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Abstract
The linear and non-linear free vibrations of a spinning piezoelectric beam are studied by considering geometric nonlinearities 
and electromechanical coupling effect. The non-linear differential equations of the spinning piezoelectric beam governing 
two transverse vibrations are derived by using transformation of two Euler angles and the extended Hamilton principle, 
wherein an additional piezoelectric coupling term and different linear terms are present in contrast to the traditional shaft 
model. Linear frequencies are obtained by solving the standard eigenvalues of the linearized system directly, and the non-
linear frequencies and non-linear complex modes are achieved by using the method of multiple scales. For free vibrations 
analysis of a spinning piezoelectric beam, the non-linear modal motions are investigated as forward and backward precession 
with different spinning speeds. The responses to the initial conditions for this gyroscopic system are studied and a beat phe-
nomenon is found, which are then validated by numerical simulation. The influences of some parameters such as electrical 
resistance, rotary inertia and spinning speeds to the non-linear dynamics of a spinning piezoelectric beam are investigated.
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1  Introduction

A spinning piezoelectric beam can often be used to make a 
piezoelectric vibratory gyroscope, which has several applica-
tions such as in mobile phones, high-grade cars, intelligent 
robotics, military weapons and aerospace systems. In the past, 
the piezoelectric vibratory gyroscope has become one of the 
best essential electromechanical system sensors, especially in 
the field of inertial navigation systems [1]. To simplify the 
analysis of the piezoelectric gyroscope, traditionally, most 
investigations are confined to the linear system with piezo-
electric excitation and piezoelectric detection [2, 3]. Based on 
the linear approximation and non-linear “slow” system, Lajimi 

et al. [4] investigated the non-linear estimate of the mechanical 
thermal noise for an electrostatic gyroscope. The applications 
of non-linear analysis are also significant for flexible compo-
nents, and the characteristics of the non-linear gyroscopic sys-
tem have attracted much attention in a field of rotating shaft [5, 
6]. By using the fractional calculus and the Gurtin–Murdoch 
theory, Oskouie et al. [7] investigated the nonlinear vibration 
of viscoelastic Euler–Bernoulli nanobeam. By considering 
three types of boundary conditions, Zhao et al. [8] studied 
the natural frequencies of the Timoshenko beam with surface 
effects. Recently, there has been a growing research interest to 
investigate piezoelectric materials on energy harvesters [9–11] 
and microstructures [12–15] for rotational motion. As a con-
clusion, the non-linear characteristics of gyroscopes modeled 
by a spinning piezoelectric beam should be investigated, so 
that the guidance to improve the performance of piezoelectric 
vibratory gyroscope can be proposed.

Modal analysis of gyroscopic system is an effective tool to 
investigate the dynamic responses and mode interactions [16, 
17]. However, when coping with the gyroscopic continuum, 
the modal theories become difficult because the complex 
modes should be considered [18, 19]. To this end, Rosenburg 
[20] firstly presented the non-linear normal modes, which 
expanded the modal motions from the linear non-gyroscopic 
systems to non-linear non-gyroscopic systems. The non-linear 
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normal mode concept is utilized in the field of non-linear 
systems by many researchers. By using the multiple scales 
method, Nayfeh and Nayfeh [21, 22] studied the non-linear 
normal modes with internal resonance and geometric non-
linearity of a one-dimensional continuous system. To solve 
the modal motions of gyroscopic systems, Shaw and Pierre 
[23, 24] used the invariant manifold method to expand the 
non-linear normal modes to the gyroscope coupling systems. 
The work of Carlos et al. [25] made a comparison for the non-
linear normal modes of an axially loaded beam by both the 
invariant manifold method and multiple scales method. For a 
linear system, Uspensky and Avramov [26] studied the non-
linear normal mode under a forced excitation by using the 
invariant manifold method and Rauscher method. To analyze 
the free vibration of a gyroscopic system, Arvin and Nejad 
[27] described the complex dynamical characteristics of non-
linear normal modes. In their work, Qian et al. [28] studied 
parametric instability analysis of a linear gyroscopic system 
based on the traditional coupled gyroscopic system and decou-
pled gyroscopic modes decoupling method. Recently, there are 
several valuable research towards non-linear normal modes of 
undamped systems [29–31] and damped systems [32, 33] by 
using numerical calculation. The study by Pan et al. [34] used 
the complex modal technique to evaluate the natural frequen-
cies and complex modes of serpentine belt drives.

The gyroscopic effect caused by spinning motion appears 
comprehensively in the rotor dynamics systems [35, 36]. By 
deriving the closed polynomial of frequency equations and 
integral forms under an ordinary forcing function, Sturla 
and Argento [37] studied the free and forced vibrations of 
a viscoelastic rotating Rayleigh beam. The work Ishida and 
Inoue [38] considered the effect of internal resonance of a 
non-linear rotor. It is always hard to gain the physical model 
of nonlinear rotor-bearing system, thus Ma et al. [39] identi-
fied a data-driven non-linear auto-regressive network with 

exogenous inputs (NARX) model to solve this problem. By 
considering random excitations, Hosseini and Khadem [40] 
investigated the vibration and stability of a spinning beam 
with random characteristics subject to white noise by using 
the finite element method. In order to guide the design of 
distorted model, Luo et al. [41] provided a new dynamic 
scaling law of geometrically distorted model in predicting 
the dynamic characteristics. Moreover, many researchers 
analyzed the free vibrations dynamic properties of shafts 
by different methods [5, 6, 42, 43].

