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Abstract
Modeling the elastic behavior of solids in energy conversion and storage devices such as fuel cells and lithium-ion batteries
is usually difficult because of the nonlinear characteristics and the coupled chemo-mechanical behavior of these solids. In
this work, a perturbation finite element (FE) formulation is developed to analyze chemo-elastic boundary value problems
(BVPs) under chemical equilibrium. The perturbation method is applied to the FE equations because of the nonlinearity in
the chemical potential expression as a function of solute concentration. The compositional expansion coefficient is used as
the perturbation parameter. After the perturbation expansion, a system of partial differential equations for the displacement
and dimensionless solute concentration functions is obtained and solved in consecutive steps. The presence of a numerical
solution enables modeling 3D chemo-elastic solids, such as battery electrodes or ionic gels, of any geometric shape with
defects of different shapes. The proposed method is tested in several numerical examples such as plates with circular or
elliptical holes, and cracks. The numerical examples showed how the shape of the defect can change the distribution of solute
concentration around the defect. Cracks in chemo-elastic solids create sharp peaks in solute concentration around crack tips,
and the intensity of these peaks increases as the far field solute concentration decreases.

Keywords Chemical potential · Solute concentration · Compositional expansion coefficient · 2D stationary problem

1 Introduction

Mechanical deformations and chemical reactions are often
coupled in many engineering problems. One of the math-
ematical approaches to describe such problems is using
the theory of chemo-elasticity [1, 2]. This theory models
mechanically stressed solids that can change their compo-
sition by solute redistribution or mass exchange with the
surrounding environment [1–6]. A chemical reaction often
produces a volumetric change, which generates mechanical
stresses if the mechanical deformations are impeded. On the
other hand, the mechanical deformation state may signifi-
cantly affect the chemical reaction process in the considered
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solids. Chemo-elasticity may arise in many engineering pro-
cesses, such as in fuel cells with ionic solids [3, 4, 7, 8].
The growth of porous biogenic single crystals can also
be described by chemo-elasticity [9, 10]. Ionic and mixed
ionic–electronic conductors have gained tremendous impor-
tance recently due to their applications in high efficiency and
low emission energy conversion devices, such as solid oxide
fuel cells, oxygen pumps and hydrogen production [11–13].

It is known that the local deformation in electrodes plays
an important role in controlling the migration rate of lithium
in a lithium-ion batteries, which can alter the stress state in
electrodes [14, 15]. The stress evolution in active materials
during electrochemical cycling plays a critical role in improv-
ing the structural design and performance of next-generation
lithium-ion batteries [16]. Electrochemical charging and
discharging in a battery introduce local mechanical strain
in electrodes due to diffusion-induced strain or reaction-
induced strain. The local strain and local velocity depend
on the rates of charging and discharging, respectively. There-
fore, understanding the chemo-elastic processes has attracted
great interest to investigate the stress evolution in electrodes
due to electric charging and discharging. Chemo-mechanical
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modeling of elastic thin-film electrodes on elastic substrates
under chemical equilibrium was recently analyzed by Haft-
baradaran [17].

Oxidation of metals is another important application area
of chemo-elasticity. A general approach on chemistry and
stress coupling effects during oxidation has been suggested
by Suo and Shen [18]. Analysis of the residual stress due
to chemo-mechanical coupled effect, intrinsic strain and
creep deformation during oxidation has been performed [19],
and reaction–diffusion–stress coupling effects during oxi-
dation have also been investigated [20, 21]. A model of a
chemo-elastic bar in contactwith chemically aggressive envi-
ronmentwas developed inRef. [22]. Smart hydrogels are also
described by chemo-mechanical models. For example,Wang
and Yang [23] recently developed an analytical solution for
a 1D model of a hydrogel rod.

The base of the theory of chemo-elasticity has been
developed by Fowler and Guggenheim [24]. Further devel-
opment of the theory has been made by Larche and Cahn
[25]. A model of elastic solid under chemical equilibrium
was successfully utilized to study dislocations [26, 27].
Non-equilibrium thermodynamics and variational principles
for fully coupled thermal–mechanical-chemical processes
have been derived by Hu and Shen [28]. A fully cou-
pled theory and variational principle for thermal-electrical-
chemical–mechanical processes have also been developed by
Yu and Shen [29].

