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Abstract
We study the problem of dynamically controlling the shape of a cable that is fixed at one end and attached to an actuated 
robot at another end. This problem is relevant to unmanned aerial vehicles (UAVs) tethered to a base. While rotorcrafts, such 
as quadcopters, are agile and versatile in their applications and have been widely used in scientific, industrial, and military 
applications, one of the biggest challenges with such UAVs is their limited battery life that make the flight time for a typical 
UAVs limited to twenty to thirty minutes for most practical purposes. A solution to this problem lies in the use of cables that 
tether the UAV to a power outlet for constant power supply. However, the cable needs to be controlled effectively in order 
to avoid obstacles or other UAVs. In this paper, we develop methods for controlling the shape of a cable using actuation at 
one end. We propose a discrete model for the spatial cable and derive the equations governing the cable dynamics for both 
force controlled system and position controlled system. We design a controller to control the shape of the cable to attain the 
desired shape and perform simulations under different conditions. Finally, we propose a quasi-static model for the spatial 
cable and discuss the stability of this system and the proposed controller.

Keywords  Lagrangian mechanics · Discrete model of cable · Control of under-actuated systems

1  Introduction

1.1 � Background and motivation

As the technology of unmanned aerial vehicles (UAVs) 
develops at a rapid pace, the applications of UAVs are 
greatly diversifying. Nowadays, the applications of UAV 
have expanded to commercial, scientific, agricultural, and 
other areas. It plays an important role in aerial photography, 
surveillance, agriculture and so on.

Rotorcrafts, such as quadcopters are agile, can hover in 
place and can operate in cluttered environments. Such UAVs 
are usually battery powered, and due to the high power con-
sumption, the flight time of a typical UAV is limited to a 
less than an hour. Thus, for some applications it is desirable 
that the UAVs be tethered to a base using a wire or a cable 
for power supply and high-speed communication (Fig. 1a). 

The wired UAVs do have longer battery life and can work 
for longer time, which is a big advantage. However the cable 
limits the motion of the UAV. When obstacles appear, the 
cable may be blocked by the obstacles restricting the UAV’s 
motion. Adjusting the position of UAV manually is a slow 
and ineffective way to let the cable dodge the obstacles. 
Instead, it may be desirable to control the shape of the cable 
using motion of the UAV that would allow it to dodge the 
obstacles.

Motivated by this application, we develop a method for 
controlling the shape and position of the cable using the 
motion of the UAV attached to it. One end of the cable is 
fixed at a base (e.g. a power outlet or communication base) 
and the other end is connected to the UAV (Fig. 1b). The 
cable deforms under the effects of gravity and UAV adjusts 
the position of cable by applying forces/impulses or by 
adjusting the position of the end of the cable that it is con-
nected to. At its core this is an under-actuated system with 
high degrees of freedom (the flexible cable) but only limited 
controllability (force or position control of its end). Thus our 
controller is able to achieve the desired shape only approxi-
mately (often with a periodicity in the error from the desired 
shape as demonstrated by our simulation results). However, 
simulations demonstrate the effectiveness of the controller 
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in attaining a desired shape and we also provide theoretical 
guarantees on convergence under a quasi-static assumption.

1.2 � Literature review

There has been little to no prior research in tethered UAVs. 
However, there has been multiple studies on the modeling 
and simulation of a cable, very few of which however explic-
itly consider the problem of controlling its shape.

Goriely and McMillen  [1] studied the shape of a cracking 
whip, in which they built a dynamical model for the propa-
gation and acceleration of waves in the motion of whips. 
Also, the respective contributions of tension, tapering, and 
boundary conditions in the acceleration of an initial impulse 
are studied theoretically and numerically.

Koh and Rong [2] presented the dynamic analysis of 
three-dimensional cable motion, accounting for axial, flex-
ural and torsional deformations as well as geometric non-
linearity due to large displacements and rotations. They 
developed the analytical formulation and numerical strategy. 
A specific problem of cable motion due to support excitation 
was used to illustrate the numerical scheme and then vali-
dated the accuracy of the numerical results by the shaking 
table tests. Jimenez et al. [3] studied the motion of a rope 
falling from a table using Newtonian and canonical methods 
to analyze the problem.