In this paper, the piezoelectric coupling governing dif-
ferential expressions with non-linearities in curvature and 
inertia of a spinning piezoelectric beam are obtained, and 
the natural frequencies, as well as gyroscopic complex 
modes, are analyzed. By using the multiple scales method, 
the non-linear modal motions and non-linear frequencies are 
investigated. The responses to the initial values are discussed 
for the gyroscopic system by multiple scales method, and 
numerical simulation validates the results. The piezoelectric 
coupling effect and non-linear features of the gyroscopic 
continuum are also investigated in detail. The contribution 
of the electrical resistance, rotary inertia, electromechanical 
coupling coefficient and spinning speeds to the forward and 
backward natural frequencies of the spinning piezoelectric 
beam are studied, which prompts possible optimizations in 
the design of piezoelectric vibratory gyroscopes.

2 � Governing equations of a spinning 
piezoelectric beam

Figure 1 shows the structure of a spinning beam which is 
surrounded with four piezoelectric films. The length (L1, L2, 
L) and width (wb, wp) of the beam and piezoelectric films are 
shown in the figure. The beam displacement is made of three 

Fig. 1   Spinning beam with surrounded four piezoelectric films
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components, u(s, t), v(s, t), and w(s, t), along the inertial 
frame x, y, and z directions, respectively, where s denotes 
the undeformed arclength along the x-axis from the root of 
the beam to the observed reference point, t denotes time. The 
x–y–z coordinate system denotes the inertial frame.

The transformation of two Euler angles by which an arbi-
trary beam cross section can be expressed with three coor-
dinate systems is shown in Fig. 2. The x0–y0–z0 system is a 

 For an in-extensional beam, u′ ≅ − (v′2 + w′2)/2, expanding 
ϕ with a Taylor series, cosϕ = 1 − ϕ2/2, sinϕ = ϕ − ϕ3/6, the 
transformation matrix P can be attained as

Using the concept of continuity, one can obtain the 
deformed curvatures ρi (i = 1, 2, 3)

The relative angular velocity vector ω to the inertial 
frame are then obtained as
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Fig. 2   Sequence of Euler angle transformation

spinning frame around the x-axis with constant speed Ω of 
the undeformed beam; the x1–y1–z1 and x2–y2–z2 systems are 
orthogonal coordinate frames associated with Euler angle 
transformation. Moreover, we let (ix, iy, iz), ( i1̂,i2̂,i3̂ ), and (i1, 
i2, i3) represent the unit vectors of the x0–y0–z0, x1–y1–z1, and 
x2–y2–z2 coordinate frames, respectively.

From the undeformed plane, the cross section first spins 
by α degree about n axis from x0–y0–z0 to x1–y1–z1

The transformation matrix B(α) can be expressed by the 
displacements [44]

Here, the primes of (u, v, w) denote the derivatives with 
respect to s, respectively.

Further, the cross-section spins ϕ by about x1 axis from 
x1–y1–z1 to x2–y2–z2, thus the transformation from x0–y0–z0 
to x2–y2–z2 is
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Here, the dots of (u, v, w) denote the derivatives with 
respect to t, respectively.

The deformation of any point on the beam can be denoted 
by the position vector R as

Using directional time derivatives, Ṙ in the coordinate 
system of x0–y0–z0 is expressed as

with

The kinetic energy of a spinning Rayleigh beam can be 
obtained by substituting Eqs. (6), (8), and (9) into the fol-
lowing expression

According to the assumption of an inextensional beam 
and using the geometric boundary condition u(0,t) = 0, one 
can obtain

Hence, the kinetic energy can be obtained as

with
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sectional area of the beam, m, ρ(s), and j are the total mass, 
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+ 2m𝛺(vẇ − wv̇)

}
ds

+
1

2 ∫

L

0

[
j
(
v̇�2 + ẇ�2
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of the beam and the piezoelectric film, respectively. For all 
the parameters used in this paper, subscript b denotes the 
beam material and p denotes piezoelectric film.

The mechanical properties of piezoelectric films are cou-
pled with their electric properties. For the configuration and 
non-linear strain considered here, the electrical displacement 
is one dimensional and the stress–strain relations for these 
materials are known as follows [45, 46]

where Ep is the stiffness coefficient, ε33 is the dielectric per-
mittivity, Tp is the stress, S is the strain, e31 is the piezoelec-
tric strain constant, D is the electrical displacement, E3 is the 
electrical field, and Vv,w is the voltage. The relation between 
voltage and current is

where Z is electrical resistance, Q is charge quantity.
An isotropic beam is considered, and the stress–strain 

satisfies the relation

where Eb stands for stiffness coefficient.
The total potential energy for spinning beam can be 

derived as follows

Substituting Eq. (15) into Eq. (14), then further inserting 
the results and Eq. (16) into Eq. (17), we can obtain
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The next step is to substitute the results of kinetic, poten-
tial energy and virtual work into the Hamilton principle

Because the torsional frequency is larger than the flexural 
frequency, so the twist angle ϕ can be neglected [42]. By 
using voltage and current relation and expanding the results 
up to three orders, we can obtain the following four partial 
governing equations with electromechanical coupling
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and voltages for simplification, we obtain

with Z0 = 1/(iωCp).
Hence, substituting Eq. (23) into Eq. (22), the last two 

equations of (22) can be eliminated by using displacements 
to replace voltages [47], and then the equations can be 
reduced to partial differential equations of two degrees of 
freedom

(21)
∫

t2

t1

(�T − �U + �W)dt = 0.

