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Abstract
Logarithmic boundary layers have been observed in different regions in turbulent Rayleigh–Bénard convection (RBC).
However, how thermal plumes correlate with the logarithmic law of temperature and how the velocity profile changes with
pressure gradient are not fully understood. Here, we perform three-dimensional (3D) simulations of turbulent Rayleigh–
Bénard convection in a slim box without the front and back walls, with aspect ratio width:depth:height = L:D:H = 1:1/6:1
(corresponding to the x , y, and z coordinates, respectively), in the Rayleigh number Ra = [1 × 108, 1 × 1010] for Prandtl
number Pr = 0.7. To investigate the structures of the viscous and thermal boundary layers, we examine the velocity profiles
in the streamwise and vertical directions (i.e. U and W ) along with the mean temperature profile throughout the plume-
impacting, plume-ejecting, and wind-shearing regions. The velocity profile is successfully quantified by a two-layer function

of a stress length„ �+
u = �+

0 (z+)3/2
[
1 + (

z+/z+sub
)4]1/4

, as proposed by She et al. (J Fluid Mech, 2017), though it is neither

Prandtl–Blasius–Pohlhausen (PBP) type nor logarithmic. In contrast, the temperature profile in the plume-ejecting region is
logarithmic for all simulated cases, attributed to the emission of thermal plumes. The coefficient of the temperature log law,
A, can be described by the composition of the thermal stress length �∗

θ0 and the thicknesses of thermal boundary layer z∗sub
and z∗buf , i.e. A � z∗sub/

(
�∗
θ0z

∗
buf

3/2
)
. The adverse pressure gradient responsible for turning the wind direction contributes

to intensively emitting plumes and the logarithmic temperature profile at the plume-ejecting region. The Nusselt number
scaling and the local heat flux in the slim box are consistent with previous results for confined cells. Therefore, the slim-box
RBC is a preferred system for investigating in-box kinetic and thermal structures of turbulent convection with the large-scale
circulation in a fixed plane.

Keywords Rayleigh–Bénard convection · Wall-bounded turbulence · Heat transport · Direct numerical simulation

1 Introduction

Rayleigh–Bénard convection (RBC) is commonly used to
study natural convection, due to the simplicity of its config-
uration and the richness of its flow regimes. In this system,
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fluid is filled in a closed cell, heated on the bottom and cooled
on the top, with adiabatic side no-slip wall [1–3]. The control
parameters are the Rayleigh number Ra = gβ�T H3/(νκ),
the Prandtl number, Pr = ν/κ , and the aspect ratio Γ =
L/H , where ν is the kinematic viscosity, κ is the thermal dif-
fusivity, H is the height of the sample, L is its width, g is the
gravitational acceleration, β is the thermal expansion coeffi-
cient, and �T is the temperature difference between the top
and bottom plate. Enhancement of the heat transport of a nat-
ural convection system such as the RBC is particularly useful
in many industrial processes and is of fundamental interest
[4,5].

The boundary layer (BL) inRBCexhibits a transition from
a laminar to a turbulent regime when Ra exceeds a critical
value, Rac. In the laminar regime, the mean velocity pro-
file (MVP) takes a Prandtl–Blasius–Pohlhausen (PBP) type,
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whereas in the turbulent regime, a logarithmic (log) profile
is usually expected, when an analogy is made with a BL
passing a flat plate. A BL equation for RBC of Pr > 1
was recently developed [6] considering both laminar and
turbulent contributions, and amodel describing themeanpro-
files of temperature and its variance in the near-wall region
was experimentally tested [7]. For Ra < Rac, the RBC-
BL presents a PBP-like profile when measured at near-wall
regions in zero pressure gradient (ZPG) conditions [8,9].
Nevertheless, the lateral change in the profile is remarkable,
presenting significant deviations from the PBP-type at high
Ra number [10,11].

The logarithmic mean temperature profile (MTP) is
another issue which has recently garnered much attention
in numerical and experimental studies, for Ra ranging from
1010 to 1015 [12–14]. Logarithmic temperature profiles were
observed near the sidewalls in experiments and direct numer-
ical simulations (DNS), which showed markedly decreased
thickness near themiddle of the conductingplate. Themecha-
nism behind the log law of theMTP is still debated—whether
it is induced by themomentum transport near the no-slip side-
wall, by the heat transport due to emitted plumes, or by both,
is still unknown. Some results indicate a correlation between
the intensive plume emission and the logarithmic tempera-
ture profile. In a cylindrical container at Γ � 1, the plumes
are found to be abundantly emitted from the top/bottom plate
near the sidewalls, leading to an intensive local heat flux [15].
In a recent two-dimensional (2D) DNS study with a horizon-
tal periodic boundary, a vertical log MTP only appears in the
regionswhere plumes accumulate [16]. However, the physics
in these regions is still not fully understood.

Most previous experimental and numerical studies of the
RBC system set the horizontal section in a circular or square
geometry, where the large-scale circulation (LSC) exhibits
frequent reversal, cessation or azimuthal motion [17,18]. In
such systems, the plume-emitting regions appear to ‘wan-
der’ along the conducting plate, and it is difficult to extract
the property of a certain flow region free of the influence
from other regions. Similar phenomena have been observed
in the cubic box (L:D:H = 1:1:1),where the large-scale con-
vection is found to exhibit random reorientation of the LSC
and low-frequency oscillation perpendicular to the LSC [19].
Complex convection flow also appears in a rectangular con-
tainer for Ra = 8×108 ∼ 1×1010, due to strong secondary
flow in the form of horizontal rolls surrounding the core of
the cell and orthogonal to the cross-stream rolls [20]. Thus,
neither a cubic cell nor a rectangular cavity is appropriate
to establish a turbulent RBC with a statistically steady LSC
over a large range of Ra.

We perform a three-dimensional (3D) simulation with an
LSC in a fixed plane so that a statistical mean field can be
studied in great detail. This is achieved by reducing the scale
in the depth direction to make a slim box, e.g. L:D:H =

1:1/6:1, forwhich themean flowbecomes ideally confined in
the vertical plane. It has been reported that the aspect ratio in
the planes perpendicular to the LSC, D/L , has strong effects
on the global heat transport—the increased wall friction and
suppressed LSC lead to more coherent and energetic plumes
emitted from the conducting plates and thus enhancement
of the global heat transport [21]. The focus of the present
study is to investigate a steady LSC in a plane free from the
wall/confinement effect. This helps to settle down a better
defined statistical mean field with well-defined flow regions.
The periodic condition in the depth (y) direction allows for
velocity and temperature fluctuating over a range of scales
smaller than 1/6of the depth of the box.Meanwhile, it iswide
enough to develop relevant turbulent thermal convection for
the simulated Ra. This configuration will be referred to as
the slim-box RBC simulation, in which a turbulent LSC is
confined in a fixed plane. Compared to other RBC systems
of D/L � 1, the slim-box simulation establishes a stronger
and more stable LSC with an unchanged wind direction. It
will be seen that the periodic boundary condition in the y
direction somewhat mimics the rectangular cell; indeed, the
measured velocity and temperature profiles averaged in the
depth direction present relevant features of experimental and
numerical results previously observed.

We focus on the characteristics of the convection flow in
different regions. An outcome of the current simulation, in
addition to the LSC and the corner roll [22], is the identifica-
tion of three flow regions, namely plume-impacting, wind-
shearing and plume-ejecting regions, in a time-averaged
velocity field, similar to the results for 3D DNS of the RBC
in a circular cylinder [23]. Note that the RBC in the slim box
has a larger LSC, a result of the absence of friction due to
sidewalls. The coherent motion of the stronger LSC yields a
thinner viscous BL and hence a larger Reynolds number. The
Nusselt number Nu in the present study is also slightly larger
than that in a confined cell, as measured at the same Pr [24].