Breukels and Ockels [4] studied the model of the cable 
with which the kite is attached to the ground in order to build 
the fully dynamic simulation of kites. They only considered 
the slow modes of motion and focused on the damping. The 
relation between aerodynamic damping and material-based 
damping was investigated.

Fritzkowski and Kaminski [5] conducted two studies on 
modeling a rope as a rigid multibody system. They consid-
ered the discrete model of a rope as a scleronomic and a 
rheonomic system. They also performed numerical experi-
ments and discussed the advantages of the applied algorithm 
on the basis of energy conservation. In their later study, 
Fritzkowski and Kaminski [6] presented a discrete model 
of a rope to simulate the planer motion of the rope fixed at 

one end. They presented two systems, whose members are 
rigid but non-ideal joints involve elasticity or dissipation. 
Recently, Williams [7] proposed a lumped-mass discrete 
model of cable that allows fast and efficient dynamic simu-
lation of quasi-static rope models.

Papacharalampopoulos et al. [8] proposed a method for 
the estimation of the cables shape for robotic manipulation, 
which took into account the mechanical behaviour of materi-
als. In the framework of static analyses, a higher-order ana-
lytic model of cables is introduced and the need for model 
calibration is pointed out. Along similar lines, Tonapi et al. 
[9] developed a continuum model for a cable-like manipula-
tor and studied forward and inverse kinematics of the system.

Most of the above mentioned researches deal with repre-
sentation and modeling of ropes to understand their physics 
better with little or no consideration for control of the shape 
of the rope. There has been some sparse research in control-
ling shape of a cable. Matsuno and Fukuda [10] described 
configurations of ropes using a topological models and knot 
theory. They also proposed a method to reconstruct the 
structure of a rope from sensor information through charge 
coupled device (CCD) cameras when a robot manipulates 
it and used that to perform slow manipulation experiments. 
In an analogous approach, Takizawa et al. [11] used robotic 
manipulators for designing manipulation actions for the pur-
pose of tying a knot in a quasi-static cable with the help of 
support from a table/platform. Nair et al. [12] proposed a 
learning based approach for rope manipulation. Their robot 
could manipulate a static rope in two dimensions into target 
configurations. In a similar work, Wang et al. [13] described 
a control strategy based on a hybrid intelligent optimization 
algorithm for planar n-link underactuated manipulator.

In this paper, we however consider highly dynamic rope 
shape manipulation with potentially high inertial forces, 
gravity and drag forces. Furthermore we do not have a means 
of grabbing a rope in the middle (as is possible with a robotic 
manipulator), and instead have an underactuated system in 
which the only control inputs possible are the forces exerted 
by the robot at the free end of the cable. We however do not 
consider topological complexities such as knots.

Bhattacharya et al. [14] studied the problem of shape con-
trol of a planar cable using robots attached to its two ends in 
context of oil skimming and cleanup operations. They built 
a discrete model for the rope and simulated in two dimen-
sions, where drag forces were considered. Additionally, they 
studied a quasi-static model and developed a shape control-
ler based on it. In this paper, we extend the model to three 
spatial dimensions and thus propose shape controller for a 
highly dynamic model (as opposed to a quasi-static model). 
We also use a quasi-static model for theoretical analysis 
under some special conditions.

While there has been research in the area of controlling 
under-actuated systems such as steering of a flexible needle 
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Fig. 1   Tethered UAV. a An UAV tethered to a base, b cable in three 
dimensions
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[15] and control of a compliant robotic manipulator [16], 
such systems by design or by environmental influence have 
higher controllability or stability. A flexible cable, on the 
other hand, is significantly more dynamic and difficult to 
control.

1.3 � Overview of the paper

In this paper, we first develop a discrete dynamic model 
of a cable and demonstrate its performance in simulation 
with force and position control of the free end of the cable. 
We then develop a shape controller for the cable using the 
motion of the end as the input and evaluate the proposed 
controller in simulations. Finally, we also provide theoretical 
guarantees on the stability of the controller on a quasi-static 
simplification of the dynamic model.

2 � Discrete dynamic model

2.1 � Force controlled system

We propose an approximate discrete model. The spatial 
cable is represented by n rigid cylindrical segments con-
nected to each other by spherical joints. One end of the cable 
is attached to a fixed base, while the other end is controlled.