In the present paper, a perturbation finite element (FE)
formulation is developed to analyze general chemo-elastic
boundary value problems (BVPs) under chemical equilib-
rium. This extends the perturbation solution presented inRef.
[1], allowing for modeling different problems with differ-
ent 2D geometries. The perturbation method is used because
of the nonlinearity in the chemical potential expression as
a function of the molar or solute concentration. Since the
chemo-elastic problem is reduced to a pure elasticity problem
if the compositional expansion coefficient is vanishing, this
coefficient is used as the perturbation parameter. Through the
proposed formulation, a system of partial differential equa-
tions (PDEs) for the displacement and solute concentration
functions from the perturbation expansion is obtained. Using
the FE approach, these PDEs are transformed into systems
of algebraic equations to be solved sequentially for the nodal
quantities. The model is general and can be used to model
several phenomena, such as the swelling of ionic gels in a
solvent of varying pH, or the formation of expanding crusts
in stone monuments due to acid rain or polluted atmosphere.

The rest of the paper is organized as follows: Sect. 2 intro-
duces the governing equations and the perturbation solution,
Sect. 3 presents thefinite element implementation, andSect. 4
is devoted for code validation and numerical examples. Five
examples of chemo-elastic plates with different shapes of a
central defect (circular hole, circular rigid inclusion, ellip-

tical hole, crack, and hole with two extended cracks) are
presented. The effects of the different parameters of each
problem on the distribution of the solute concentration are
analyzed. Summary and conclusions are presented in Sect. 5.

2 Governing equations and perturbation
solution

Let us consider an elastic solid Ay B that consists of A and
B species. y is the concentration of A and varies from 0 to
ymax, which is the solvability of A in B. One may also view
speciesA as the solute and speciesB as the solvent. Following
Larche andCahn [25], we assume that the solid is represented
by a network model where the lattice sites of species B form
a network within which species A can diffuse. This allows
the definition of a displacement field and hence a strain field
in the solid. It is convenient to define the following molar
concentration of the solute per unit volume of the solvent as

c � y/Vm , (1)

where Vm is the molar volume in the stress-free state [1]. The
compositional change of the mixture causes the volumetric
deformation given by

εci j � ηVmcδi j , (2)

where η is the coefficient of compositional expansion and δi j
is the Kronecker delta.

The total strains εi j are hence given by

εi j (x) � 1

2

(
ui , j (x) + u j ,i (x)

) � εei j (x) + εci j (x), (3)

where ui denotes the displacement components and εei j is the
elastic strain. The elastic stress is determined by the elastic
strain according to Hooke’s law [3, 4]

σi j � ci jkl(εkl − ηVmcδkl), (4)

where ci jkl is the material stiffness tensor. Making use of
the standard Voigt notation, the constitutive Eq. (4) for
orthotropic materials can be written in a compact form as

(5)

σ �
⎧
⎨

⎩

σ11
σ22
σ12

⎫
⎬

⎭

�
⎡

⎣
c11 c12 0
c12 c22 0
0 0 c66

⎤

⎦

⎧
⎨

⎩

ε11
ε22
2ε12

⎫
⎬

⎭
− ηVm

⎧
⎨

⎩

c11 + c12
c12 + c22

0

⎫
⎬

⎭
c

� Lε − ηGc.

123



Perturbation finite element solution for chemo-elastic boundary value problems under chemical equilibrium 983

For isotropic materials, c11 � c22 � 2μ + λ and c12 � λ,
where μ and λ are Lame’s elastic constants. If the elastic
moduli do not change with the non-stoichiometry, a simpli-
fied stress-dependent chemical potential can be derived from
the general expression [3–5] as

Σ(σ, c) � Σ0 + RT ln
c

cmax − c
− Vmησi i , (6)

whereΣ0 is a constant representing the chemical potential at
a reference state [1], R is the gas constant, T is the absolute
temperature, and cmax is themolar concentration correspond-
ing to the saturation state of the solution.One can observe that
the chemical potential at the stoichiometric state has the low-
est energy, Σ → −∞ as c → 0, and the potential Σ → ∞
at the saturation state c → cmax.

Consider an elastic solid in the domain Ω with the
boundary Γ . The following essential and natural boundary
conditions are assumed for the mechanical field

ui (x) � ūi (x), on Γu ,
ti (x) ≡ σi j n j � t̄i (x), on Γt ,

(7)

where Γ � Γu ∪ Γt , Γu and Γt are parts of the boundary
with prescribed Dirichlet and Neumann conditions for the
displacement and traction components, respectively, and ni
denotes the unit normal vector to boundary Γ . The chemical
boundary conditions at chemical equilibrium are reduced to
Dirichlet boundary conditions only, which are given by

Σeq � Σ0 + RT ln
c

cmax − c
− Vmησi i , on Γ , (8)

since the flux is vanishing. Here, chemical equilibrium state
means that the chemical potential is constant Σeq over the
whole domain and independent of time, i.e.,

Σeq − Σ0 � RT ln
c

cmax − c
− Vmησi i � Const., in Ω.

