  Solution method

It is seen that the governing equations for the PIP system and 
wake are in partial differential form. Galerkin’s method will 
be used to solve Eqs. (3), (4), (12)–(14). According to this 
method, the oscillation displacements of the inner and outer 
pipes and the wake variables can be given by

where �r(�) is the dimensionless eigenfunctions of a canti-
levered beam, �̄�o(𝜏) and p̄r(𝜏) are the corresponding gener-
alized coordinates of the outer pipe in the y direction, 𝜁o(𝜏) 
and q̄r(𝜏) are the corresponding generalized coordinates of 
the outer pipe in the z direction, and �̄�i(𝜏) and 𝜁i(𝜏) are the 
corresponding generalized coordinates of the inner pipe in 
the y and z directions, respectively. It should be noted that 
the series Eq. (15) can be truncated at a reasonably large 
value of r (i.e. r = N). Since Galerkin’s method has been 
extensively used for studying the nonlinear vibrations of 
pipes conveying fluid [34–38]), the PDEs of the PIP system 
coupled with cross flow will be discretized with the aid of 
Galerkin’s method without giving any additional details of 
this method.

(15)
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3  Results and discussion

In this section, the main aim is to investigate the FIVs of the 
PIP system based on numerical calculations. For that pur-
pose, the reduced cross-flow velocities are varied in the range 
of 0 ≤ Ur≤ 50, where Ur is defined as Ur = 2πUo∕(�1D) , with 
�1 being the first-order natural frequency of the PIP sys-
tem for a given internal fluid velocity [39]. In this range of 
reduced cross-flow velocities, extensive calculations indicate 
that the dynamic responses of the PIP are only dominated by 
the lowest several modes of the system. Thus, the nonlinear 
partial differential Eqs. (3), (4) and (12)–(14) are discre-
tized via Galerkin’s method with a five-mode truncation. The 
obtained high-dimensional, reduced-order PDEs will be fur-
ther numerically solved by using a fourth-order Runge–Kutta 
integration algorithm. The numerical results are plotted in 
the form of phase portraits, bifurcation diagrams, Argand 
diagram and oscillation shape diagrams, to show the vari-
ous dynamical behaviors of the PIP system. In the present 
study, the three key dimensionless parameters of the insu-
lation layer are set as: kr= 100, krn= 1 × 1013, and cr = 0.2. 
 
3.1  Validation of the proposed model

Owing to the lack of FIV experiments on cantilevered fluid-
conveying PIP structures, the validation of the proposed 
model will be performed using a typical apparatus of a sin-
gle-pipe structure designed by Song et al. [40].

To check the accuracy of the calculation procedure, 
the validation example for our analytical model is a 
pinned–pinned pipe containing internal fluid and subjected 
to external cross flow. The experiment of VIVs of this pipe 

a b
P
E

P
E[40] [40]

Fig. 2  Distributions of RMS displacements along the flexible riser length with a uniform cross flow of Uo= 2.8 m/s for a in-line direction and  
b cross-flow direction
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structure was conducted by Song et al. [40]. For comparison 
purposes, all the system parameters were chosen to be the 
same as those utilized by Song et al. [40]: the pipe length 
L = 7.9 m, the outer diameter D = 0.03 m, the inner diameter 
d = 0.027 m, the Young’s modulus E = 108 GPa, the bending 
stiffness EI = 1476.63 N·m2, the mass per unit length of the 
pipe m = 1.768 kg/m, the mass ratio m* = 2.5 and the preten-
sion T = 2943 N.

The distributions of root mean square (RMS) displace-
ments for the flexible riser under cross flow (Uo= 2.8 m/s) 
are shown in Fig. 2. In this figure, the red dash line stands for 
the experimental result reported by Song et al. [40], while 
the blue solid line stands for the predicted result based on 
our proposed model. It is obvious that the present result has 
an acceptable agreement with experimental data [40].