(22)
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Introducing dimensionless variables and parameters

Substituting Eq. (25) into Eq. (24), the dimensionless 
form of the governing equations becomes

By neglecting the terms of the rotary inertia and geomet-
ric non-linearity, our governing Eq. (26) can recover those 
equations in Refs. [1, 2] that focused on the linear counter-
part of the piezoelectric gyroscope. In contrast to the non-
linear shaft models [42, 48], which studied only a rotating 
beam without piezoelectric materials, two additional piezo-
electric coupling terms (κS(s)″2v/(1 + Z0/Z) and κS(s)″2w/
(1 + Z0/Z)) and different linear terms such as gyroscopic 
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coupling terms and centrifugal force terms are presented in 
the current formulation for an investigation.

In this study, considering the simply-supported boundary 
condition (v = w=0 and v″ = w″ = 0) at both ends, we use 
Galerkin method and the appropriate sine function

where n is the mode number, p and q are generalized tem-
poral coordinates and coupled to each other. Substituting 
Eq. (27) into Eq. (26), letting L1 = 0, L2 = L, and assuming a 
constant base angular speed Ω, we can obtain two non-linear 
ordinary differential equations

3 � Analysis of the linear frequency 
and responses to initial conditions

In this section, the free vibration of the linear part of Eq. (28) 
is studied first. Neglecting damping and non-linear terms, 
one can obtain two second-order linear ordinary differential 
equations with respect to t

with

Substituting Q = μeiωt into Eq. (29), and according to the 
boundary conditions, the natural frequencies based on the 
linear system can be obtained as
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2π2)p̈ + 2𝛺q̇ + cn

4π4ṗ

+

(
n
4π4 −𝛺2 + J𝛺2

n
2π2 +

𝜅n4π4

1 + Z0∕Z

)
p + n

6π6p3

+ n
6π6pq2 −

(
3

8
n
2π2 −

1

3
n
4π4

)
(pṗ2

+ pq̇
2 + qpq̈ + p

2
p̈) = 0.

(29)MQ̈ + GQ̇ + KQ = 0,

(30)

Q =
�
q p

�T
, M =

�
1 + Jn

2π2 0

0 1 + Jn
2π2

�
, G =

�
0 − 2�

2� 0

�
,

K =

⎡
⎢⎢⎣
n
4π4 −�2 + J�2

n
2π2 +

�n4π4

1+Z∕Z0
0

0 n
4π4 −�2 + J�2

n
2π2 +

�n4π4

1+Z∕Z0

⎤
⎥⎥⎦
.

(31)

�
f , b =

±� +

√
(1 + Jn2π2)

[
n4π4 −�2 + J�2n2π2 + �n4π4∕(1 + Z0∕Z)

]
+�2

1 + Jn2π2
.

Then, the corresponding column vector μ can be obtained 
by substituting ωf and ωb of Eq. (31) back into Eq. (29). The 
column vector μ is different when Ω greater or smaller than 
a critical value

where the first column [−i 1]T corresponding to ωf rep-
resents forward precession and the second column [i 1]T 
corresponding to ωb represents backward precession in the 
sub-critical case. On the critical value there exists a switch 
point of the first mode from backward precession to forward 
precession. Beyond the critical point, both modes are for-
ward precession.

The two scalar equations of Eq. (29) are only linearly 
gyroscopic coupled by neglecting the non-linear terms and 
damping. In Fig. 3, the first two natural frequencies versus 
spinning speeds are plotted for electrical resistance Z0/Z = 10 
and Z0/Z = ∞ with parameters J = 0.002, n = 1, κ = 0.5, and 
c = 0. For each value of Z, two natural frequencies corre-
spond to the two gyroscopic modes of the spinning piezo-
electric beam. Figure 3 shows that the forward frequency ωf 
increases and the backward frequency ωb decreases, followed 
by an increase after the critical point. In the local amplified 
plot, there are no electric fields in both directions for the case 
of shortened electrodes (Z0/Z = ∞). In this case, the piezo-
electric coupling effect related to electric fields does not 

(32)

� =

⎧
⎪⎪⎨⎪⎪⎩

�
− i i

1 1

�
, when 𝛺 < n2π2

�
1 + 𝜅∕(1 + Z0∕Z)

1 − Jn2π2
,

�
− i − i

1 1

�
, when 𝛺 > n2π2

�
1 + 𝜅∕(1 + Z0∕Z)