The mean horizontal and vertical velocity (U and W )
and temperature profiles in the slim box (averaged in the
depth direction) are measured and studied in great detail in
three regions, i.e. plume-ejecting, wind-shearing, and plume-
impacting, for the medium Rayleigh number. Because of the
strong adverse pressure gradient in the wind-shearing and
plume-ejecting regions, the BL in RBC is very different from
a turbulent BL on a flat plate, so that neither a PBP-type nor
the log-law BL is indeed observed in the MVP. On the other
hand, themultilayer theory proposed by She et al. [25] allows
us to analytically quantify the kinetic BL by means of a two-
layer stress-length function.

For the MTP, the plume-ejecting region is found to hold
a logarithmic region in all simulated cases, in agreement
with previous studies. This logarithmic layer, however, is
one of the multilayer structures for the temperature length,
and the log-law coefficient, A, can be related to the thick-
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Fig. 1 Sketch of the convection box showing the definitions of coordi-
nates and dimensions. The plane marked by a dashed line is the location
of the side view of the convection

ness of the sublayer and buffer layer, which are measured
at all streamwise locations and shown to exhibit a two-layer
structure away from the ejection corner of the RBC cell.
This model, for the first time, yields a two-dimensional (2D)
temperature mean field, in agreement with DNS data, which
is superior to the result obtained by Grossmann et al. [26]
(i.e. |A| = |A1|/√4x(1 − x)). The relation between the log
law of MTP and the emission of thermal plumes, previously
suggested by a two-dimensional simulation of RBC [16], is
confirmed in our 3D simulations, and the role of the adverse
pressure gradient is emphasized.

The paper is organized as follows. In Sect. 2, we dis-
cuss the numerical simulation method. Section 3 contains
the results and discussion, including temperature and pres-
sure distribution, the mean velocity and temperature profiles,
and the heat flux distribution in the slim box. Concluding
remarks are given in Sect. 4.

2 Numerical setup

The choice of the geometrical configuration is based on the
following considerations. When the scale in the depth direc-
tion is reduced to form a slim box (with e.g. L:D:H =
1:1/6:1, where L , D, H denote horizontal x , depth y and
vertical z directions, respectively, and with a vertical aspect
ratio Γ = L/H = 1), the mean flow is confined in the ver-
tical plane (at least approximately). Figure 1 schematically
displays the geometry of the slim box and the LSC. The
periodic boundary condition set in the y direction allows for
velocity and temperature fluctuation over a range of scales
smaller than 1/6 of the length of the box.

We numerically integrate the incompressible Navier-
Stokes equation with the Boussinesq approximation and the
continuity equation, following Ref. [27]:

∂u
∂t

+ (u · ∇)u = −∇ p + θez + ν∇2u, (1)

∂θ

∂t
+ (u · ∇)θ = κ∇2θ, (2)

∇ · u = 0, (3)

where ez is the unity vector pointing in the opposite direction
to gravity, u is the velocity vector, p is the reference pres-
sure and θ is the nondimensional temperature (with ±1/2 at
the bottom and top walls). The integrated equations are nor-
malized using the free-fall velocity U = √

RaPr(κ/H), the
reference pressure P0 = RaPr(ρκ2)/H2, and the time scale
T0 = (H2/κ)

√
RaPr.

The fluid in the slim-box RBC is bounded in the x−z
plane by the upper and lower isothermal plates and adia-
batic sidewalls, so the boundary conditions are ∂θ/∂x |x=0 =
∂θ/∂x |x=L = 0. No-slip and impenetrability conditions are
used for all solid boundaries. Periodicity is assumed in the
y direction, i.e. θ |y=0 = θ |y=D , ∂θ/∂ y|y=0 = ∂θ/∂ y|y=D ,
u|y=0 = u|y=D , and ∂u/∂ y|y=0 = ∂u/∂ y|y=D).

All the simulations were performed with a second-order
finite-difference code, see Ref. [28] for details. Due to the
absence of singularity at the origin, the central second-
order finite difference was applied in the y direction. A
time-splitting method extensively discussed in Refs. [29,
30] was used for the time advancement. The third-order
low-storage Runge–Kutta method, along with the Crank–
Nicolson scheme, was implemented to evaluate the non-
solenoidal velocity [30]. The finite-difference scheme for the
temperature equation is the same as that for velocity, except
for pressure-related terms.

Solving the Poisson equation for pressure requires that
the solution be sufficiently smooth up to the boundary. The
iterative method is inefficient at high Ra when small-scale
fluctuations are abundantly developed. We thus applied the
fast fourier transformation (FFT) method to alter the parallel
diagonal dominant (PDD) solver from 3D to 2D, see Ref.
[31] for details.

Keeping the grid spacing smaller than the Kolmogorov
scale ηK and the Batchelor scale ηB over the whole domain
is important to ensure proper spatial resolution [32], where
ηK = (ν3/εu)

1/4 = Pr1/2Ra−1/4(Nu − 1)−1/4H , and
ηB = ηK/

√
Pr [33]. The time step was chosen to satisfy the

Courant–Friedrichs–Lewy (CFL) condition, i.e. CFL � 0.2.
In our simulations, Nu was calculated by integrating over
the whole volume and over time. Table 1 reports the mini-
mum and maximum grid spacings, Δmin and Δmax, which
are indeed smaller than ηB and ηK; thus, the finest scales in
the bulk flow are well resolved. The thermal BL thickness
was then calculated using the relation of λθ = H/(2Nu).
The Bolgiano length scale was evaluated using LB =
〈εu〉5/4/(g2β2〈εθ 〉)3/4 ≈ Nu1/2Pr−1/4Ra−1/4H , where εθ

is the thermal dissipation rate [32].
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Table 1 Numbers of the grids Nx × Ny × Nz , values of the Nusselt number estimated by three different methods Nu1, Nu2, Nu3, the minimum
and maximum slim-box sizes Δmin and Δmax, the Bolgiano length scale LB, the Kolmogorov viscous scale ηK, and the Batchelor scale ηB

Ra Nx × Ny × Nz Nu1 Nu2 Nu3 Δmin Δmax LB ηK ηB

1 × 108 768 × 128 × 512 34.7 34.2 34.3 0.23 × 10−3 4.2 × 10−3 6.44 × 10−2 3.47 × 10−3 4.15 × 10−3

5 × 108 768 × 128 × 512 55.8 54.8 55.3 0.45 × 10−3 1.4 × 10−3 5.42 × 10−2 2.00 × 10−3 2.41 × 10−3

1 × 109 768 × 256 × 800 68.9 69.3 68.5 0.08 × 10−3 1.6 × 10−3 5.10 × 10−2 1.64 × 10−3 1.96 × 10−3

5 × 109 1024 × 256 × 800 110.8 109.1 109.7 0.20 × 10−3 1.8 × 10−3 4.31 × 10−2 0.97 × 10−3 1.20 × 10−3

1 × 1010 1600 × 512 × 1600 144.6 147.4 143.2 0.05 × 10−3 0.8 × 10−3 4.16 × 10−2 7.60 × 10−4 9.08 × 10−4

An additional control for DNS quality is to compare dif-
ferent Nu using different integration procedures. One way is
to compute the heat flux directly by integrating along the two
conducting walls, i.e. Nu1 = −∂Θ/∂z at the upper (z = H )
or the lower (z = 0) plates. The second is to compute the
volume-averaged temperature dissipation εθ or energy dissi-
pation εu [34], yielding Nu2 = 〈εθ 〉 or Nu3 = 1 + Pr〈εu〉,
respectively, where 〈·〉 denotes the ensemble average over
both time and space. As reported in Table 1, these Nusselt
numbers are in good agreement with each other, ensuring the
statistical convergence of the simulated RB system.