3.2  Basic dynamics of the cantilevered PIP structure 
system in the absence of cross flow

The Argand diagram of a cantilevered PIP structure system is 
plotted in Fig. 3, which greatly different from that of a single 
cantilevered pipe system. In Fig. 3, the abbreviations Pi and 
Po correspond to the inner pipe and outer pipe, respectively. In 
Fig. 3, the evolution of the lowest four non-dimensional eigen-
frequencies of the inner pipe, and the evolution of the lowest 
two non-dimensional eigen-frequencies of the outer pipe with 
increasing internal flow velocity are shown. The purpose of a 
smaller region of the figure is to show the critical flow velocity 
more clearly. It is immediately seen that the evolution of the 
lowest four non-dimensional eigen-frequencies of the inner 
pipe is qualitatively similar to that of one single pipe [28]. It is 
interesting that, for the outer pipe, only the first-mode eigen-
frequency is affected due to the presence of the inner pipe and 
the insulation layer. It is found that the flutter instability of the 
outer pipe occurs at about u = 5.9, and that of the inner pipe 
occurs at about u = 7.0, as shown in Fig. 3. It is obvious that 
the two critical internal flow velocities of the PIP system (ucr 
= 5.9 and 7.0) are larger than that of single-pipe system (ucr 
= 5.3) as reported by Liu et al. [28]. That is to say, the addi-
tional outer pipe and insulation layer can enhance the stability 
of the original single pipe conveying fluid to a certain extent.

The bifurcation diagrams of the outer pipe at ξ = 1 without 
cross flow are shown in Fig. 4. It is seen from Fig. 4 that, for 
a given u beyond the lowest critical flow velocity (ucr= 5.9) 
of the outer pipe, the displacement amplitudes at the free end 
of the outer pipe increase slowly with increasing u. Such a 
slow increase of oscillation amplitude with increasing internal 
flow velocity may be due to the fact that the inner pipe is still 
stable for 5.9 < u < 7.0. For a given u beyond the secondary 
critical flow velocity (ucr= 7.0) of the inner pipe, however, 
the displacement amplitudes at the free end of the outer pipe 

Fig. 3  Argand diagram for the cantilevered PIP structure system 
without cross flow

a b

Fig. 4  Bifurcation diagrams of the outer pipe at ξ = 1 without cross flow for a z direction and b y direction
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increase exponentially. Such a sharp increasing trend of oscil-
lation amplitude with increasing internal flow velocity is due to 
the fact that both inner and outer pipes are unstable for u > 7.0.

3.3  Nonlinear FIV responses of the cantilevered 
PIP structure system for varied Ur and several 
typical values of u

In the current work, a non-compliant PIP system will be 
considered. It has been demonstrated by Bokaian [41] and 
Wang [42] that there is relative motion between the inner 
and outer pipes in such a non-compliant PIP system. In this 
section, the results shown in Fig. 5 are the oscillation shapes 
of the inner and outer pipes at the time of τ = 60 and τ = 80 
for four typical values of u. In this figure, the circles stand 

for the responses of the PIP system at the time of τ = 60, 
and the squares stand for the responses of the PIP system 
at the time of τ = 80. Moreover, the oscillations of the inner 
pipe are designated by subscript “i”, and those of the outer 
pipe are designated by subscript “o”. Figure 5a–d shows the 
in-line (IL) oscillation shapes of the inner and outer pipes. 
It is obvious that the inner and outer pipes keep the same 
oscillation shape for τ = 60 or τ = 80. Moreover, the inner 
and outer pipes keep the same cross-flow oscillation shapes 
for a given time, as shown in Fig. 5e–h. Furthermore, it is 
obvious that the relative displacements between the outer 
and inner pipes are smaller than the clearance between the 
outer and inner pipes.

Figure 6 shows the oscillation shape of the PIP system 
for u = 0 and Ur= 44. The results shown in Fig. 6a, b cor-
respond to the CF responses of the outer pipe and the inner 
pipe, respectively. The outer and inner pipes are of the 
same CF oscillation shapes, and they are mainly dominated 
by the second mode. Moreover, the outer and inner pipes 
are of the same IL oscillation shapes dominated by the 
third mode with almost the same amplitude, as shown in 
Fig. 6c, d.