In this section, we assume that external input quantities 
are the forces applied at the free end of the cable, donated 
by the vector 

[
fx fy fz

]T . This system has 2n degrees of free-
dom (rotation of an individual segment along its axis, while 
keeping all the segments in place is ignored and thus do 
not contribute to any inertial term, nor increase degrees of 
freedom). As shown in Fig. 2, we choose the polar angles of 
each of the n segments as the generalized coordinates—�i 
is the angle made by the i-th segment with the positive Z 
axis (the latitudinal angle), while �i is the angle made by the 
projection of the segment on the XY plane with the positive 
X axis (the longitudinal angle)—all with respect to a global 
inertial frame of reference (see Fig. 2b).

Assuming that one end of the cable is fixed at 
[
0 0 0

]T , the 
position of the center of mass of the i-th segment is given by

where Li is the length of the i-th segment.
Thus the velocity of the center of mass of the i-th segment 

is given by

The velocity of a point, ri(s) , at a distance s from its center 
pi(s) (Fig. 2b) is given by

If we consider the drag force, the net external force and 
torque due to drag on the i-th segment is thus given by

where Cd is the drag coefficient along the transverse direc-
tion of the segment, and s is the variable used to integrate 
the force/torque along the length of the segment.

The angular velocity of the i-th segment is given by

We can define the free end of the cable in terms of the gen-
eralized coordinates as

Thus, we can define the 2n generalized forces

(1)pi =

i−1�
j=1

Lj

⎡
⎢⎢⎣
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Fig. 2   Discrete dynamic model. a A discrete dynamic model consist-
ing of n rigid segments, b the i-th segment
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where mi is the mass of the i-th segment, g is the gravita-
tional acceleration.

Since pj does not depend on �i and �i when j < i , and �i 
only depend on 𝜃̇i and 𝜙̇i , we can simplify the expressions 
above as

The kinetic energy of the system is given by

(7)

Q𝜃i
=

⎡
⎢⎢⎣

fx
fy
fz

⎤
⎥⎥⎦
⋅

𝜕
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⎥⎥⎦
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+

n�
j=1

Fi ⋅
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𝜕𝜃i
+

n�
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� i ⋅
𝜕�j
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,

Q𝜙i
=

⎡
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fx
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⎤
⎥⎥⎦
⋅

𝜕

⎡
⎢⎢⎣

xf
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zf

⎤
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𝜕𝜙i

+

n�
j=1

Fi ⋅
𝜕pj

𝜕𝜙i

+

n�
j=1
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𝜕�j

𝜕𝜙̇i

= fxLi cos 𝜃i cos𝜙i + fyLi sin 𝜃i cos𝜙i

− fzLi sin𝜙i +

n�
j=1

Fi ⋅
𝜕pj

𝜕𝜙i

+

n�
j=1
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𝜕�j

𝜕𝜙̇i

,

∀i = 1, 2,… , n,

(8)

Q𝜃i
= −fxLi sin 𝜃i sin𝜙i + fyLi cos 𝜃i sin𝜙i

+

n∑
j=i

Fi ⋅
𝜕pj

𝜕𝜃i
+ �i ⋅

𝜕�i

𝜕𝜃̇i
,

Q𝜙i
= fxLi cos 𝜃i cos𝜙i + fyLi sin 𝜃i cos𝜙i

− fzLi sin(𝜙i) +
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j=i
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𝜕pj

𝜕𝜙i
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𝜕�i

𝜕𝜙̇i

,

∀i = 1, 2,… , n.

The potential energy is given by

where k̂ is 
[
0 0 1

]T.
Thus, Lagrangian is given by

The Lagrange equations of motion for the system is given 
by [17]

The Eq. (12) consist of 2n second order ordinary differen-
tial equations in the quantities 

{
�1, �2,… , �n,�1,�2,… ,�n

}
 . 

Moreover they are affine in 
{
𝜃1, 𝜃2,… , 𝜃n,𝜙1,𝜙2,… ,𝜙n

}
 . 