(9)

This steady state condition is maintained as long as the
stress and temperature are independent of time, which is the
case considered in this paper. In the absence of body forces
under stationary boundary conditions, the stress components
satisfy the following equilibrium equations

σi j , j (x) � 0. (10)

Then, the chemo-elasticity problem under chemical equi-
librium is described by the governing Eqs. (9) and (10).
It follows from Eqs. (5) and (9) that the chemo-elasticity
problem is reduced to a pure elasticity problem if the com-
positional expansion coefficient η is vanishing. Because of
the nonlinearity of the term ln[c/(cmax − c)] in Eq. (9), it
is convenient to apply a perturbation solution of the BVP.

Rewriting Eq. (9) in a normalized form in terms of the nor-
malized molar concentration ĉ � c/cmax gives

ln
ĉ

1 − ĉ
− 1

E
η̂σi i � b, (11)

with b � Σeq−Σ0
RT , η̂ � pη and p � Vm E

RT .
In the perturbation solution, the coefficients η or η̂ can

be used as the perturbation parameter. Since p is usually a
large number, η is smaller than η̂, and will better serve as the
perturbation parameter. The logarithmic term in Eq. (11) can
be expanded into a Taylor series at the vicinity of η � 0 as

ln
ĉ

1 − ĉ
� ln

ĉ(0)
1 − ĉ(0)

+
ĉ(1) p

ĉ(0)
(
1 − ĉ(0)

)η +
1

ĉ(0)
(
1 − ĉ(0)

)

×
[
ĉ(2) +

1

2

(
1

1 − ĉ(0)
− 1

ĉ(0)

)(
ĉ(1)

)2
]
p2η2

+
1

ĉ(0)
(
1 − ĉ(0)

)

⎧
⎨

⎩
ĉ(3) +

⎧
⎨

⎩
1

3

[
1

ĉ(0)
(
1 − ĉ(0)

)

]2

− 1

ĉ(0)
(
1 − ĉ(0)

)

}
(
ĉ(1)

)3

+

[
2ĉ(0) − 1

ĉ(0)
(
1 − ĉ(0)

)

]

ĉ(1)ĉ(2)

}

p3η3 + · · · , (12)

where the following series expansions for the solute concen-
tration and displacements are utilized

ĉ � ĉ(0) + ĉ(1)η + ĉ(2)η
2 + ĉ(3)η

3 + · · · ,
ui � ui(0) + ui(1)η + ui(2)η

2 + ui(3)η
3 + · · · . (13)

Making use of the expansions in Eq. (13), we obtain the
series expansion for the trace of the stress tensor as

(14)

σi i � [
S1 S2

] { u1,1
u2,2

}
− Aηĉ

�
∞∑

n�0

ηn
([

S1 S2
] { u(n)1,1

u(n)2,2

}
− Aηĉ(n)

)
,

where we have used the abbreviations S1 � c11 + c12, S2 �
c12 + c22, and A � Vm(S1 + S2)cmax.

Substituting Eqs. (12)–(14) into the governing Eq. (11)
and comparing the terms with the same power of η, we get

ln
ĉ(0)

1 − ĉ(0)
� b ⇒ ĉ(0) � ĉeq � eb

1 + eb
, (15)

1

ĉ(0)
(
1 − ĉ(0)

) ĉ(1) − 1

E

[
S1 S2

]
{
u(0)1,1
u(0)2,2

}
� 0, (16)
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(17)

1

ĉ(0)
(
1 − ĉ(0)

)

{

ĉ(2) +
1

2

[
2ĉ(0) − 1

ĉ(0)
(
1 − ĉ(0)

)

]
(
ĉ(1)

)2
}

− 1

E

[
S1 S2

]
{
u(1)1,1
u(1)2,2

}
� − 1

E
Aĉ(0),

1

ĉ(0)
(
1 − ĉ(0)

)

⎧
⎨

⎩
ĉ(3) +

⎧
⎨

⎩
1

3

[
1

ĉ(0)
(
1 − ĉ(0)

)

]2

− 1

ĉ(0)
(
1 − ĉ(0)

)

⎫
⎬

⎭
(
ĉ(1)

)3

+

[
2ĉ(0) − 1

ĉ(0)
(
1 − ĉ(0)

)

]

ĉ(1)ĉ(2)

}

− 1

E

[
S1 S2

]
{
u(2)1,1
u(2)2,2

}
� − 1

E
Aĉ(1),

(18)

Equations (15)–(18) give the relationships between the
unknown solute concentration quantities ĉ(1), ĉ(2), ĉ(3) and the
gradients of the mechanical displacements ui(0), ui(1), ui(2)
at any point xi . These equations should be solved simultane-
ously together with the BVP of the PDE in Eq. (10). For this
purpose, a numerical procedure based on the finite element
method (FEM) is developed in the next section.