Fig. 5  Comparison of the oscillation shapes of the inner and outer 
pipes at the time of τ = 60 and τ = 80 for Ur= 44, a, e in-line and 
cross-flow responses for u = 0, respectively; b, f in-line and cross-flow 
responses for u = 5, respectively; c, g in-line and cross-flow responses 
for u = 6.6, respectively; d, h in-line and cross-flow responses for 
u = 8, respectively

◂

a b

c d

Fig. 6  Oscillation shapes of the PIP system for Ur = 44 and u = 0: a, b cross flow motions of the outer and inner pipes, respectively; c, d in-line 
motions with removal of the mean values of the outer and inner pipes, respectively
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The oscillation shapes of the PIP system for Ur= 44 with 
a subcritical internal flow velocity u = 5 are shown in Fig. 7. 
Similar results for Ur= 44 with a supercritical internal flow 
velocity u = 8 are shown in Fig. 8. As can be seen in Figs. 7 
and 8, the CF oscillation shapes of the outer and inner pipes 
are mainly dominated by the second mode, while the IL 
oscillation shapes of the outer and inner pipes are mainly 
dominated by the third mode. In both figures, it is seen that 
the oscillation responses of the outer and inner pipes have 
almost the same oscillation shapes and amplitudes. Actually, 
the motions of the outer and inner pipes are almost synchro-
nous. Due to this fact, only the results of the outer pipe have 
been presented in Fig. 4, and in the following discussion, 
only the dynamic responses of the outer pipe will be focused. 

Some further numerical results presented in the form 
of bifurcation diagrams are concerned with the possi-
ble dynamical behavior of the PIP system subjected to 
cross flow. Several bifurcation diagrams for the IL or CF 
displacements at the tip end of the outer pipe are plot-
ted in Fig. 9. Figure 9a, e respectively shows the CF and 
IL responses of the outer pipe in the range of 0 ≤ Ur≤ 50 
for u = 0. As can be seen from Fig. 9a, the CF motion 

amplitudes of the outer pipe are extremely small for rela-
tively low Ur. When Ur is close to 4, the CF motion ampli-
tudes increase sharply because the PIP system has gener-
ated a ‘lock-in’ phenomenon in the first mode of the inner 
pipe. The lock-in phenomenon of VIVs in the first mode 
occurs in the range of 4 ≤ Ur≤ 7 approximately. When Ur 
is higher than 7, the CF motion amplitudes decrease to 
relatively low values. In the range of 25 < Ur< 40 approx-
imately, the VIV responses of the outer pipe become 
strong, and they are mainly dominated by the second-mode 
component of a cantilevered beam. The IL responses of the 
outer pipe for u = 0 are plotted in Fig. 9e, and the response 
amplitudes are shown to increase gradually to larger values 
when Ur is increased in the range of 0 ≤ Ur≤ 50.

Figure 9b, f respectively shows the CF and IL responses 
of the outer pipe in the range of 0 ≤ Ur≤ 50 for u = 5.0. In 
this case, the axial flow velocity of the inner pipe is still 
below the lowest critical value for flutter instability of the 
PIP system. Figure 9b shows a bifurcation diagram differ-
ent from that of Fig. 9a. It is seen that the first maximum 
amplitude of the VIV responses occurs at a higher value 
of Ur. Obviously, such a maximum amplitude is lower than 

a b

dc

Fig. 7  Oscillation shapes of the PIP system for Ur= 44 and u = 5, a, b cross-flow motions of outer and inner pipes, respectively; c, d in-line 
motions with removal of the mean values of the outer and inner pipes, respectively
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the counterpart shown in Fig. 9a. Indeed, the first mode of 
the inner pipe has a relatively large positive damping when 
u = 5 (see Fig. 3), thus yielding a lower amplitude of VIV 
response of the PIP system. The bifurcation diagram of 
Fig. 9f for u = 5.0 is qualitatively similar as that of Fig. 9e. 
For each value of Ur, however, the maximum amplitude of 
Fig. 9f is generally lower than that of Fig. 9e.