We used Mathematica to perform symbolic computation and 
simplification of the Eq. (12) to obtain the ordinary diffren-
tial equations (ODEs) which take the form of M𝜼̈ + P = � . 
We extract the 2n × 2n matrix M (which depend on the 
generalized coordinates, �l ), and the 2n × 1 vector P (which 
depends on the generalized coordinates, �l , and its time 
derivatives, 𝜂̇l ), which we then export into MATLAB for 
numerical integration. We use the substitution 𝜻 = 𝜼̇ to con-
vert the second-order ODEs in the generalized coordinates to 
a set of first-order ODEs in the state variables, 

[
� �

]T . Thus, 
for given initial values of � = [�1,… , �n,�1,… ,�n] and 
� = [𝜃1,… , 𝜃n, 𝜙̇1,… , 𝜙̇n] at t = 0 , and given the external 
force profiles, 

{
fx, fy, fz

}
 as function of t, we employ ode45 

using Runge–Kutta fourth-order algorithm to integrate the 

(9)K =

n∑
i=1

(
1

2
mi
||ṗi||2 + 1

2

miLi
2

12
||�i

||2
)
.

(10)V =

n∑
i=1

migk̂ ⋅ pi,

(11)ℒ = K − V .

(12)
d

dt

(
𝜕ℒ

𝜕𝜂̇l

)
−

𝜕ℒ

𝜕𝜂l
− Q𝜂l

= 0,

∀ 𝜂l ∈
{
𝜃1, 𝜃2,… , 𝜃n,𝜙1,𝜙2,… ,𝜙n

}
.
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Fig. 3   Screenshots from a simulation of a free-falling cable (zero force applied to its end) demonstrates it swing due to gravity (8-segment model 
with L = 1 m and m = 0.01 kg ). a t = 0 s, b t = 0.7 s, c t = 1.4 s, d t = 2 s
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ODEs numerically. Figure 3a–d show an example of the 
force controlled system simulation, where input force func-
tion is F =

[
fx fy fz

]T
=
[
0 0 0

]T . The length of each segment 
of the rope is L = 1 m and the mass of each segment is 
m = 0.01 kg . (All numerical quantities used throughout the 
paper and displayed on plots are in SI units.)

In general, with nominal external forces, we observe 
no problem with convergence of the solution using 
Runge–Kutta type algorithms, and throughout the paper we 
do not need to use solvers for stiff problems. However, stiff 
solvers that take the Jacobian as an explicit input can also be 
employed for the numerical integration if necessary.

2.1.1 � Verification of correctness of simulation model

In Fig. 3 we demonstrate a simulation for a free-fall of the 
cable under the influence of gravity. To verify the reliability 
of the simulation of the dynamic model, we check the total 
mechanical energy of this system ( K + V ). The total mechani-
cal energy over a period of 10 s during the free-fall/swing 
simulation is shown in Fig. 4. For a free-falling system, the 
total mechanical energy should be conserved because there are 
no external non-conservative forces. Indeed Fig. 4 shows that 
the error in the total mechanical energy was under 0.00004 J , 
which indicates a good reliability for the dynamic model.

2.2 � Position controlled system

For position control of the free end, we need to slightly re-for-
mulate the equations of motion Eq. (12). In position controlled 

system, 
{
fx, fy, fz

}
 are unknown and 

{
xf , yf , zf

}
 are the external 

inputs.
Thus, we still have 2n generalized coordinates, {�1, �2,… , 

�n,�1,�2,… ,�n} . Equations and the expressions for the 
generalized forces Eq. (8), kinetic energy Eq. (9), and poten-
tial energy Eq. (10) still remain the same. We still have 2n 
Lagrange equations of motion. However now we have 2n + 3 
unknowns.

Taking time derivative of the configuration constraint 
Eq. (6), we obtain the velocity constraint equations

And we differentiating it for a second time we obtain the 
acceleration constraint equations

Equations (12) and (14) together form 2n + 3 equa-
tions, which are corresponding to 2n + 3 unknowns, {
fx, fy, fz, 𝜃1, 𝜃2,… , 𝜃n,𝜙1,𝜙2,… ,𝜙n

}
 . Thus, for given trajec-

tories of the free end of the cable (i.e. given 
{
xf , yf , zf

}
 and 

their derivatives as a function of time), and an initial config-
uration 

{
�1, �2,… , �n,�1,�2,… ,�n

}
 that satisfy the shape 

constraint equations, and an initial set of angular velocities {
𝜃1, 𝜃2,… , 𝜃n, 𝜙̇1, 𝜙̇2,… , 𝜙̇n

}
 that satisfy the velocity con-

straint equations at t = 0 , we can integrate and solve the sys-
tem of differential-algebraic equations (DAEs) in Eqs. (12) 
and (14) for 

{
fx, fy, fz, �1, �2,… , �n,�1,�2,… ,�n

}
.