A well-resolved simulation at high Ra requires a large
computation resource. The simulations employed up to 1024
TH-1A CPUs (central processing units), using 768 × 128 ×
512 grids for Ra = 1 × 108 and 1× 109, and 1600 × 512 ×
1600 grids for Ra = 1 × 1010. In order to examine the tur-
bulent state of the RBC flow, we placed 8 probes at different
heights, from z/H = 9.8 × 10−3 to z/H = 0.25 at the
centerline, i.e. x/L = 0.5 and y/D = 0.5. These probes
record point-wise fluctuating temperature θ(t) and velocity
(of three components u(t), v(t), and w(t)). Figure 2 shows
that the flow is in a developing stage before t = 30, and then
reaches a statistically steady state after t = 40. The positive
correlation between fluctuating velocity, u(t), and fluctuat-
ing temperature, θ(t), is seen for the fluid near the bottom
plate, as seen in Fig. 2c, d, respectively.

3 Results and discussion

3.1 Temperature and pressure distributions

Figure 3 presents snapshots of the temperature and pres-
sure isosurface for Ra = 1 × 108, showing that the LSC
is confined in the x−z plane. It can also be seen that three-
dimensionality is remarkable in the near-wall region, where
thermal plumes are intensively emitted. However, tempera-
ture and pressure within the LSC remain almost unchanged
in the y direction, indicating that the LSC is characterized by
quasi-two-dimensional flow.

The data are collected for comparison with experimental
and other DNS studies including the viscous BL thickness
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Fig. 2 Signals of a numerical probe located halfway down the slim box
at z/H = 9.8 × 10−3, x/L = 0.5, and y/D = 0.5, for Ra = 1 × 108

and heat flux. This consists of two sets of experimental mea-
surements [35,36], two sets of DNS from Ref. [37] with
different aspect ratios and from Stevens et al. [38] for a cylin-
drical boxwith aspect ratioΓ = 1/2 at higherRa of 2×1010,
2 × 1011 and 2 × 1012. Mean streamwise velocity measure-
ments from du Puits et al. [39] at several Ras around 1×1011

and mean temperature measurements from Ref. [13] are also
compared with the present simulations. For convenience, we
summarize these DNS and experimental results in Table 2.

Ensemble average is carried out by integrating in the depth
(y) direction and in time. Themean velocity, temperature and
pressure distribution at Ra = 1× 108 and 1× 109 are shown
in Fig. 4. Themean flow is represented by a counterclockwise
rotation at the center of the box. As Ra increases, the high-
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Fig. 3 Visualization of the instantaneous a, b, c temperature and d, e, f pressure. The color in plots a–c denotes temperature, and the color in plots
d–f denotes pressure. The slices in plots b and e are the corresponding fields in the y − z planes at various streamwise (x) locations. The fields
shown in plots c and f are the fields in the x−z plane on the halfway point of the depth of the box. These snapshots are obtained from the simulation
at Ra = 1 × 108 and Pr = 0.7

Table 2 Parameters of DNS and experiments

Case References Ra Pr L:D:H (rectangular) or L:H (cylindrical) Confinement shape Data

DNS-A Present study 1 × 108 ∼ 1 × 1010 0.7 1:1/6:1 Rectangular U ,W , θ, Nu, λu

DNS-B [38] 2 × 1010 ∼ 2 × 1012 0.7 1:2 Cylindrical Nu, θ

DNS-C [37] 1 × 107 ∼ 1 × 1010 0.7, 4.38 1:1/64:1 ∼ 1:1:1 Rectangular Nu

EXP-A [39] 1.2 × 1011 ∼ 9.8 × 1011 0.7 1:1.13 Cylindrical U

EXP-B [13] 4 × 1012 ∼ 1 × 1015 0.8 1:2 Cylindrical θ

EXP-C [35] 1 × 109 ∼ 1 × 1010 4.3 25:7:24 Rectangular Re, λu,U

EXP-D [36] 2.4 × 108 ∼ 5.6 × 109 5.3 1:1 Cylinder Re, λu

speed fluid shifts towards the border of the box, along with a
slower-rotating LSC. A pair of corner rolls, as the secondary
flow induced by theLSC, exist in the respective corners on the
diagonal line of the box. They have been reported in previous
experimental [40–42] and numerical studies [11,43,44]. An
analytic model for the corner rolls in turbulent RBC was
recently reported by Zhou and Chen [22].

Figure 4 shows that the positive high pressure coincides
with the regions of intensively ejecting plumes, correspond-
ing to the lower right and upper left corners of the slim box.
The center of the box, on the other hand, corresponds to a
low-pressure zone, as shown in Fig. 4b, d. This indicates that
the pressure gradientmaintains a balancewith the centrifugal
force. Similarly, the cores of two corner rolls are closely asso-
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Fig. 4 Time-averaged 2D distribution of pressure and temperature displayed by pseudo-colors at Ra = 1 × 108 in plots
a, b andRa = 1×109 in plots c, d, respectively. The arrows indicate the velocity vectors. The rotatory LSC, the corner roll, and the plume-impacting,
wind-shearing and plume-ejecting regions are marked by dashed lines in plot a. The lines with arrows in plots b and d are the time-averaged stream-
lines

ciated with two lower-pressure zones, which were observed
in 2D simulations [45]. Note that the 3D corner roll is a
smaller than the 2D one at Ra = 1 × 108. Furthermore,
the 3D simulation presents a more round-shaped LSC and a
perceptibly wider wind-shearing region than the 2D simula-
tion, indicating that the three-dimensionality of the near-wall
corner flow is remarkable. This result is consistent with the
previous numerical study [22].

Based on the averaged flow in the x−z plane, we char-
acterize the RBC flow by five regions: (1) the LSC motion
in bulk, (2) the corner roll, (3) the plume-impacting regions
above the corner rolls with (0 � x � 0.25), (4) the wind-

shearing regions towards the middle of the conducting plates
(0.25 � x � 0.75), and (5) the plume-ejecting region
(0.75 � x � 1). The last three regions clearly possess a tur-
bulent BL at a large aspect ratio, cf. Ref. [16]. Note that the
change in flow direction at the corners signifies the presence
of a high-pressure gradient [46,47], as consistently presented
in Fig. 4b, d.

According to the correlation between the pressure and
velocity fields, one can see that in the wind-shearing region,
the BL flow is driven by the longitudinal pressure gradient.
The fluid near the bottom plate is advected from a favor-
able pressure gradient region to an adverse pressure gradient
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Fig. 5 a, c Spatial average along the y-axis of momentum dissipation εu and b, d thermal dissipation εθ for Ra = 1 × 108 in plots a, b and for
Ra = 1 × 109 in plots c, d, respectively

(APG) region. The APG in relation to the flow direction is
present in the plume-ejecting region, and is responsible for
the change in the flow direction from horizontal to vertical.
This makes RBC-BL distinct from canonical BL under ZPG
conditions. Consequently, the viscous BL of turbulent RBC
is not always of the PBP-type. In Sect. 3.2, we will discuss
the structure of the viscous BL by analyzing the MVP in
detail.