The next case we considered is a PIP system with the 
internal flow velocity equal to 6.6. In this case, the inter-
nal flow velocity is beyond the lowest critical value for 
internal flow-induced flutter instability of the outer pipe, 
while it is below the secondary critical value for flut-
ter instability of the inner pipe. As shown in Fig. 9c, g, 
the most interesting dynamical feature of the PIP sys-
tem with u = 6.6 is that either CF or IL response of the 
outer pipe has a perturbed displacement around the mean 
displacement position, even for sufficiently small cross-
flow velocities. This new feature is due to the internal 
f low-induced flutter and is obviously different from 
that shown in Fig. 9b, f. Furthermore, the IL response 
amplitude shown in Fig.  9g for each Ur is obviously 
lower than that shown in Fig. 9f. This means that the 

internal flow-induced flutter instability can reduce the IL 
responses of the PIP to some extent.

Now we turn our attention to the case of u = 8. The 
internal flow velocity in this case is higher than the two 
critical values for flutter instability. It is immediately 
seen from Fig. 9d that the overall dynamical behavior 
of the pipe for u = 8 is qualitatively similar to that of the 
pipe for u = 6.6. However, the initial perturbed displace-
ments of the pipe for u = 8 are larger than that of the pipe 
for u = 6.6 due to the concurrent flutter instability of the 
inner and outer pipes. It is seen from Fig. 9h that the 
overall dynamical behavior of the IL responses for u = 8 
is qualitatively similar to that shown in Fig. 9g. There-
fore, in the range of 0 ≤ Ur≤ 50, it is found that the IL 
oscillation amplitudes of the outer pipe would decrease 
gradually with the increment of internal flow velocity. 
This trend can be clearly seen in Fig. 9e–h. To explore the 
rich dynamics of the PIP system, some typical results of 
phase portraits and trajectory diagrams of the outer pipe 
are further plotted in Figs. 10, 11, 12, 13.   

The results shown in Fig. 10a–c are for Ur= 30 and 
u = 0, demonstrating that the dynamic response of the 

a b

dc

Fig. 8  Oscillation shapes of the PIP system for Ur= 44 and u = 8, a, b cross-flow motions of outer and inner pipes, respectively; c, d in-line 
motions with removal of the mean values of the outer and inner pipes, respectively
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outer pipe corresponds to a periodic motion. Figure 10a, 
b shows that the CF response of the outer pipe undergoes 
a limit-cycle motion, while it shows that the IL response 
of the outer pipe undergoes a multi-periodic motion. Fig-
ure 11 corresponds to the dynamic response of the outer 
pipe for Ur= 30 with a subcritical internal flow veloc-
ity u = 5, demonstrating that the PIP system undergoes 

Fig. 9  Bifurcation diagrams of the outer pipe, with the reduced cross-
flow velocity as the variable parameter: a, e cross-flow and in-line 
dimensionless tip displacements for u = 0, respectively; b, f cross-
flow and in-line dimensionless tip displacements for u = 5, respec-
tively; c, g cross-flow and in-line dimensionless tip displacements for 
u = 6.6, respectively; and d, h cross-flow and in-line dimensionless tip 
displacements for u = 8, respectively

◂

a b c

1

1

Fig. 10  Dynamic responses of the outer pipe at ξ = 1 for Ur= 30 and u = 0, a phase portrait of CF motions, b phase portrait of IL motions, c oscil-
lation trajectory

a b c

1

1

Fig. 11  Dynamic responses of the outer pipe at ξ = 1 for Ur= 30 and u = 5, a phase portrait of CF motions, b phase portrait of IL motions, c oscil-
lation trajectory
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a periodic motion with the feature of a figure-of-eight 
trajectory.

For the supercritical internal f low velocity case, 
Figs. 12 and 13 respectively show the dynamic responses 
of the outer pipe for u = 6.6 and u = 8, with Ur= 30. It 
is found that the PIP system undergoes a non-periodic 
motion for the two supercritical internal flow velocities 
as shown in Figs. 12 and 13.