As before, for simulating the system, we used Mathemat-
ica to simplify the Eqs. (12) and (14) to obtain the ODEs and 
the coefficients of the second derivatives in the equations. 
The equations can be numerically integrated by MATLAB. 
Figure 5a–d show an example of the position controlled sys-
tem simulation, where input position function is 

P =

⎡⎢⎢⎣
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3
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ẋf
ẏf
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⎥⎥⎦
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Fig. 4   Total mechanical energy of the free-falling cable (for simu-
lation shown in Fig.  3) plotted over time (blue curve). As can be 
observed, the error from the initial mechanical energy (red dashed 
reference, with the origin of height in computing the potential 
energy (PE) chosen at the point where the cable is attached) is under 
0.00004 J (or about 0.002%)
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3 � Shape control of the cable

We next propose a controller for controlling the shape of the 
cable using the control inputs of fx, fy , and fz . The second-
order dynamics of the cable makes the problem of shape 
control challenging. Furthermore, in presence of body forces 
(such as inertial forces or gravity), it is physically not possi-
ble to permanently hold a desired shape since gravity would 
try to bring the shape of the cable back to its equilibrium 
shape even if the controller instantaneously achieves a good 
approximation of the desired shape. The system under con-
sideration is also under-actuated—we are trying to control 
a system with 2n degrees of freedom with only 3 control 
inputs.

We first develop a general controller for shape control for 
the full second-order dynamic system. The novelty in our con-
troller lies in the fact that although the system is second-order, 
the controller does not need desired velocity inputs, and only 
require a desired shape. Additionally, one feature of our pro-
posed controller is that whenever the body forces try to bring 
the system back to its equilibrium configuration, the controller 
tries to recover it to achieve the desired shape, thus achieving 
a good approximation of the desired shape in a periodic man-
ner. While the full controller for the full dynamic system is 
not amiable to theoretical analysis, in Sect. 4 we make some 
simplifying assumptions (quasi-static model and no gravity) 
and provide theoretical results on the stability of the controller.

3.1 � Design of the controller

The governing equations of the system is given by Eq. (12), 
which constitute of a total of 2n equations (ODEs). These 
equations involve the 2n + 3 variables, {fx, fy, fz, �1, �2,… , �n, 
�1,�2,… ,�n} . However, these equations are affine in 
fx, fy, fz and in the second time derivatives of the generalized 

coordinates, 𝜃̈1, 𝜃̈2,… , 𝜃̈n, 𝜙̈1, 𝜙̈2,… , 𝜙̈n . Thus the governing 
equations can be written as

w h e r e  � = [�1, �2,… , �n]
T  ,  � = [�1,�2,… ,�n]

T  , 
�̇ = [𝜃̇1, 𝜃̇2,… , 𝜃̇n]

T , �̇ = [𝜙̇1, 𝜙̇2,… , 𝜙̇n]
T , �̈ = [𝜃̈1, 𝜃̈2,… ,

𝜃̈
n
]T , �̈ = [𝜙̈1, 𝜙̈2,… , 𝜙̈n]

T . N is a function of � , � , �̇ , and 
�̇ . Q is a function of � , and �.

We can substitute p for �̇ , and q for �̇ such that �̈ = ṗ , 
�̈ = q̇ . The complete state of the system can thus be described 
by �,� , p, and q. Thus the governing equations can be writ-
ten as

along with the equations p = �̇ and q = �̇ . Note that the 
matrices M, N, and Q depend on the state variables �,� , 
p, and q only.