3 Finite element method

The equilibrium Eq. (10) can be satisfied in the weak-form
on the analyzed domain Ω

∫

Ω

σi j , jwidΩ � 0, (19)

where wi denotes the test functions. In the finite element
method (FEM), the test functions wi are assumed to satisfy
the essential boundary conditions. UsingGauss–Green’s the-
orem, the weak-form in Eq. (19) can be written as

−
∫

Ω

σi jwi , jdΩ +
∫

Γt1

t̄1w1dΓ +
∫

Γt2

t̄2w2dΓ � 0, (20)

where Γti is the part of the boundary where the Neumann
boundary conditions σi j n j � t̄i are given with t̄i being the
prescribed traction components. Let us extend the definition
of the boundary densities prescribed on the natural portions
of the boundary as t̄i � 0 on Γn −Γti , where Γn � Γt1 ∪Γt2 .

If we define

Wi j � 1

2

(
wi , j + w j ,i

)
(21)

and the vectors associated with the test functions by

Wε � {
W11 W22 2W12

}T
, w � {

w1 w2
}T
,

then we can rewrite the weak-form Eq. (20) in matrix form
as

−
∫

Ω

WT
ε σdΩ +

∫

Γt

wT t̄dΓ � 0, (22)

where t̄ � {
t̄1, t̄2

}T. Substituting the constitutive Eq. (5)
into the weak-form in Eq. (22), one obtains

∫

Ω

WT
εL"dΩ −

∫

Ω

WT
ε ηGcmaxĉdΩ �

∫

Γt

wTt̄dΓ . (23)

In the FEM approximation, we express the primary
mechanical displacement vector u � {u1, u2}T and the nor-
malized molar concentration scalar ĉ in terms of the shape
functions and the nodal variables in each element as

u � Nq, ĉ � Mqc, (24)

whereN andM are the shape functionmatrices, and q and qc
are the vectors of nodal degrees of freedom (shown in Fig. 1).

q �
{[

u(1)1 u(1)2

] [
u(2)1 u(2)2

]
· · ·

}T
,

qc � {
ĉ(1) ĉ(2) · · · }T, (25)

with the superscript (k) indicating the node number of the
finite element.

The number of shape functions and their expressions
depend on the selected element shape and approximation
order. The shape function matrices N and M are composed
of nodal shape functions Nk(ξ1, ξ2), which are functions of
the local or natural coordinates −1 ≤ ξ1, ξ2 ≤ 1, as follows:

N � [
N(1) N(2) · · · ], N(k) �

[
Nk 0
0 Nk

]
, M � [

N 1 N 2 · · · ].
(26)

Fig. 1 Finite element with nodal degrees of freedom
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In the FEM approximation, we can express the strain ten-
sor in terms of the nodal degrees of freedom as

ε � Bq. (27)

For the linear Lagrange iso-parametric quadrilateral ele-
ment shown in Fig. 1, the interpolation of the Cartesian
coordinates is expressed as

{
x1
x2

}
�
[
x (1)1 x (2)1 x (3)1 x (4)1

x (1)2 x (2)2 x (3)2 x (4)2

]
⎧
⎪⎪⎨

⎪⎪⎩

N 1(ξ1, ξ2)
N 2(ξ1, ξ2)
N 3(ξ1, ξ2)
N 4(ξ1, ξ2)

⎫
⎪⎪⎬

⎪⎪⎭
, (28)

where the nodal shape function Nk(ξ1, ξ2) associated with
node k is expressed as

Nk(ξ1, ξ2) � 1

4

(
1 + ξ

(k)
1 ξ1

)(
1 + ξ

(k)
2 ξ2

)
. (29)

Then

{
∂/∂x1
∂/∂x2

}
�
[

∂ξ1/∂x1 ∂ξ2/∂x1
∂ξ1/∂x2 ∂ξ2/∂x2

]{
∂/∂ξ1

∂/∂ξ2

}
� YT

{
∂/∂ξ1
∂/∂ξ2

}
,

(30)

where Y � J−1 and J is the Jacobian of the coordinate
transformation {x1, x2} → {ξ1, ξ2}

(31)

J �
[

∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

]

�
[
x (1)1 x (2)1 x (3)1 x (4)1

x (1)2 x (2)2 x (3)2 x (4)2

]

⎡

⎢
⎢⎢⎢⎢⎢
⎣

∂N 1
/

∂ξ1 ∂N 1
/

∂ξ2

∂N 2
/

∂ξ1 ∂N 2
/

∂ξ2

∂N 3
/

∂ξ1 ∂N 3
/

∂ξ2

∂N 4
/

∂ξ1 ∂N 4
/

∂ξ2

⎤

⎥
⎥⎥⎥⎥⎥
⎦

.