Figure 5a, c shows the distribution of momentum dissipa-
tion εu for Ra = 1 × 108 and Ra = 1 × 109, respectively,
and the thermal dissipation εθ is shown in Fig. 5b, d. Note
that the maximum of both εu and εθ are extremely close to
the bottom/top plates. On the other hand, the variation in
εθ near the sidewalls is moderate, due to the adiabatic wall
condition, while εu exhibits a significant enhancement in the
plume-impacting region (i.e. left-down and right-up corner
of Fig. 5a, c). In contrast, both εθ and εu are low in the bulk
zone, corresponding to the core of the LSC.

3.2 Multilayer structure of velocity profiles

The vertical MVPs at the center of the wind-shearing region
(x/L = 0.5) against the PBP-type profiles for different Ras
are shown in Fig. 6. It is clearly seen that the MVPs differ
markedly from the PBP-type profile, especially near the con-
ducting plates. The deviation from the PBP-type profile has
also been reported in the literature (cf. Refs. [36,39]).

The mean horizontal velocity U (z) at x/L = 0.5, and
the mean vertical velocity W (x) at z/H = 0.5 are shown in
Fig. 7. A linear profile is found at the core of the LSC for
bothU (z) andW (x), indicating a solid rotation of fluid in this
region (for 0.25 � z/H � 0.75 in Fig. 7a and 0.25 � x/L �
0.75 in Fig. 7b). Linearity of MVPs has been experimentally
observed in both rectangular [48] and cylindrical cells [49].
The slim-box simulations show that the linear core of the
LSC extends to the scale of 0.4L for all Ras, quite similar
to that observed in a narrow 3D RBC cell with D/H � 1/4
[48] and that in a cylindrical cell [49]. We also note that the
humps of velocities appear at the border of the LSC for the

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Ra=1 108

Ra=1 109

Ra=1 1010U
/U

nw

λuz/

Fig. 6 MVPs at the box center (Ra = 1 × 108 ∼ 1 × 1010), with the
PBP profile (solid line). Note that z is normalized by the thickness of
the viscous BL, λu , defined by the near-wall maximum velocity

U and W profiles, which determine the characteristic LSC
velocities, Ulc and Wlc, respectively. They are distinct from
peak velocities near the wall, as denoted by Unw and Wnw,
respectively.

Compared with the confined cell [48], the slim box with
periodic boundary condition has a higherUlc and a relatively
large linear core. On the other hand, the Wlc is on the order
ofWnw, see Fig. 7. In particular, for the horizontal velocity at
x/L = 0.5,Ulc is greater thanUnw for allRas, indicating that
near-wall buoyancy is overwhelmed by the wind shearing.
With increasing Ra, both Ulc (and Wlc) and Unw (and Wnw)
tend to decrease, but the linear core velocity is more sharply
decreased than that near the wall.

The thickness of the viscous BL as a critical quantity for
turbulent BL is calculated. Several definitions of BL thick-
ness have been suggested [35]. Here we use the thickness of
BL, λu , obtained by extrapolation of the linear profile U (z)
to reachUnw. Note that λu is a dimensionless parameter nor-
malized by the height of the box, H . Figure 8a shows that
λu is smaller than the values measured in two experiments in
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Fig. 7 a Horizontal velocity profile U (z) cut along the z axis (at x = 0.5). b Vertical velocity profile W (x) cut along the x axis (at z = 0.5)
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Fig. 8 Effects of the Rayleigh number on the thickness of the viscous BL and the Reynolds number. a Ra-dependence of the viscous boundary
thickness normalized by H . b Ra-dependence of Re

confined cells [35,36]. A confined LSC tends to establish a
steadier circulation in the cell. The experimental study with a
tilted cylindrical cell showed that a larger tilt angle imposes
a stronger restriction on the azimuthal motion of the LSC
so that it has less fluctuation perpendicular to the wind [36].
The experiments with a slender rectangular cell also indi-
cated that the confinement of the LSC tends to stabilize the
large-scale flow structure and to establish a thinner viscous
BL [35], as also shown in Fig. 8a. In the present study, the
slim box almost eliminates the azimuthal meandering of the
LSC. The relatively small value of λu for the slim-box flow is
attributed to the absence of the depth confinement, and thus
the wall friction, which allows us to develop a stronger LSC
(with larger Unw) at a larger scale, leading to a thinner vis-
cous BL in comparison with the confined cell. The present

simulations give a scaling of λu ∼ Ra−0.22, similar to the
scaling of −0.20 in Ref. [36], but different from −0.27 in
Ref. [35].

The mean velocity of the LSC reaches a maximum Unw,
relevant for determining the thickness of the viscous BL.
Here, we present the bulk Reynolds numbers defined by
Re = UnwH/ν against Ra obtained from the simulations
and two other experiments in Fig. 8b. Because of the large
Unw in the present simulations, the Res of the simulations are
always larger than the experimental measurements. Again,
the present results show a scaling (Re ∝ Ra0.54), close to
that of [35] (Re ∝ Ra0.55), in contrast to a smaller slope
Re ∝ Ra0.43 [36].

The BL thickness over the entire wind-shearing region is
calculated (i.e. 0.3 < x < 0.8) to illustrate the streamwise
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Fig. 9 Thickness of the viscous BL as a function λu = λu,0(1 −
x/L)−0.5, represented by solid lines

change in the viscous BL. Figure 9 shows λu(x) at three
Ras. A monotonic increase in the thickness can be described
in a power law, λu = λu,0(1 − x/L)−0.5 ∝ r−0.5, where
r = 1 − x/L is the distance to the ejection corner of the
cell. The inset of Fig. 9 shows the variation in the coefficient
λu,0 as a function of Ra, presenting a scaling law of λu,0 =
1.04Ra−0.27. Thus, the BL thickness is expressed in the form
of a power function, λu(x) = 1.04Ra−0.27r−0.5, in thewind-
shearing region for all simulations.

To quantify MVP in the wind-shearing region, we follow
the SED theory [25] to employ the stress length as the similar-
ity variable, which takes a multilayer formula describing the
structure in the direction normal to the wall. Neglecting the
relatively small variation along the direction parallel to the
wall in the mean momentum equation (i.e. the incompress-
ible BL approximation), one obtains the following balance
equations:

ν
∂2u

∂z2
− ∂u′w′

∂z
= 0, (4)

ν
∂2w

∂x2
− ∂w′u′

∂x
= 0. (5)

Equation (4) holds for u in the wind-shearing region (near
x/L = 0.5), and Eq. (5) for w near z/H = 0.5. Integrating
Eq. (4) along z and Eq. (5) along x yields

∂u+

∂z+
− u′w′+ = 1, (6)

∂w+

∂x+ − w′u′+ = 1. (7)

Note that u+ = u/uτ , z+ = z/δu and u′w′+ = u′w′/u2τ ,
where uτ = √

ν∂u/∂z|z=0 and δu = ν/uτ . Similarly, we

have w+ = w/wτ , x+ = x/δw and w′u′+ = w′u′/w2
τ ,

where wτ = √
ν∂w/∂x |x=0 and δw = ν/wτ . Introducing

S+
u = ∂u+

∂z+ (S+
w = ∂w+

∂x+ ) and W+
u = −u′w′+ (W+

w =
−w′u′+) gives a normalized mean velocity equation as

S+
u (z+) + W+

u (z+) = 1, (8)