4  Conclusion

In order to investigate the basic mechanism of FIVs of a 
cantilevered PIP system concurrently subjected to axial 
and cross flows, a new 3D theoretical prediction model is 
proposed. The inner and outer pipes are connected by an 
insulation layer. The effects of the insulation layer on the 
inner and outer pipes are modelled by a linear distributed 

a b c

1

1

Fig. 12  Dynamic responses of the outer pipe at ξ = 1 for Ur= 30 and u = 6.6, a phase portrait of CF motions, b phase portrait of IL motions,  
c oscillation trajectory

a b c

1

1

Fig. 13  Dynamic responses of the outer pipe at ξ = 1 for Ur= 30 and u = 8, a phase portrait of CF motions, b phase portrait of IL motions, c oscil-
lation trajectory
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damper, a linear distributed spring and a nonlinear distrib-
uted spring. The wake dynamics of the external cross flow 
is modelled by two distributed van der Pol wake oscilla-
tors. The full 3D nonlinear partial differential equations 
for the two pipes and the wake are coupled. These govern-
ing equations are discretized first by Galerkin’s method, 
resulting in a set of ordinary differential equations. Then, 
the obtained ordinary differential equations are further 
solved by using a fourth-order Runge–Kutta integration 
algorithm. According to the results presented in the form 
of an Argand diagram, oscillation shape diagrams, phase 
portraits and bifurcation diagrams, some conclusions can 
be drawn as follows.

(1) The Argand diagram for the cantilevered PIP structure 
system without cross flow is greatly different from that of a 
single cantilevered pipe. The first-mode flutter instability of 
the outer pipe can occur at an internal flow velocity lower 
than the counterpart of the inner pipe.

(2) The bifurcation diagrams of the PIP structure system 
without cross flow are also different from that of a single 
cantilevered pipe conveying fluid. When the internal flow 
velocity is beyond the lowest critical value for flutter insta-
bility of the outer pipe but is below the secondary critical 
value for flutter instability of the inner pipe, the displace-
ment amplitudes at the free end of the PIP system increase 
slowly with increasing internal flow velocity. When the 
internal flow velocity is beyond the two critical values for 
flutter instability of both inner and outer pipes, interestingly, 
the displacement amplitudes at the free end of the PIP sys-
tem increase exponentially.

(3) When the internal flow velocity is below the lowest 
critical value for flutter instability, the response of the PIP 
system is mainly due to cross-flow-induced vibrations. When 
the internal flow velocity is beyond the lowest critical flow 
velocity for flutter instability, the response of the pipe is 
mainly attributed to the internal flow for relatively low cross-
flow velocities, while it is mainly attributed to both internal 
and cross flows for high cross-flow velocities.

(4) The PIP system may exhibit both periodic and non-
periodic motions for the varied velocity of the internal or cross 
flow. The CF and IL responses of the PIP system are generally 
coupled. Therefore, both CF and IL displacements need to be 
taken into account in the FIV analysis of PIP systems.

In summary, this paper has two main contributions. First, 
a novel theoretical model for exploring the FIVs of PIP 
structures in the presence of both internal axial flow and 
external cross flow has been developed. This theoretical 
model is capable of predicting the nonlinear responses 
of the coupled PIP system. Currently, there exist several 
theoretical models for FIV analysis of a single pipe with 
both internal and external fluid flows; however, there is 
a lack of theoretical models for FIV analysis of the PIP 

system concurrently subjected to both internal and exter-
nal fluid flows. The second contribution of this work is 
that we have suggested a conception of suppressing FIVs 
of marine pipes. Recalling that the IL displacement of 
a single pipe conveying fluid can become very large (is 
of the same order of magnitude as 0.5 × L) due to axial- 
and/or cross-flow-induced vibrations [28, 34], it may 
be an effective way to suppress the nonlinear responses 
of marine pipes conveying fluid with optimal design of 
desired PIP structures.
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