Denote the desired shape of the discrete model by 
�D = [�D

1
, �D

2
,… , �D

n
]T and �D = [�D

1
,�D

2
,… ,�D

n
]T . We 

thus propose that the time derivatives of � and � be pro-
portional to the errors in � and � (from the desired values) 
in order for them to reach their desired values

where the superscript “D” denotes that it is a desired quan-
tity, and K1 is a n × n gain matrix. Likewise, given the 

(15)

M2n×2n

�
�̈

�̈

�
+ N2n×1

�
�,�, �̇, �̇

�
+�2n×3(�,�)

⎡⎢⎢⎣

fx
fy
fz

⎤⎥⎥⎦
= �,

(16)M

�
ṗ

q̇

�
+ N + Q

⎡⎢⎢⎣

fx
fy
fz

⎤⎥⎥⎦
= �,

(17)
[
pD

qD

]
=

[
�̇

D

�̇
D

]
= K1

([
�D

�D

]
−

[
�

�

])
,
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Fig. 5   Screenshots from a position controlled simulation show traces of complete dynamic simulations of a cable and demonstrate a circular 
motion of the free end (6-segment system). a t = 0 s, b t = 2 s, c t = 4 s, d t = 6 s
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desired p and q, we have the following desired quantities 
for ṗ and q̇

where K2 is a n × n gain matrix.
Equation (18) can now be substituted into Eq. (16) in 

order to attempt a solution for the required forces for the 
desired forces, {fx, fy, fz} . However, with these 3 unknowns, 
Eq. (16) is an over-constrained system. We thus propose the 
following control law

where (⋅)+ is the Moore–Penrose pseudoinverse [18]. For a 
given desired [ṗ, q̇] , due to the property of Moore–Penrose 
pseudoinverse, the above controller minimizes the quan-

tity  ‖M
�
ṗ

q̇

�
+ N + Q

⎡⎢⎢⎣

fx
fy
fz

⎤⎥⎥⎦
‖2.

Substituting the desired quantities 
[
pD qD

]T into the con-
trol law (19), we can compute the forces which can shape 
the cable into the desired shape. Using Eqs. (17) and (18), 
the control law (19) can be written as

Thus for a given desired shape of the discrete model, 
�D,�D , an initial configuration of the shape and an initial 
set of angular velocity , we can use Eq. (20) for computing 

(18)
[
ṗD

q̇D

]
= K2

([
pD

qD

]
−

[
p

q

])
,

(19)
⎡⎢⎢⎣

fx
fy
fz

⎤⎥⎥⎦
= −Q+

�
M

�
ṗ

q̇

�
+ N

�
,

(20)

⎡⎢⎢⎣

fx
fy
fz

⎤⎥⎥⎦
= −Q+

�
MK2

��
pD

qD

�
−

�
p

q

��
+ N

�

= −Q+

�
MK2

�
K1

��
�D

�D

�
−

�
�

�

��
−

�
p

q

� �
+ N

�
.

{fx, fy, fz} at every time instant, and thus integrate the system. 
Though we do not have full controllability of the system, 
with {fx, fy, fz} we can use the force controlled system to con-
trol the shape of cable and achieve an approximation of the 
desired shape. As long as the gain matrices are positive defi-
nite, due to Eqs. (17) and (18), we can expect the system to 
take trajectories towards achieving the desired shape reason-
ably well, although convergence is in general not possible or 
guaranteed due to the nonlinearities in the system dynamics 
and the controller Eq. (20).

In the sections that follow, we first provide a few simula-
tion results using the proposed controller. Following that in 
Sect. 4 we will provide a more rigorous stability analysis 
for a simplified system with quasi-static assumptions. The 
control gain matrices are adjusted manually according to the 
simulation results.

3.2 � Simulation results of shape control

3.2.1 � Simulations with gravity and without drag force

Figure 6 shows an attempt to control the shape of a 8-seg-
ment model. The desired shape is a straight line, where 
�D = [0, 0, 0, 0, 0, 0, 0, 0] and �D = [

π

2
,
π

2
,
π

2
,
π

2
,
π

2
,
π

2
,
π

2
,
π

2
] . 