S+
w (x+) + W+

w (x+) = 1. (9)

We emphasize that Eqs. (8) and (9) hold when the relatively
small pressure gradient effect in the wind-shearing region
is neglected. Introducing the stress length �+

u =
√
W+

u /S+
u

(and �+
w =

√
W+

w /S+
w ), we have the solutions of Eqs. (8) and

(9):

∂u+

∂z+
≈ 2

1 +
√
1 + 4�+2

u

, (10)

∂w+

∂x+ ≈ 2

1 +
√
1 + 4�+2

w

. (11)

The theory developed by She et al. [25] allows us to con-
struct the two-layer similarity solutions for �+

u and �+
w, which

are assumed to possess a dilation group invariance and to take
the following analytic form

�+
u = �+

u0(z
+)3/2

⎡
⎣1 +

(
z+

z+sub

)4
⎤
⎦
1/4

, (12)

�+
w = �+

w0(x
+)3/2

⎡
⎣1 +

(
x+

x+
sub

)4
⎤
⎦
1/4

, (13)

where z+sub (and x
+
sub) is the thickness of the viscous sublayer

near the bottom (and side) wall. Note that Eqs. (12) and (13)
present two asymptotic scalings—for z+ � z+sub (and x+ �
x+
sub), �+

u ∼ (z+)3/2 (and �+
w ∼ (x+)3/2); and for z+ 

z+sub (and x+  x+
sub), �+

u ∼ (z+)5/2 (and �+
w ∼ (x+)5/2).

The scaling exponent 3/2 is derived in Ref. [25], while the
exponent 5/2 is due to a transition of ∂u/∂z (and ∂w/∂x)
from z0 (and x0) in the sublayer to z−1 (and x−1) outside,
which is specific to the RBC.

Figure 10a, b shows that MVPs can be accurately
described by the two-layer stress length formula (12) and
(13). The two-layer structure region extends up to z+ ≈ 30
for Ra = 1010. At lower Ra, the flow at z+ ∼ 20 is bulk-
dominated, having a relatively thin BL. The Ra-dependence
of z+sub and �0 are shown in Fig. 10c, d, respectively. The
fact is that �+

0 decreases monotonically as power functions—
�+
u0 = 2.15Ra−0.125 for Eq. (12) and �+

w0 = 4.60Ra−0.235

for Eq. (13). The sublayer thickness z+sub = 0.062Ra0.225

holds for two decades of Ra (1 × 108 ≤ Ra ≤ 1 × 1010),
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Fig. 10 a Comparison of the multilayer prediction for U+(z+) [Eq. (12) plotted as a solid line] and the DNS-A data (symbols). The velocity
profiles from Eq. (12) for the EXP-A data are shown in the inset, where ■, ●, ◆, ▲ and ▼ represent Ra = 1.23× 1011, 1.96× 1011, 3.39× 1011,
5.58× 1011 and 7.48× 1011, respectively. b Comparison of the multilayer prediction forW+(x+) from Eq. (13) and the DNS-A data. c Parameters
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sub as functions of Ra. d Parameters �+
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w0 as functions of Ra

whereas the convection in the cylindrical cell has a lower
scaling, 0.13, as seen in Fig. 10c. This implies that the con-
vection near the wall in a rectangular cell is stronger than that
in a cylindrical cell, and inspires us to verify these scalings
for different configurations over a wide range of Ra. For the
sublayer on the sidewalls, the thickness is insensitive to Ra,
i.e. x+

sub ≈ 6.50.

3.3 Log-law of the thermal boundary layer

The existence of logarithmic temperature profiles in turbu-
lentRBChas attractedmuch attention in recent years. The log
thermal layer is usually attributed to plume emission near the
conducting plates [16]. Here, we discuss the relation between
the statistical behaviors of thermal structures and the loga-
rithmic distribution of temperature.

According to the DNS, thermal dissipation in the hori-
zontal direction can almost be ignored in the plume-ejecting
region. Thus the temperature equation in the 2D form can be

simplified as:

− dθ

d(z/H)
+ wθH

κ
= − dθ

d(z/H)

∣∣∣∣∣
z=0

≡ Nu. (14)

Denoting S∗
θ = −dθ/(Nud(z/H)) = −dθ/dz∗ and W ∗

θ =
wθH/(κNu)= wθ

∗
gives the normalizedmean temperature

equation

S∗
θ + W ∗

θ = 1, (15)

with normalized vertical coordinate, z∗ = (z/H)Nu. The
thermal BL can be divided into three layers according to
the mean momentum equation: (a) the near-wall region (the
conduction layer), described by S∗

θ � 1; (b) the region far
from the wall, dominated by W ∗

θ � 1; (c) the layer between
these two layers. Note thatW ∗

θ represents the convective heat
flux by normal velocity fluctuations from the wall. The ther-
mal balance in the form of the stress length similar to the
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Fig. 11 MTP of three data sets: the present DNS, the DNS from Ref.
[38], and the experiment fromAhlers et al. [13]. The solid lines indicate
Eq. (17). The triangles are the MTP averaged along the horizontal (x)
direction. The dashed line is the model of Eq. (31) in Ref. [6], and the
gray curve is PBP profile

Fig. 12 (Color online) The log-law region of thermal BL described by
Eq. (18) at Ra = 1 × 108, marked by solid line. The pseudo-color
denotes temperature. Cold color represents low temperature, and hot
color high temperature. The arrows are the velocity vectors

momentum transport is obtained, and thus the temperature
distribution is extracted.

We follow the SED theory [25] to quantify the MTP by
postulating a similar (thermal) sublayer, buffer layer and log
layer, with a temperature length �∗

θ as the similarity variable,
which plays a similar role as the stress length. Specifically, �∗

θ

displays a three-layer structure, i.e. �∗
θ ∝ z∗3/2 for z∗ < z∗sub;

�∗
θ ∝ z∗5/2 for z∗sub < z∗ < z∗buf ; and �∗

θ ∝ z∗ for z∗ > z∗buf ,
where the superscript ∗ denotes the variable normalization by
Nu/H . The first exponent 3/2 readily follows from a near-
wall expansion, ignoring the fluctuation magnitude, where
S∗
θ → 1 and W ∗

θ → z∗3. The third layer has a linear scaling
in z, corresponding to the log layer.

The buffer layer, similar to the role of the momentum
buffer layer, is considered the transition from a laminar
flow near the wall to a fully turbulent flow in the bulk.
Inspecting the DNS, we obtain the scaling exponent 5/2
by invoking the integral scale of temperature fluctuation,
�∗
int ≡ (W ∗

θ /S∗
θ )3/4/ε

1/4
θ , proportional to z∗9/4 near the wall,

and a dissipation-to-production ratio for temperature fluc-
tuation, Θθ ≡ εθ/(S∗

θ W
∗
θ ), proportional to z in the buffer

layer. Since �∗
θ = �∗

intΘ
1/4
θ , it follows �∗

θ ∝ z∗5/2 in the
buffer layer as a semi-empirical result. Finally, the SED
theory postulates a generalized dilation symmetry that �∗

θ

displays a generalized Lie-group invariance characterizing
the transition between the local scaling behaviors, yielding a
composite solution of �∗

θ (z
∗):

�∗
θ (z

∗) =
√
W ∗

θ /S∗
θ

= �∗
θ0z

∗3/2
[
1 +

(
z∗

z∗sub

)4
] 1

4
[
1 +

(
z∗

z∗buf

)4
]− 1.5

4

.