Now, in view of the definition of ε and Eqs. (3), (24) and
(30), we may write

ε �
⎡

⎢
⎣

∂
∂x1

0
0 ∂

∂x2
∂

∂x2
∂

∂x1

⎤

⎥
⎦u

�

⎡

⎢⎢
⎢
⎣

(
Y11

∂
∂ξ1

+ Y21
∂

∂ξ2

)
0

0
(
Y12

∂
∂ξ1

+ Y22
∂

∂ξ2

)

(
Y12

∂
∂ξ1

+ Y22
∂

∂ξ2

) (
Y11

∂
∂ξ1

+ Y21
∂

∂ξ2

)

⎤

⎥⎥
⎥
⎦

×

⎧
⎪⎨

⎪⎩

∑

k
Nk(ξ1, ξ2)u

(k)
1

∑

k
Nk(ξ1, ξ2)u

(k)
2

⎫
⎪⎬

⎪⎭

�
∑

k

⎡

⎢
⎣
b(k)1 0
0 b(k)2

b(k)2 b(k)1

⎤

⎥
⎦

{
u(k)1

u(k)2

}

� [
B(1) B(2) · · · ]

×
{[

u(1)1 u(1)2

] [
u(2)1 u(2)2

]
· · ·

}T � Bq, (32)

where B � [
B(1) B(2) · · · ], B(k) �

⎡

⎢
⎣
b(k)1 0

0 b(k)2
b(k)2 b(k)1

⎤

⎥
⎦,

b(k)1 �
(

Y11
∂Nk

∂ξ1
+ Y21

∂Nk

∂ξ2

)

, b(k)2 �
(

Y12
∂Nk

∂ξ1
+ Y22

∂Nk

∂ξ2

)

.

(33)

Following Galerkin’s method by assuming the test func-
tions w in the same form as the shape functions, we have

w � N and Wε � B. (34)

Substituting Eqs. (24), (27) and (34) into Eq. (23), we
obtain the following FE equations

⎛

⎝
∫

Ω

BTLBdΩ

⎞

⎠q −
⎛

⎝
∫

Ω

BTηcmaxGMdΩ

⎞

⎠qc �
∫

Γt

NTt̄dΓ .

(35)

Note that Eq. (35) is linear for the nodal unknowns q and
qc. Nevertheless, because of the nonlinear Eq. (11), we adopt
the perturbation procedure for the solution of the coupled
chemo-elastic BVP. Therefore, we apply the same perturba-
tion expansion also for the nodal values of the field variables
as

qc � qc(0) + qc(1)η + qc(2)η2 + qc(3)η3 + . . . ,

q � q(0) + q(1)η + q(2)η2 + . . . , (36)

with qc(n) �
{
ĉ(1)(n) ĉ

(2)
(n) · · ·

}T
and q(n) �

{[
u(1)1(n) u

(1)
2(n)

] [
u(2)1(n) u

(2)
2(n)

]
· · ·

}T
.

SubstitutingEq. (36) into theFEMEq. (35) and comparing
terms with the same power of the perturbation parameter η,
we get a system of FEM equations as

⎛

⎝
∫

Ω

BTLBdΩ

⎞

⎠q(0) �
∫

Γt

NT t̄dΓ , (37)

⎛

⎝
∫

Ω

BTLBdΩ

⎞

⎠q(n) −
⎛

⎝cmax

∫

Ω

BTGMdΩ

⎞

⎠qc(n−1) � 0,

n � 1, 2, . . . , (38)
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withqc(0) being uniformly distributed in the analyzed domain
according to Eq. (15)

qc(0) � {
ĉeq ĉeq · · · }T. (39)

The set of algebraic Eq. (38) for the nodal unknowns ĉ(k)(n)

and u(k)i(n) with n � 1, 2 must be supplemented by the dis-

cretized Eqs. (15)–(18) considered at the nodal points x( j).
These additional equations yield

ĉ( j)(1) � 1

E
ĉeq

(
1 − ĉeq

)
SD( j)q(0), (40)

ĉ( j)(2) � 1

E
ĉeq

(
1 − ĉeq

)(−ĉeqA + SD( j)q(1)
)

−
(
ĉ( j)(1)

)2

2

[
2ĉeq − 1

ĉeq
(
1 − ĉeq

)

]

, (41)

ĉ( j)(3) � 1

E
ĉeq

(
1 − ĉeq

)(−Aĉ( j)(1) + SD( j)q(2)
)