1 − Jn2π2
,

Fig. 3   Natural frequencies versus spinning speed (J = 0.002, n = 1, 
κ = 0.5, and c = 0)
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exist. When the electrodes are not shortened (Z0/Z = 10), as 
presented in Fig. 3, there are electric energy transfers in the 
two directions, which causes stiffening of the spinning pie-
zoelectric beam, and higher frequencies are found. Figure 3 
also shows that the frequency ωb is decreasing first, and then 
increasing, and there exists a critical switch value. When the 
electrodes are not shortened (Z0/Z = 10), the point of criti-
cal value is pushed back compared with the shortened case 
(Z0/Z = ∞), although the effect of the electrodes is weak. 
Similarly, Fig. 4 shows the second two natural frequencies 
versus spinning speeds, which are plotted for Z0/Z = 10 and 
Z0/Z = ∞ with parameters J = 0.002, n = 2, κ = 0.5, and c = 0. 
When shortened electrodes (Z0/Z = ∞) are considered, there 
exist neither electric fields nor piezoelectric coupling effect. 
When the electrodes are not shortened (Z0/Z = 10), electric 
field appears causing higher frequencies. We will further 
explain the dynamics of the four typical points Af,b, Bf,b, Cf,b, 
and Df,b on Figs. 3 and 4 in the analysis of modal motions 
in the next section.

4 � Application of multiple scales method 
for the non‑linear system

The method of multiple scales is extensively used in this 
study of gyroscopic system. Now we treat the non-linear 
gyroscopic system Eq. (28) by using the procedure of the 
multiple scales method. Then, the solutions of Eq. (28) are 
assumed as

(33)
q = �q1(T0, T2) + �3q3(T0, T2) +⋯ ,

p = �p1(T0, T2) + �3p3(T0, T2) +⋯ ,

where ε is a bookkeeping device denoting small parameter, 
and the fast and slow time scale T0= t and T2= ε2t are intro-
duced. Damping c is scaled with cε2 since it is usually very 
weak. The time derivatives can be written as

with D0 = ∂/∂T0, D2 = ∂/∂T2.
Substituting Eqs. (33) and (34) into Eq. (28) and equating 

the coefficient of different orders of ε yields

For the sub-critical case, 𝛺 < n2π2
√

1+𝜅∕(1+Z0∕Z)

1−Jn2π2
 , the 

solutions to Eq. (35) are assumed as

Substituting Eq. (37) into Eq. (36), one can obtain

(34)
�

�t
= D0 + �2D2 +⋯ ,

�

�t2
= D2

0
+ 2�2D2D0 +⋯ ,

(35)

(1 + Jn
2π2)D2

0
q1 − 2�D0p1 + [n4π4 −�2

+ J�2
n
2π2 + �n4π4∕(1 + Z0∕Z)]q1 = 0,

(1 + Jn
2π2)D2

0
p1 + 2�D0q1 + [n4π4 −�2

+ J�2
n
2π2 + �n4π4∕(1 + Z0∕Z)]p1 = 0,

(36)

(1 + Jn
2π2)D2

0
q3 − 2�D0p3 +

[
n
4π4 −�2

+J�2
n
2π2 + �n4π4∕(1 + Z0∕Z)

]
q3

= − cD0q1 + 2�D2p1 − 2(1 + Jn
2π2)D0D2q1

− n
6π6(q3

1
+ q1p

2

1
) +

(
3

8
n
2π2 −

1

3
n
4π4

)[
q
2

1
D

2

0
q1

+ q1(D0q1)
2 + q1(D0p1)

2 + q1p1D
2

0
p1

]
, (1 + Jn

2π2)D2

0
p3

+ 2�D0q3 +
[
n
4π4 −�2 + J�2

n
2π2 + �n4π4∕(1 + Z0∕Z)

]
p3

= − cD0p1 − 2�D2q1 − 2(1 + Jn
2π2)D0D2p1

− n
6π6(p3

1
+ p1q

2

1
) +

(
3

8
n
2π2 −

1

3
n
4π4

)[
p
2

1
D

2

0
p1

+ p1(D0q1)
2 + p1(D0p1)

2 + q1p1D
2

0
q1

]
.

(37)

q1(T0, T2) = − iA1(T2)e
i𝜔f T0 + iA2(T2)e

i𝜔bT0

+ iĀ1(T2)e
−i𝜔f T0 − iĀ2(T2)e

−i𝜔bT0 ,

p1(T0, T2) = A1(T2)e
i𝜔f T0 + A2(T2)e

i𝜔bT0

+ Ā1(T2)e
−i𝜔f T0 + Ā2(T2)e

−i𝜔bT0 .

(38)

(1 + Jn2π2)D2

0
q3 − 2�D0p3 +

[
n4π4 −�2

+ J�2n2π2 + �n4π4∕(1 + Z0∕Z)
]
q3

= F1(T2)e
i�f T0 + B1(T2)e

i�bT0 + cc + nst,

(1 + Jn2π2)D2

0
p3 + 2�D0q3 +

[
n4π4 −�2

+ J�2n2π2 + �n4π4∕(1 + Z0∕Z)
]
p3

= F2(T2)e
i�f T0 + B2(T2)e

i�bT0 + cc + nst,

Fig. 4   Natural frequencies versus spinning speed (J = 0.002, n = 2, 
κ = 0.5, and c = 0)
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where “nst” denotes non-secular terms, “cc” denotes the 
conjugate of the proceeding terms, and

To determine the solvability conditions of gyroscopic 
ordinary differential Eq. (38), q3 and p3 are expressed as