(16)

The stress length of temperature �∗
θ (z) is a three-layer func-

tion expressed as Eq. (16). Transition of the scaling of �∗
θ

from 3/2 to 5/2 occurs at z∗sub. The next transition of scaling
from 5/2 to 1 is present at z∗buf .

Jointly solving Eqs. (15) and (16) yields an analytic func-
tion of the MTP as

1 − 2θ(z∗) =
∫ z∗

0
2Sθ dz

′ =
∫ z∗

0

−1 +
√
4�∗2

θ + 1

�∗2
θ

dz′.

(17)

The first consequence of the solution is the logarithmic law of
MTP. For z∗  z∗buf , �∗

θ ≈ κθ z∗  1, then S∗
θ ≈ 1/ (κθ z∗),

a logarithmic MTP follows

θ ≈ − 1

κθ

ln z∗ + B = −A ln z∗ + B, (18)

A−1 = κθ = �∗
θ0z

∗
buf

3/2z∗sub
−1

. (19)

Figure 11 shows the comparison between the analytic
solutions at a fixed location from the side wall (r = 0.0045)
for Ra covering six decades, from moderate (Ra = 1×109)
in DNS to the extremely high Ra experiments (Ra =
1.1 × 1015) [13]. The MTP in the plume-ejecting region
clearly presents a log law covering at least one decade in
z (0.04 � z/H � 0.4). Close inspection of Figs. 4 and 12
shows that the range of log-layer coincides with the inten-
sive plume emission, indicating the relation between the two
phenomena.
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Fig. 13 a �∗
θ0(r) and b z∗buf (r) for Ra = 1 × 108, 1 × 109 and 1 × 1010, respectively. The solid lines are the multilayer function of Eq. (20). The

solid lines are the multilayer function of Eq. (21)

We calculated the theoretical model, Eq. (31), for Pr � 1
from Ref. [6], with parameter c = 1, see the inset of Fig. 11.
The systematic deviations of the MTP (Pr < 1) from the
equation and the PBP profile predictions are observed. The
MTP in the plume-ejecting region no longer represents a
typical turbulent BL. Thus, we calculated the MTP averaged
along the horizontal (x) direction, which represents the char-
acteristics of BL in the wind-shearing region [6]. The inset
of Fig. 11 shows that the space-averaged MTP is markedly
higher than local MTP in the plume-ejecting region, and
much closer to the BL equation. Though MTP in the wind-
shearing region with small Pr has a trend similar to the case
with large Pr , neither the presentMTP nor that from Stevens
et al. [38] (Pr = 0.7) can be described by the equation for
Pr � 1. However, an improved thermal BL equation is capa-
ble of describing the flow with a low Prandtl number down
to 0.01 [50].

Three parameters, �∗
θ0, z

∗
sub and z∗buf , are determined by

measuring l∗θ (z∗) from DNS. Since thermal dissipation dom-
inates the BL near the side wall (r < 0.1 for DNS-A), the
heat transport from convection is neglected in this region.
Measurement of z∗sub indicates that z∗sub � 0.375. Two other
parameters, �∗

θ0 and z∗buf , are found to be r -dependent—
�∗
θ0 and z∗buf are expressed in form of two-layer structures,
expressed as the functions of r = (1 − x/L):

�∗
θ0 = �∗

θ0,a

[
1 +

(
r

rb

)4
]− 0.15

4
[
1 +

(
r

rc

)4
] 0.15

4

, (20)

z∗buf = z∗buf,a

[
1 +

(
r

rb

)2
] 0.5

2
[
1 +

(
r

rc

)4
]− 0.5

4

. (21)

Near the side wall (r � rb), �∗
θ0 and z∗buf are constants

denoted as �∗
θ0,a and z∗buf,a . The coefficient, �∗

θ0,a , may be
associated with the size of thermal plumes, which decreases

for increasing Ra, to be determined in the following section.
In the wind-shearing region (r  rb), we have a scal-
ing �∗

θ0 ∼ r−0.15, which decreases with increasing r , see
Fig. 13a. On the other hand, the thickness of buffer layer
z∗buf , as shown in Fig. 13b, increases in r , indicating that the
thermal BL becomes thinner moving downstream with the
wind (for increasing x or decreasing r ).

After comparing the data sets, we find that rb � 0.125 and
rc � 0.35 for the slim box (for DNS – A), but rb � 0.0075
and rc � 0.35 for the cylindrical cell (DNS – B)—they are
likely independent of Ra. On the other hand, the coefficients
�∗
θ0,a and z∗buf0,a depend on Ra, see Fig. 14. Specifically,

z∗buf0,a ≈ 0.082Ra0.155 for the slim-box simulations (DNS

– A), but 0.046Ra0.155 for the cylindrical cell (DNS – B).
The same scaling of 0.155 for Ra indicates similar behav-
ior of the heat transport near the side walls. Moreover,
�∗
θ0,a � 63.0Ra−0.11 for the slim box (DNS – A), but

46.0Ra−0.11 for the cylindrical cell, also with the same scal-
ing of −0.11 (see the inset of Fig. 14). Since z∗sub � 0.375
is independent of Ra and geometry, matching condition for
A−1 � �∗

θ0z
∗
buf

3/2z∗sub
−1 yields a scaling for the coefficient

of the log-law slope, A ∼ Ra0.1225, near the side wall, in
good agreement with the experimental result of Ahlers et al.
[12]: A ∼ Ra0.123.

The coefficient in the log-law A = 1/κθ as the function of
x wasfirst discussed inRef. [26], suggesting an analytic form,
|A| = |A1|/√[4x(1 − x)] for the cylindrical cell. Note that
A(x) holds a −1/2-scaling (i.e. A ∼ A0/

√
x for x → 0).

More recently, Ahlers et al. [13] claimed that the scaling
was −0.65, due to an elliptical path (rather than a circu-
lar path) of the LSC. In the present study, for z∗  z∗buf ,
Eq. (16) can be rewritten as �∗

θ = [�∗
θ0z

∗
buf

3/2z∗sub
−1]z∗, i.e.

κθ = A−1 � �∗
θ0z

∗
buf

3/2z∗sub
−1. Based on the aforementioned

analysis on �∗
θ and z∗buf (i.e. �∗

θ0 ∼ r−0.15, z∗buf ∼ r0.5, and
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z∗sub = const.), we have A ∼ r−0.60, in agreement with
the recent result of Grossmann and Lohse [26]. Figure 15
presents the comparison between our predicted coefficient
A(r) from DNS at different Ras, which is superior to the fit-
ting function ofRef. [26]; the latter is only valid in a restricted
domain (0.02 < r < 0.2 for Ra = 2×1012 from Ref. [13]).
Thus, the current model gives a unified description of A valid
over the wider flow domain, from the side wall (r = 0) to
the wind-shearing region.