−
(
ĉ( j)(1)

)3
⎧
⎨

⎩
1

3

[
1

ĉeq
(
1 − ĉeq

)

]2

− 1

ĉeq
(
1 − ĉeq

)

⎫
⎬

⎭

− ĉ( j)(1) ĉ
( j)
(2)

[
2ĉeq − 1

ĉeq
(
1 − ĉeq

)

]

, (42)

where we have utilized the FEM approximations for the gra-
dients of the displacements

{
u1,1
u2,2

}
�
⎡

⎣

(
Y11

∂
∂ξ1

+ Y21
∂

∂ξ2

)
0

0
(
Y12

∂
∂ξ1

+ Y22
∂

∂ξ2

)

⎤

⎦

×

⎧
⎪⎨

⎪⎩

∑

k
Nk(ξ1, ξ2)u

(k)
1

∑

k
Nk(ξ1, ξ2)u

(k)
2

⎫
⎪⎬

⎪⎭

�
∑

k

[
b(k)1 0
0 b(k)2

]{
u(k)1

u(k)2

}

� [
D(1) D(2) · · · ]

×
{[

u(1)1 u(1)2

] [
u(2)1 u(2)2

]
· · ·

}T � Dq (43)

or
{
u(n)1,1
u(n)2,2

}
� Dq(n), (44)

with D � [
D(1) D(2) · · · ], D(k) �

[
b(k)1 0
0 b(k)2

]

, S �
[
S1 S2

]
.

Denoting the local coordinates of the nodal point x( j) as(
ξ
( j)
1 , ξ

( j)
2

)
, D( j) contains the derivatives of the shape func-

tions Nk
, 1(ξ

( j)
1 , ξ

( j)
2 ), Nk

, 2(ξ
( j)
1 , ξ

( j)
2 ) calculated at the nodal

point x( j).

Note here that we have restricted the power series expan-
sion of the logarithmic term in Eq. (12) to the third order
(n � 0, 1, 2, 3), but the perturbation procedure can be
extended to higher orders n � 4, 5, . . .. Now in order to
solve for the nodal values q(n) and qc(n), we first solve the
system of Eq. (37) for q(0), then using q(0) and the uniform
qc(0) in Eq. (39), we solve Eq. (38) for q(1). Equation (40)
is then solved at each node of each element, and assembled
by averaging the values obtained from all neighboring ele-
ments at each node to obtain qc(1). Equation (41) is solved
similarly to obtain qc(2). Equation (38) is then used again to
obtain q(2). Finally, Eq. (42) is solved for qc(3) in a similar
way to qc(1) and qc(2). The final nodal variables q and qc are
then obtained via Eq. (36). A Matlab code was developed to
solve for the nodal displacements and dimensionless solute
concentrations and plots the distribution of all primary and
secondary variables of interest. The code is validated in the
next section and used to analyze other chemo-elastic BVPs.
In all examples, results with power series expansion up to
the second order were found to be very similar to those of
third order with less than 1% difference. If the second order
perturbation expansion is to be used, qc(3) and q(2) would be
removed from Eq. (36).

4 Numerical examples

4.1 Chemo-elastic plate with a central circular hole

In this section, we consider a central circular hole in an infi-
nite plane under uniaxial tension (Fig. 2). Because of the
double symmetry of the geometry, boundary conditions and
load, only quarter plate is modeled as shown in the figure.
The same example was analyzed in Ref. [1] and we use their
analytical results for code validation purposes. The plane is
modeled here as a finite square plate of side length 2L, and
the radius of the circular hole is a. In this work, we select L �
0.5 m, and a/L � 1/10 (or a � 0.05 m). The plate is embed-
ded in an infinite reservoir so that it maintains a uniform
chemical potential Σ̄eq � b throughout, and the prescribed

Fig. 2 Plate with a circular central hole under uniaxial load
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Fig. 3 Finite element mesh used in Sect. 4.1

solute concentration far away from the hole is given by c∞.
A finite element mapped mesh was created on COMSOL
multiphysics with local mesh refinement around the hole as
shown in Fig. 3. The mesh has 1800 quadrilateral elements
equivalent to 1891 nodes and 3782 mechanical degrees of
freedom (DoFs). Plane stress assumption is used. Applying
Eq. (11) at the far field, we get

b � ln
ĉ∞

1 − ĉ∞ − η̂σ∞

E
, (45)

where ĉ∞ � c∞/cmax. In the absence of applied stress,

b � ln
ĉeq

1 − ĉeq
, (46)

where ĉeq is the initial dimensionless solute concentration in
the absence of stress.