Substituting Eq. (40) into Eq. (39) and equating the coef-
ficient of ei�f T0 , we obtain

Similarly, for coefficient of ei�bT0 , the following equations 
are obtained

Equations (41) and (42) are composed of algebraic equa-
tions with respect to A11(T2), A21(T2) and A12(T2), A22(T2). 
The nontrivial condition can be expressed as [42]

(39)

F1(T2) = −2(𝜔
f
+ Jn

2π2𝜔
f
−𝛺)D2A1(T2)

− c𝜔
f
A1(T2) + 4in6π6Ā1(T2)A

2

1
(T2)

+
1

2
i(𝛤1 + 16n6π6)A1(T2)Ā2(T2)A2(T2),

B1(T2) = 2(𝜔
b
+ Jn

2π2𝜔
b
+𝛺)D2A2(T2)

+ c𝜔
b
A2(T2) − 4in6π6Ā2(T2)A

2

2
(T2)

−
1

2
i(𝛤1 + 16n6π6)A1(T2)A2(T2)Ā1(T2),

F2(T2) = −2i(𝜔
f
+ Jn

2π2𝜔
f
−𝛺)D2A1(T2)

− ci𝜔
f
A1(T2) − 4n6π6Ā1(T2)A

2

1
(T2)

−
1

2
(𝛤1 + 16n6π6)A1(T2)A2(T2)Ā2(T2),

B2(T2) = −2i(𝜔
b
+ Jn

2π2𝜔
b
+𝛺)D2A2(T2)

− ci𝜔
b
A2(T2) − 4n6π6Ā2(T2)A

2

2
(T2)

−
1

2
(𝛤1 + 16n6π6)A1(T2)A2(T2)Ā1(T2),

𝛤1 =
(
3

2
n
2π2 −

4

3
n
4π4

)
(𝜔

f
+ 𝜔

b
)2.

(40)
q3(T0, T2) = A11(T2)e

i�f T0 + A12(T2)e
i�bT0 ,

p3(T0, T2) = A21(T2)e
i�f T0 + A22(T2)e

i�bT0 .

(41)

[
− �2

f
− Jn

2π2�2

f
−�2 + n

4π4 + J�2
n
2π2 + �n4π4∕(1 + Z0∕Z)

]
A11(T2)

− 2i�
f
�A21(T2) = F1(T2),

[
− �2

f
− Jn

2π2�2

f
−�2 + n

4π4 + J�2
n
2π2 + �n4π4∕(1 + Z0∕Z)

]
A21(T2)

+ 2i�
f
�A11(T2) = F2(T2).

(42)

[
− �2

b
− Jn

2π2�2

b
−�2 + n

4π4 + J�2
n
2π2 + �n4π4∕(1 + Z0∕Z)

]
A12(T2)

− 2i�
b
�A22(T2) = B1(T2),

[
− �2

b
− Jn

2π2�2

b
−�2 + n

4π4 + J�2
n
2π2 + �n4π4∕(1 + Z0∕Z)

]
A22(T2)

+ 2i�
b
�A12(T2) = B2(T2).

After some mathematical manipulations, the solvability 
conditions can be written as

with

For the super-critical case, 𝛺 > n2π2
√

1+𝜅∕(1+Z0∕Z)

1−Jn2π2
 , the 

solutions of Eq. (35) are assumed

Similarly, the solvability conditions are derived as

where

For both the sub-critical and super-critical cases, slow-
varying complex amplitudes A1 and A2 are expressed in polar 
form

where a1(T2), a2(T2) and γ1(T2), γ2(T2) are real amplitudes 
and phases of the response, respectively.

When 𝛺 < n2π2
√

1+𝜅∕(1+Z0∕Z)

1−Jn2π2
 , substituting Eq. (49) into 

Eq. (44), and separating real part and imaginary part, the 
slow-varying amplitudes and phases can be obtained as

(43)

||||||
−�2

f
− Jn

2π2�2

f
−�2 + n

4π4 + J�2
n
2π2 + �n4π4∕(1 + Z0∕Z) F1(T2)

2i�
f
� F2(T2)

||||||
= 0,

||||||
−�2

b
− Jn

2π2�2

b
−�2 + n

4π4 + J�2
n
2π2 + �n4π4∕(1 + Z0∕Z) B1(T2)

2i�
b
� B2(T2)

||||||
= 0.

(44)

i𝛬1D2A1(T2) + 2ic𝜔f A1(T2) + (𝛤1 + 16n6π6)A1(T2)Ā2(T2)A2(T2)

+ 8n6π6Ā1(T2)A1(T2)
2 = 0,

i𝛬2D2A2(T2) + 2ic𝜔bA2(T2) + (𝛤1 + 16n6π6)A2(T2)Ā1(T2)A1(T2)

+ 8n6π6Ā2(T2)A2(T2)
2 = 0,

(45)
�1 = 4(�f + Jn2π2�f −�), �2 = 4(�b + Jn2π2�b +�).

(46)

q1(T0, T2) = − iA1(T2)e
i𝜔f T0 − iA2(T2)e

i𝜔bT0

+ iĀ1(T2)e
−i𝜔f T0 + iĀ2(T2)e

−i𝜔bT0 ,

p1(T0, T2) = A1(T2)e
i𝜔f T0 + A2(T2)e

i𝜔bT0

+ Ā1(T2)e
−i𝜔f T0 + Ā2(T2)e

−i𝜔bT0 .