To investigate the dynamics in the log layer, we calcu-
lated the profiles of the horizontal and vertical velocity in
the plume-ejecting and wind-shearing regions, as presented
in Fig. 16. No logarithmic region for U (z) is found in the
plume-ejecting region. It is reasonable to believe that the log
layer of temperature has an origin free from the log viscous

U
,W

z/H

U

U
W

W

x/L

x/L
x/L

x/L

Fig. 16 Horizontal U (z) and vertical velocity W (z) profiles in the
plume-ejecting region at x/L = 0.9 and the wind-shearing region at
x/L = 0.5 for the case of Ra = 1× 108. The solid line is the fitting of
W/U0 = 0.7(z/H)

BL; in other words, the Reynolds analogy does not hold here.
It is interesting to make a comparison between velocities in
the wind-shearing region (0.25 � x/L � 0.75) and those
in the plume-ejecting region (x/L � 0.75). The flow is gov-
erned by strongAPG due to the confinement of the sidewalls,
and themomentum is changed fromahorizontal to an upward
direction in the plume-ejecting region. The overlapping of the
plume-ejecting region with the log thermal BL indicates that
vertical momentum plays the main role in establishing the
log law of temperature. In addition, the vertical velocity is
found to be approximately proportional to the wall distance,
W/U0 = 0.7(z/H) at 0 � z/H � 0.4 in the plume-ejecting
region, as shown in Fig. 16.
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3.4 Rayleigh number effect on heat transport

One of the main issues in the study of RBC is determin-
ing the dimensionless heat transfer coefficient, the Nusselt
number Nu. The heat flux can be calculated by Nu(z) =
〈wθ/κ − ∂θ/∂z〉x,y,t , where 〈·〉x,y,t represents averaging
over the horizontal plane and sufficient length of time. A
comparison between Nu of the present simulation with pre-
vious data is presented in Fig. 17. Note that the DNS by
Kaczorowski et al. [37] examined various aspect ratios (vary-
ing fromΓ = 1/8 toΓ = 1) and Prandtl numbers (Pr = 0.7
and 4.3). The slim-box simulations agree with other data at
the same Pr (i.e. Pr = 0.7), but our Nu is slightly larger

than that of Ref. [37]. This is consistent with the fact that the
slim box enhances the LSC and thus a more intensive heat
transport.

We now examine the contribution of each flow region
to total heat transport by calculating Nuloc(x, z) =
〈wθ/κ − ∇θ〉y,t , where 〈·〉y,t denotes the averaging over
the depth direction and sufficient length of time. Figure 18a
shows Nuloc(x, 0)/Nu at the bottom plate (i.e. z = 0),
which is dominated by thermal diffusion Nuloc(x, 0) ≈
−∇θ(x, 0). Note that the maximum heat flux appears at x =
0.25, where the thickness of the thermal BL is the thinnest, as
shown in Fig. 18a, corresponding to where the cold plumes
impinge on the heating plate. The total heat flux in the range
of 0 � x � 0.25 corresponds to that by the corner roll.

In the center region (0.25 � x/L � 0.75), our compu-
tation shows a linearly decreasing heat flux with increasing
x , corresponding to an increase in the thermal BL thickness,
consistent with other data [10,48]. However, this decreas-
ing trend is weakened at higher Ra, and the flow becomes
more homogeneous in the horizontal direction. Figure 18b
shows the local heat flux Nuloc at half the height of the box
(z/H = 0.5). For Ra = 1 × 108, Nuloc is more symmet-
rical with respect to z/H = 0.5 than z = 0, which is due
to the heat convection by the LSC. The three flow regions,
i.e. plume-impacting (0 � x/L � 0.25), wind-shearing
(0.25 � x/L � 0.75) and plume-ejecting (0.75 � x/L � 1)
regions, are rather distinct, as shown in Fig. 18a, which is also
clearly observed for Ra = 1× 109. Convective heat transfer
is predominant in the heat flux near the centerline z/H = 0.5.
We find that there is a symmetry breaking in the vertical
velocity W (x) near the centerline, the maximum magnitude
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Fig. 18 a Local heat flux Nuloc/Nu (normalized with global Nusselt number, Nu) at the bottom plate (i.e. z = 0) varying with x [10,21]. b Nuloc
at the half height of the convection box (z/H = 0.5) varying with x
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of W is 0.271 on the right side, greater than −0.243 on the
left side, leading to the higher local heat flux at x = 0 side.

4 Concluding remarks

We performed the 3D DNS of RBC at Pr = 0.7 and
Ra = 1× 108 ∼ 1× 1010 for a slim box (the ratio of length,
depth and height is 1:1/6:1), with periodic boundary condi-
tion in the depth (y) direction. Two facts for the slim-box
RBC are found: (a) the LSC is steadily confined parallel to
the x−z plane, and (b) a higher heat flux and stronger LSC is
observed, in contrast to the cases in a confined cell, as a result
of the absence of front/back walls. Three flow regions (i.e.
plume-impacting, wind-shearing, and plume-ejecting) are
clearly revealed in the time-averaged distribution of velocity
and temperature.

The non-Blasius velocity profiles under the influence of
a strong adverse pressure gradient can be described by the
multilayer stress-length function, following the symmetry-
based theory of canonical wall turbulence [25]. The MTPs
can be satisfactorily described by a multilayer structure of
a thermal dissipation stress-length function, which yields an
analytic description of the log-law coefficient A for a range
of x and Ra. Certain parameters, namely �u0, �w0, �θ0, and
zbuf , in the stress-length functions for viscous and thermal
BLs are found to be influenced by Ra, Pr , and even the
geometry of the convection cell. Parameterization of themul-
tilayer functions for various configurations can be fulfilled by
investigating additional experiments and numerical simula-
tions. Moreover, with knowledge of the symmetry in each
layer, these stress-length functions can be applied to inter-
pret and predict the convection flow at extreme conditions,
for example, high Ra or high/low Pr .

Local heat transport is analyzed and discussed. The Nus-
selt number scaling and local heat flux of the present
simulations are consistent with previous experiments [21]
and numerical simulations [37] in the confined rectangular
cell. Thus, we conclude that the present slim-box RBC is an
ideal system for studying in-box kinetic and thermal struc-
tures, and space-time correlations [51], in confined turbulent
convection.

Acknowledgements The Project was supported by the National Nat-
ural Science Foundation of China (Grants 11452002, 11521091, and
11372362) and MOST (China) 973 Project (Grant 2009CB724100).

References

1. Xia, K.Q.: Current trends and future directions in turbulent thermal
convection. Theor. Appl. Mech. Lett. 3, 052001 (2013)

2. Liu, C., Tang, S., Shen, L., et al.: Characteristics of turbulence
transport for momentum and heat in particle-laden turbulent verti-
cal channel flows. Acta Mech. Sinica 33, 833–845 (2017)

3. Gao, Z.Y., Luo, J.H., Bao, Y.: Numerical study of heat-transfer
in two- and quasi-two-dimensional Rayleigh–Bénard convection.
Chin. Phys. B 27, 104702 (2018)

4. Chen, J., Bao, Y., Yin, Z.X., et al.: Theoretical and numerical study
of enhanced heat transfer in partitioned thermal convection. Int. J.
Heat Mass Transf. 115, 556–569 (2017)

5. Bao, Y., Chen, J., Liu, B.F., et al.: Enhanced heat transport in par-
titioned thermal convection. J. Fluid Mech. 784, R5 (2015)

6. Shishkina, O., Horn, S., Wagner, S., et al.: Thermal boundary layer
equation for turbulent Rayleigh–Bénard convection. Phys. Rev.
Lett. 114, 114302 (2015)

7. Wang, Y., He, X., Tong, P.: Boundary layer fluctuations and their
effects on mean and variance temperature profiles in turbulent
Rayleigh–Bénard convection. Phys. Rev. Fluids 1, 082301 (2016)

8. Zhou, Q., Stevens, R.J.A.M., Sugiyama, K., et al.: Prandtl–Blasius
temperature and velocity boundary-layer profiles in turbulent
Rayleigh–Bénard convection. J. Fluid Mech. 664, 297312 (2010)