In Ref. [1], an analytical solutionwas found for the dimen-
sionless solute concentration and hoop stress, respectively, as

(47)

ĉ

ĉ∞ � 1 + 2(1 − ĉ∞)
η̂σ∞

E

cos 2θ

ρ2

+ 2(1 − ĉ∞)(1 − 2ĉ∞)

(
η̂σ∞

E

cos 2θ

ρ2

)2

,

σθθ

σ∞ � 1

2

(
1 +

1

ρ2

)
+
1

2

(
1 +

3

ρ4

)
cos 2θ

− c̄maxĉ
∞(1 − ĉ∞)(1 − 2ĉ∞)

σ∞

E

1

2ρ2

(
3

ρ2 − 1

)
η̂2,

(48)

Fig. 4 Dimensionless solute concentration ĉ(a, θ)
/
ĉ∞ on the hole sur-

face

where ρ � r/a, r and θ are the radial and angular coordi-
nates from the center of the circular hole, respectively, and
c̄max � ηVmcmax. Note that the distribution of ĉ

/
ĉ∞ along

the periphery of the hole depends only on ĉ∞ and η̂σ∞
E , while

the distribution of σθθ
/
σ∞ depends on ĉ∞, σ∞

E , η̂2 and c̄max.

The values used in Ref. [1] are η̂σ∞
E � 0.1 and ĉ∞ � 0.1,

0.6, and are also used here for validation. Given η̂σ∞
E and

ĉ∞, we can get b using Eq. (45), and accordingly we can
get ĉeq via Eq. (46). In these simulations, we also assume
Vm � 10−3 m3/mol, cmax � 100mol/m3, σ̂∞ � σ∞

E �
10−4, E � 100 GPa, v � 0.3, and RT � 2500 J/mol.
Accordingly, η � 0.025, and c̄max � 2.5 × 10−3. Figure 4
shows the variation of the solute concentration on the hole
surface, ĉ(a, θ )

/
ĉ∞, as a function of θ . The dimensionless

solute concentration is amplified by the tensile stress at θ

� 0 and attenuated by the compressive stress at θ � π/2.
As ĉ∞ decreases, the effect of stress on the dimensionless
solute concentration increases. The figure also shows excel-
lent agreement between the current model and the analytical
solution. Arrangements of holes can be used by designers
to create specific solute concentration distribution in chemo-
elastic bodies under chemical equilibrium.

4.2 Chemo-elastic plate with a central circular rigid
inclusion

If the hole in the previous example is replaced by a rigid
inclusion, the plate experiences compressive σθθ at θ � 0 and
tensile σθθ at θ � 90°. The change in the stress distribution
in the chemo-elastic plate around the rigid inclusion affects
the distribution of the dimensionless solute concentration as
can be seen in Fig. 5 where ĉ(a, θ )

/
ĉ∞ decreases at θ � 0

and increases at θ � 90°. Decreasing ĉ∞, enhances the effect
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Fig. 5 Dimensionless solute concentration ĉ(a, θ)
/
ĉ∞ on the rigid

inclusion surface

Fig. 6 σVM/σ∞ distribution with ĉ∞ � 0.6

of the applied stress on the solute concentration. Figures 6
and 7 show the distribution of σVM/σ∞ and ĉ

/
ĉ∞ when

ĉ∞ � 0.6 (where σVM indicates the Von Mises stress). It can
be concluded that the rigidity of the defect has a significant
effect on the distribution of the solute concentration around
the defect. Combinations of holes and solid inclusions can
be intentionally introduced to chemo-elastic bodies to cre-
ate intended distribution of solute concentration for different
applications.

4.3 Chemo-elastic plate with a central elliptical hole

If the central circular hole in Sect. 4.1 is replaced by an ellip-
tical hole with semi-axes a and b in x1- and x2-directions,
respectively, the stress distribution around the hole changes
and accordingly the distribution of the solute concentration

Fig. 7 ĉ
/
ĉ∞ distribution with ĉ∞ � 0.6

Fig. 8 ĉ
/
ĉ∞ on the elliptical hole surface for ĉ∞ � 0.6

changes. Figures 8, 9, 10 and 11 show the dimensionless
solute concentration ĉ

/
ĉ∞ on the hole surface and along the

surface of the hole and axis of symmetry for three values of
a/b (0.5, 1, and 2), b � 0.05 m, with ĉ∞ � 0.6 and 0.1. The
case of a/b � 1 corresponds to circular hole is included here
for comparison.

It can be seen that as a/b increases, the distribution of
ĉ
/
ĉ∞ on the elliptical hole surface changes; its value at 0°

increases, but does not change at 90°. As ĉ∞ decreases, the
change in the distribution of ĉ

/
ĉ∞ with varying a/b becomes

more significant and the values of ĉ
/
ĉ∞ at 0° increase.