(47)

i𝛬1D2A1(T2) + 2ic𝜔f A1(T2) + (𝛤2 + 16n6π6)A1(T2)Ā2(T2)A2(T2)

+ 8n6π6Ā1(T2)A1(T2)
2 = 0,

i𝛬3D2A2(T2) + 2ic𝜔bA2(T2) + (𝛤2 + 16n6π6)A1(T2)Ā1(T2)A2(T2)

+ 8n6π6Ā2(T2)A2(T2)
2 = 0,

(48)
�2 =

(
3

2
n2π2 −

4

3
n4π4

)
(�f − �b)

2, �3 = 4(�b + Jn2π2�b −�).

(49)A1(T2) =
1

2
a1(T2)e

i�1(T2), A2(T2) =
1

2
a2(T2)e

i�2(T2),
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Substituting the first two equations of Eq. (50) for a1(T2) 
and a2(T2)

into the last two equations of Eq. (50), γ1(T2) and γ2(T2) can 
be obtained as

where C1–C4 are constants determined by initial conditions. 
Substituting Eqs. (51) and (52) into Eq. (49), and using the 
results into Eq. (37), we obtain the approximate analytical 
solutions

with

When 𝛺 > n2π2
√

1+𝜅∕(1+Z0∕Z)

1−Jn2π2
 , similarly, the approximate 

analytical solutions can be obtained as

(50)

1

2
�1D2a1(T2) + c�

f
a1(T2) = 0,

1

2
�2D2a2(T2) + c�

b
a2(T2) = 0,

−
1

2
�1a1(T2)D2�1(T2)

+
1

8
(�1 + 16n

6π6)a1(T2)a
2

2
(T2) + n

6π6a3
1
(T2) = 0,

−
1

2
�2a2(T2)D2�2(T2) +

1

8
(�1 + 16n

6π6)a2(T2)a
2

1
(T2)

+ n
6π6a3

2
(T2) = 0.

(51)a1(T2) = C1e
−2c�f T2∕�1 , a2(T2) = C2e

−2c�bT2∕�2 ,

(52)

�1(T2) = −
C2
2
(�1 + 16n6π6)�2e

−4c�bT2∕�2

16�1c�b

−
C2
1
n2π2e−4c�f T2∕�1

2c�f

+ C4,

�2(T2) = −
C2
1
(�1 + 16n6π6)�1e

−4c�f T2∕�1

16�2c�f

−
C2
2
n2π2e−4c�bT2∕�2

2c�b

+ C3.

(53)

v(s, t) = sin(nπs)[B
f
sin(B1B

2

b
+ B2B

2

f
+ �

f
T0 + C4)

− iB
f
cos(B1B

2

b
+ B2B

2

f
+ �

f
T0 + C4)

− B
b
sin(B3B

2

f
+ B4B

2

b
+ �

b
T0 + C3)

+ iB
b
cos(B3B

2

f
+ B4B

2

b
+ �

b
T0 + C3)],

w(s, t) = sin(nπs)[B
f
cos(B1B

2

b
+ B2B

2

f
+ �

f
T0 + C4)

+ iB
f
sin(B1B

2

b
+ B2B

2

f
+ �

f
T0 + C4)

+ B
b
cos(B3B

2

f
+ B4B

2

b
+ �

b
T0 + C3)

+ iB
b
sin(B3B

2

f
+ B4B

2

b
+ �

b
T0 + C3)],

(54)

B
f
= C1e

−2c�f T0

�1 , B
b
= C2e

−2c�bT0

�2 ,

B1 = −
(�1 + 16n6π6)�2

16�1c�b

, B2 = −
n
6π6

2c�
f

,

B3 = −
(�1 + 16n6π6)�1

16�2c�f

, B4 = −
n
6π6

2c�
b

.

where

4.1 � Numerical analysis

In this subsection, the numerical simulation will be 
employed to validate the results by the method of multiple 
scales [49, 50]. The displacement time histories of the spin-
ning piezoelectric beam based on the gyroscopically coupled 
non-linear system have been illustrated in Figs. 5 and 6 by 
both analytical and numerical simulation. The two figures 
share the same parameters J = 0.002, κ = 0.5, Z0/Z = 10, and 
c = 0.005, where only the first mode is excited. An initial 
condition of v(0) = 0.01, w(0) = 0, v̇(0) = 0 , and ẇ(0) = 0 
in the plane v is used in Fig. 5, by which responses occur 

(55)

v(s, t) = sin(nπs)[B
f
sin(B1B

2

b
+ B2B

2

f
+ �

f
T0 + C4)

− iB
f
cos(B1B

2

b
+ B2B

2

f
+ �

f
T0 + C4)

+ B
b
sin(B3B

2

f
+ B4B

2

b
+ �

b
T0 + C3)

− iB
b
cos(B3B

2

f
+ B4B

2

b
+ �

b
T0 + C3)],

w(s, t) = sin(nπs)[B
f
cos(B1B

2

b
+ B2B

2

f
+ �

f
T0 + C4)

+ iB
f
sin(B1B

2

b
+ B2B

2

f
+ �

f
T0 + C4)

+ B
b
cos(B3B

2

f
+ B4B

2

b
+ �

b
T0 + C3)

+ iB
b
sin(B3B

2

f
+ B4B

2

b
+ �

b
T0 + C3)],

(56)

B
f
= C1e

−2c�f T0

�1 , B
b
= C2e

−2c�bT0

�3 ,

B1 = −
(�2 + 16n6π6)�3

16�1c�b

, B2 = −
n
6π6

2c�
f

,

B3 = −
(�2 + 16n6π6)�1

16�3c�f

, B4 = −
n
6π6

2c�
b

.