9. van der Poel, E.P., Stevens, R.J., Lohse, D.: Comparison between
two-and three-dimensional Rayleigh–Bénard convection. J. Fluid
Mech. 736, 177–194 (2013)

10. Wagner, S., Shishkina, O., Wagner, C.: Boundary layers and wind
in cylindrical Rayleigh–Bénard cells. J. Fluid Mech. 697, 336–366
(2012)

11. Shi, N., Emran, M.S., Schumacher, J.: Boundary layer structure in
turbulent Rayleigh–Bénard convection. J. Fluid Mech. 706, 5–33
(2012)

12. Ahlers, G., Bodenschatz, E., He, X.: Logarithmic temperature pro-
files of turbulent convection in the classical and ultimate state for
a Prandtl number of 0.8. J. Fluid Mech. 758, 436467 (2014)

13. Ahlers, G., Bodenschatz, E., Funfschilling, D., et al.: Logarith-
mic temperature profiles in turbulent Rayleigh–Bénard convection.
Phys. Rev. Lett. 109, 114501 (2012)

14. Wei, P., Ahlers, G.: Logarithmic temperature profiles in the bulk
of turbulent Rayleigh–Bénard convection for a Prandtl number of
12.3. J. Fluid Mech. 758, 809830 (2014)

15. Shishkina, O.,Wagner, C.: Local heat fluxes in turbulent Rayleigh–
Bénard convection. Phys. Fluids 19, 085107 (2007)

16. van der Poel, E.P., Ostilla-Mónico, R., Verzicco, R., et al.: Loga-
rithmic mean temperature profiles and their connection to plume
emissions in turbulent Rayleigh–Bénard convectionvan. Phys. Rev.
Lett. 115, 154501 (2015)

17. Huang, S.D., Wang, F., Xi, H.D., et al.: Comparitive experimental
study of fixed temperature and fixed heat flux boundary condid-
tions in turbulent thermal convection. Phys. Rev. Lett. 115, 154502
(2015)

18. Xi, H.D., Zhang, Y.B., Hao, J.T., et al.: High-order flow modes in
turbulent Rayleigh–Bénard convection. J. Fluid Mech. 805, 31–51
(2016)

19. Vasiliev, A., Sukhanovskii, A., Frick, P., et al.: High rayleigh num-
ber convection in a cubic cell with adiabatic sidewalls. Int. J. Heat
Mass Transf. 102, 201–212 (2016)

20. Podvin, B., Sergent, A.: Proper orthogonal decomposition inves-
tigation of turbulent Rayleigh–Bénard convection in a rectangular
cavity. Phys. Fluids 24, 105106 (2012)

21. Huang, S.D., Kaczorowski,M., Ni, R., et al.: Confinement-induced
heat-transport enhancement in turbulent thermal convection. Phys.
Rev. Lett. 111, 104501 (2013)

22. Zhou, W.F., Chen, J.: Similarity model for corner roll in turbulent
Rayleigh–Bénard convection. Phys. Fluids 30, 111705 (2018)

23. van der Poel, E.P., Verzicco, R., Grossmann, S., et al.: Plume emis-
sion statistics in turbulent Rayleigh–Bénard convection. J. Fluid
Mech. 772, 5–15 (2015)

24. Chong, K.L., Xia, K.Q.: Exploring the severely confined regime in
Rayleigh–Bénard convection. J. Fluid Mech. 805, R4 (2016)

123



728 H.-Y. Zou, et al.

25. She, Z.S., Chen, X., Hussain, F.: Quantifying wall turbulence via a
symmetry approach: a lie group theory. J. Fluid Mech. 827, 322–
356 (2017)

26. Grossmann, S., Lohse, D.: Logarithmic temperature profiles in the
ultimate regime of thermal convection. Phys. Fluids 24, 125103
(2012)

27. Verzicco, R., Camussi, R.: Numerical experiments on strongly tur-
bulent thermal convection in a slender cylindrical cell. J. Fluid
Mech. 477, 19–49 (2003)

28. Verzicco, R., Orlandi, P.: A finite-difference scheme for three-
dimensional incompressible flows in cylindrical coordinates. J.
Comput. Phys. 123, 402–414 (1996)

29. Kim, J.,Moin, P.: Application of a fractional-stepmethod to incom-
pressible navier-stokes equations. J. Comput. Phys. 59, 308–323
(1985)

30. Rai, M.M., Moin, P.: Direct simulations of turbulent flow using
finite-difference schemes. J. Comput. Phys. 96, 15–53 (1991)

31. Sun, X.H.: Application and accuracy of the parallel diagonal dom-
inant algorithm. Parallel Comput. 21, 1241–1267 (1995)

32. Shishkina, O., Stevens, R.J., Grossmann, S., et al.: Boundary layer
structure in turbulent thermal convection and its consequences for
the required numerical resolution. New J Phys. 12, 075022 (2010)

33. Scheel, J.D., Emran,M.S., Schumacher, J.: Resolving the fine-scale
structure in turbulent Rayleigh–Bénard convection. New J. Phys.
15, 113063 (2013)

34. Shraiman, B.I., Siggia, E.D.: Heat transport in high-Rayleigh-
number convection. Phys. Rev. A 42, 3650 (1990)

35. Sun, C., Cheung, Y.H., Xia, K.Q.: Experimental studies of the
viscous boundary layer properties in turbulent Rayleigh–Bénard
convection. J. Fluid Mech. 605, 79–113 (2008)

36. Wei, P., Xia, K.Q.: Viscous boundary layer properties in turbulent
thermal convection in a cylindrical cell: the effect of cell tilting. J.
Fluid Mech. 720, 140–168 (2013)

37. Kaczorowski, M., Chong, K.L., Xia, K.Q.: Turbulent flow in the
bulk of Rayleigh–Bénard convection: aspect-ratio dependence of
the small-scale properties. J. Fluid Mech. 747, 73–102 (2014)

38. Stevens, R.J.A.M., Lohse, D., Verzicco, R.: Prandtl and Rayleigh
number dependence of heat transport in high rayleigh number ther-
mal convection. J. Fluid Mech. 688, 31–43 (2011)

39. du Puits, R., Resagk, C., Thess, A.: Mean velocity profile in con-
fined turbulent convection. Phys. Rev. Lett. 99, 234504 (2007)

40. Krishnamurti, R., Howard, L.N.: Large-scale flow generation in
turbulent convection. In: Proceedings of the National Academy of
Sciences, vol 78. National Academy of Sciences (1981)

41. Qiu, X.L., Xia, K.Q.: Spatial structure of the viscous boundary
layer in turbulent convection. Phys. Rev. E 58, 5816–5820 (1998)

42. Niemela, J.J., Skrbek, L., Sreenivasan, K.R., et al.: The wind in
confined thermal convection. J. Fluid Mech. 449, 169–178 (2001)

43. Benzi, R., Verzicco, R.: Numerical simulations of flow reversal in
Rayleigh–Bénard convection. Europhys. Lett. 81, 64008 (2008)

44. Sugiyama, K., Calzavarini, E., Grossmann, S., et al.: Flow orga-
nization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–
Bénard convection in water. J. Fluid Mech. 637, 105–135 (2009)

45. Zhou, Q., Sugiyama, K., Stevens, R.J.A.M., et al.: Horizontal
structures of velocity and temperature boundary layers in two-
dimensional numerical turbulent Rayleigh–Bénard convection.
Phys. Fluids 23, 125104 (2011)

46. van Reeuwijk, M., Jonker, H.J.J., Hanjalić, K.: Wind and boundary
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