Designers of porous chemo-elastic bodies can use the a/b
ratio of the elliptical holes as an additional design parame-
ter to tailor the resulting solute concentration distribution in
different applications.
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Fig. 9 ĉ
/
ĉ∞ along the surface of the hole and axis of symmetry for

ĉ∞ � 0.6

Fig. 10 ĉ
/
ĉ∞ on the elliptical hole surface for ĉ∞ � 0.1

Fig. 11 ĉ
/
ĉ∞ along the surface of the hole and axis of symmetry for

ĉ∞ � 0.1

Fig. 12 Plate with a central crack under uniaxial load

Fig. 13 ĉ
/
ĉ∞ on the crack surface and axis of symmetry

4.4 Chemo-elastic plate with a central crack

Consider a central crack in a plate under uniaxial tension as
shown in Fig. 12. Again, only a quarter plate is modeled due
to the double symmetry of geometry, boundary conditions
and loads. The length and width of the plate are 2L and the
length of the crack is 2a. In this example, we select L � 1 m,
and a/L � 0.4. All material and loading parameters are simi-
lar to the previous examples. Plane stress assumption is used.
A uniform finite element mesh was created on Matlab with
n ×n higher order (9-node) elements equivalent to (2n + 1)2

nodes and 2(2n + 1)2 mechanical DoFs. The side length of
each square element is h � L/n. Figure 13 shows the dimen-
sionless solute concentration, ĉ

/
ĉ∞, along the crack surface

and axis of symmetry for different values of ĉ∞ when n� 40.
The presence of the crack creates a stress singularity at the
crack tip, and this results in a sharp peak in the solute concen-
tration. The intensity of this peak increases as ĉ∞ decreases.
Cracks in chemo-elastic solids create stress concentrations
at crack tips, as well as sharp increases in the solute con-
centration around the crack tips. This affects the behavior of
cracked chemo-elastic solids in various applications.
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Fig. 14 Plate with a circular central hole with two symmetric cracks
under uniaxial load

Fig. 15 Effect of crack length on the dimensionless solute concentration
ĉ
/
ĉ∞ over the surface of the hole and axis of symmetry

4.5 Plate with two symmetric cracks
on the boundary of a central hole

In this section, we analyze a problem of a plate with circular
central hole and two symmetric cracks extendinghorizontally
from the hole as shown in Fig. 14, where only a quarter of
the model is considered due to double symmetry. Uniform
vertical load is applied on the upper surface. The radius of
the hole is denoted a, while the length of the crack is denoted
b. The mesh and material parameters used in example 4.1 are
also used here.

Figure 15 shows the dimensionless solute concentration
ĉ
/
ĉ∞ on the boundary of the hole and axis of symmetry x1

for different crack lengths when ĉ∞ � 0.1. The presence of
the crack makes ĉ

/
ĉ∞ at 0° no longer greater than 1 and

creates a new region beside the hole where ĉ
/
ĉ∞ is smaller

than 1 along the crack surface, then ĉ
/
ĉ∞ peaks at the crack

tip. As the crack length increases, this new region extends,
and the location of the sharp peak moves away from the
hole. Also, as the crack length increases, ĉ

/
ĉ∞ at 90° (x1 �

0) increases. Designers can then introduce holes of various
shapes, including shapeswith sharp corners, to create specific

solute concentrations in chemo-elastic bodies under chemical
equilibrium.

5 Summary and conclusions

In this paper, a perturbation finite element approach is
proposed to solve the coupled governing equations of chemo-
elasticity under chemical equilibrium. The perturbation
method is used because of the nonlinearity of the chemical
potential in terms of solute concentration. The compositional
expansion coefficient is used as the perturbation parameter.
The nodal displacements and dimensionless solute concen-
trations are solved in consecutive steps. A Matlab code has
been developed for the proposed method and the results
show excellent agreement with the analytical solution for
the problem of chemo-elastic plate with a central circular
hole. Problems of chemo-elastic plate with a central rigid
inclusion, elliptical hole, crack, and a hole with extended
cracks have also been solved. The results showed the sig-
nificant effect of the shape and rigidity of the defect on the
solute concentration around the defect. Cracks in chemo-
elastic solids create sharp peaks of solute concentration at
crack tips, and the intensity of the peaks increases as the far
field prescribed solute concentration decreases. The presence
of a computational model allows for modeling chemo-elastic
bodies of any geometric shape, and for simulating different
phenomena such as swelling, stress evolution and variations
in solute concentrations in chemo-elastic solids. These phe-
nomena happen in variety of applications such as battery
electrodes, ionic gels and stone monuments.
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