Fig. 5   Time history for Ω = 0.5, J = 0.002, κ = 0.5, Z0/Z = 10, and 
c = 0.005
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in plane w due to the gyroscopic effect. Since the spinning 
speed is not high, Ω = 0.5, the results of two natural frequen-
cies are close. Hence a beat phenomenon can be located. The 
displacements of both directions are gradually attenuated 
until zero because of damping. During the vibration pro-
cess, the transfer of energy from one direction to another can 
locate the working mechanism of the piezoelectric vibratory 
gyroscope. Figure 6 shows the non-spinning case, Ω = 0.5: 
an initial displacement in the plane v is given, where there 
is no oscillation in plane w because of there is no gyroscope 
coupling, which is the key role to make the vibratory gyro-
scopes work.

4.2 � Non‑linear modal analysis

In this subsection, the modal motions will be discussed. 
Using the parameters J = 0.002, κ = 0.5, and Z0/Z = ∞, the 
non-linear complex mode functions in Eqs. (53) and (55) 
based on the multiple scales method are shown in Fig. 7. The 
snapshots for different spinning cases (Ω = 5 and Ω = 15) in 
a period of the non-linear spinning piezoelectric beam for 
the first two orders modal motions are shown in Fig. 7. The 
modal motions are corresponding to the four typical points 
Af,b, Bf,b, Cf,b, and Df,b in Figs. 3 and 4. The first-order modal 
motions exhibited in Fig. 7a, e are all forward whirling in the 
sub-critical and supercritical regions, respectively. However, 
the first-order modal motion exhibited in Fig. 7c is back-
ward whirling in the sub-critical region where the first-order 
modal motion exhibited in Fig. 7g is forward whirling in the 
supercritical region. The second-order modal motions of the 
spinning piezoelectric beam are forward whirling motions 
as presented in Fig. 7b, f where the second-order modal 
motions presented in Fig. 7d, h are backward whirling in 
the sub-critical and supercritical regions.

4.3 � Non‑linear frequency analysis

It is found that the non-linear frequencies involve two parts 
in Eqs. (53) and (55). The first part is linear natural frequen-
cies of constants ωf and ωb and the second part depends on 
the slow-varying amplitude (C1B

2
b
+ C2B

2
f
)∕T0 and 

(C3B
2
f
+ C4B

2
b
)∕T0 . Therefore, the non-linear natural fre-

quency is a function of J, c, κ, Z0/Z, and Ω as well as time. 
Hence, the effect of rotary inertia J, electrical resistance Z0/Z 
and spinning speed Ω on the non-linear natural frequencies 
can be discussed for a specified instant of time (for example 
T0 = 1). We can make a definition regarding forward and 
backward non-linear frequency

where Ci (i = 1–4) are coefficients which determined by ini-
tial conditions v(0) = 0.01, w(0) = 0, v̇(0) = 0 , and ẇ(0) = 0.

The first order amplitude-dependent non-linear frequency 
is presented in Fig. 8 by using the parameters J = 0.002, 
κ = 0.5, c = 0.005, and Z0/Z = 10. The dotted line represents 
linear frequencies, and the solid line represents non-linear 
frequencies. It is found that with an increase of the initial 
amplitudes, the non-linear natural frequencies increase. It is 
also found that with the increase of the spinning speed, the 
forward and backward non-linear frequencies all increase.

In Figs. 9 and 10, ωfnl and ωbnl are plotted versus spin-
ning speed Ω for different values of electrical resistance Z0/Z 
by using the parameters J = 0.002, κ = 0.5, and c = 0.005. 
In Fig. 9, the first mode (n = 1) of the forward non-linear 
frequencies ωfnl increase and the backward frequencies ωbnl 
decrease first, then increase with the increase of spinning 
speed for all the values of Z0/Z. In the local enlarged view, 
the reduction of electrical resistance causes the higher ωfnl. 
It is seen that for ωbnl, there exists a local minimum point, 
the reduction of electrical resistance (Z0/Z = ∞, 10, and 5) 
causes the higher ωbnl before the minimum point, but the 
reduction of Z0/Z causes the lower ωbnl after the minimum 
point. In Fig. 10, the second mode (n = 2) of ωfnl increase 
and ωbnl decrease for all the values of Z0/Z. From all the 
figures, we can see the values of ωfnl are larger than ωbnl by 
using the same parameters.

The non-linear frequencies ωfnl and ωbnl of the first two 
modes as functions of spinning speed Ω for different rotary 
inertia J are shown in Figs. 11 and 12 by using the param-
eters Z0/Z = 10, κ = 0.5, and c = 0.005. It is observed from 
Figs. 11 and 12 that the essential properties of curves are 
similar with Figs. 9 and 10 for different rotary inertia J. 
Figure 11 shows that the reduction of rotary inertia (J = 0.02, 
0.002, and 0.0002) causes the higher ωfnl of the first mode 
(n = 1). It is seen that for ωbnl, there exists a local minimum 
point. Before the local minimum point, the reduction of J 

(57)�fnl = C1B
2
b
+ C2B

2
f
+ �f ,�bnl = C3B

2
f
+ C4B

2
b
+ �b,

Fig. 6   Time history for Ω = 0, J = 0.002, κ = 0.5, Z0/Z = 10, and 
c = 0.005
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causes the higher ωbnl from Ω = 0 to Ω = 5, and the reduc-
tion of J causes the lower ωbnl from Ω = 5 to the minimum 
point. After the minimum point, the reduction of J causes 
the higher ωbnl. The reduction of rotary inertia (J = 0.02, 
0.002, and 0.0002) causes the higher ωfnl of the second mode 
(n = 2) are shown in Fig. 12. It is found that for ωbnl, there 
exists a cross-over point. Before the cross-over point, the 

reduction of J causes the higher ωbnl from Ω = 0 to Ω = 20, 
and the reduction of J causes the lower ωbnl from Ω = 20 to 
Ω = 25.

The relation of the linear and non-linear frequencies ver-
sus Z0/Z are plotted in Figs. 13 and 14 for Ω = 1, 3 by using 
the parameters J = 0.002, κ = 0.5, and c = 0.005. The two 
figures illustrate that the linear and non-linear frequencies 

Fig. 7   Complex mode functions derived by the non-linear systems. a The first mode (ωf) when Ω = 5, at Af. b The second mode (ωf) when Ω = 5, 
at Cf. c The first mode (ωb) when Ω = 5, at Ab. d The second mode (ωb) when Ω = 5, at Cb. e The first mode (ωf) when Ω = 15, at Bf. f The second 
mode (ωf) when Ω = 15, at Df. g The first mode (ωb) when Ω = 15, at Bb. h The second mode (ωb) when Ω = 15, at Db
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become further apart as the Ω increases. Moreover, the value 
of linear frequency (e.g. Ω = 1, ωf) is lower than the value 
of non-linear frequency (e.g. Ω = 1, ωfnl) due to the effect 
of geometric nonlinearities as depicted in Figs. 13 and 14. 
Further, Fig. 13 shows that the linear and non-linear fre-
quencies vary rapidly according to the small electrical resist-
ance and then become smoothly for the first mode (n = 1). 
Together with the dependence of the linear and non-linear 
frequencies on the spinning speed as shown in Figs. 3 and 
9, respectively, the electrical resistance Z0/Z dependence of 
non-linear frequencies further complicates the design of the 
piezoelectric gyroscopes. Figure 14 shows that the linear and 

non-linear frequencies vary more rapidly than that in Fig. 13 
according to the small Z0/Z and then become smoothly for 
the second mode (n = 2). The effect of Z0/Z for ωb and ωbnl 
is greater than ωf and ωfnl, respectively.

Large vibration of flexible structures leads to high sen-
sitivity of the gyroscopes. However, the non-linear effects 
should reconsidered in the engineering field of gyroscopes. 
The clear understanding of varying rules on non-linear fre-
quencies and non-linear normal modes may provide possible 
optimizations in the vibrating beam gyroscope design, espe-
cially for the ones with very flexible structures.

Fig. 8   Non-linear frequencies versus the amplitude (κ = 0.5, 
Z0/Z = 10, c = 0.005, and J = 0.002)

Fig. 9   Non-linear frequencies versus spinning speed (n = 1, c = 0.005, 
κ = 0.5, and J = 0.002)

Fig. 10   Non-linear frequencies versus spinning speed (n = 2, 
c = 0.005, κ = 0.5, and J = 0.002)

Fig. 11   Non-linear frequencies versus spinning speed (n = 1, 
c = 0.005, κ = 0.5, and Z0/Z = 10)
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5 � Conclusions

The linear and non-linear free vibrations of a spinning piezo-
electric beam are investigated by both analytical and numeri-
cal simulation. The additional piezoelectric coupling terms 
and symmetrical governing equations with non-linearities 
in curvature and inertia of a spinning piezoelectric beam 
are derived by using extended Hamilton principle and the 
transformation of two Euler angles. The non-linear fre-
quencies and complex modes are obtained by the multiple 
scales method. The initial value responses are studied by the 

analytical method and then validated by numerical method. 
The main conclusions are highlighted as follows.

1.	 In the linear and non-linear free vibration analysis of a 
spinning piezoelectric beam, forward and backward fre-
quencies are studied. The switch of the forward preces-
sion and backward precession of the gyroscopic system 
have been located.

2.	 The whirling motions of the non-linear complex modes 
have been illustrated.

3.	 The electrical resistance (including electromechanical 
coupling coefficient) should be considered in the field 
of the piezoelectric spinning beam. The rules of non-
linear frequencies varying with electrical resistance, 
amplitude, and other parameters have been discussed in 
detail.

4.	 The investigations of non-linear frequencies and non-
linear normal modes provide basic theories needed in 
the high flexible vibratory gyroscope design.
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