As shown in Fig. 6b, the controller was able to achieve 
an approximation of the desired shape, although in 
absence of any dissipative/drag force, oscillations tend 
to build up in the system over time. Figure 7 shows an 
attempt to control the end of a 8-segment cable model 
doing a circular motion. The desired shape is a func-
tion of time, where �D = [�t,�t,�t,�t,�t,�t,�t,�t] , 
�D = [π, π,

π

2
,
π

2
,
π

2
,
π

2
, 0, 0] , t is the time, and � =

2π

5
 . As 

shown in Fig. 7b, the controller was able to do a approxima-
tion of the desired motion. The gain matrices used in both 
the simulations are Ki = 0.5 I.
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Fig. 6   Shape control example (with gravity and without drag force): 
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3.2.2 � Simulations without gravity or drag force

In some occasions, the control forces applied on the end of 
the cable are much greater than gravity. Then the control 
forces are dominant over gravity during the simulation. In 
order to simplify the simulation, we ignore the gravity dur-
ing the simulation when control forces dominate over gravity 
and thus set acceleration due to gravity to g = 0 . For exam-
ple, if we want to reverse an arch from concaved upwards to 
concaved downwards, we expect to exert a pair of impulsive 
forces upward then downward at the end of the cable. In this 
case, the control force at the end of the cable is much greater 
than gravity and dominant over gravity. Therefore, simulat-
ing this case without gravity is reasonable.

Example with n = 8:
Figure 8a, b shows the initial shape and desired shape 

for this case (8-segment). The sets of desired angles are 
�D = [0, 0, 0, 0, 0, 0, 0, 0]T  a n d  �D = [0.52, 0.79, 1.05, 
1.31, 1.83, 2.10, 2.36, 2.62]T and gain matrix used is 
Ki = 0.7 I . Figure 8c shows the simulation result in MAT-
LAB. We note that when t = 2.95 s the shape of the cable 
approximated the arch which is concaved down. Of course 

due to inertia, the cable will not stay at the desired shape, 
but will scillate around it.

We define the error between the attained and desired 
shape as

where n is the number of segments, �i and �i are current 
angles during the simulation, and �D

i
 and �D

i
 are the desired 

angles. Figure 9 shows the graphs of forces and error of 
the simulation. From the force graph (Fig. 9a), we note that 
the control force was impulsive upward at the beginning 
and then went downward. This result is in line with our 
expectation. From the error graph (Fig. 9b), we note that 
the error decreased over time until t = 3 s and when t = 3 s 
the error was nearly zero which means the shape of the cable 
approximated the desired shape best. When t > 3 s, the error 
increases because of inertia. Due to absence of drag force, 
the energy introduced into the system because of the free 
end being manipulated, however, starts rapidly building up 
in the system, causing vigorous oscillations.

(21)Error =

∑n

i=1

�
�i − �D

i

�2
+
∑n

i=1

�
�i − �D

i

�2
2n

,
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Base on the simulation result, the controller was able to 
achieve a satisfactory approximation of the desired shape 
in this case. However, the controller in Eq. (20) is based on 
the Moore–Penrose pseudoinverse and is not guaranteed to 
achieve the desired shape exactly. Nevertheless, we note that 
the smaller the number of segments is, lower n will be, and 
thus Q will be closer to a square matrix, more accurately will 
Moore–Penrose pseudoinverse approximate a true inverse, 
and thus the more accurately the cable will be able to attain 
the desired shape. We can thus have a better simulation 
result if we use smaller number of segments n.

Example with n = 3:
Figure 10a, b shows the initial shape and desired shape 

for a 3-segment system. The sets of desired angles are 
�D = [0, 0, 0]T and �D = [0.79, 1.57, 2.36]T and gain matrix 
used is K = 0.6I . Figure 10c shows the simulation result 
from MATLAB. We note that when t = 3.95 s the shape of 
the cable was nearly the same as the desired shape.

Figure 11 shows the graphs of forces and error of the sim-
ulation of the 3-segment system. The force graph (Fig. 11a) 
of 3-segment system is consistent with the forces graph of 

8-segment system (Fig. 9a). From the error graph (Fig. 11b), 
we note that the error was minimum when t = 3.9 s . The 
minimum error of 3-segment system is much smaller than 
the minimum error of 8-segment system. As evident from 
the plots, the simulation result of 3-segment system is much 
better than the result of 8-segment system, thus providing 
evidence to our earlier observation that it is easier to control 
a system with smaller n.

Though the shape of the cable can be controlled to attain 
the desired shape at an instant, it cannot keep the desired 
shape for a long time due to inertia and gravity. Conse-
quently, the controller should be capable to correct to the 
desired shape continuously. Figure 12 shows the simulation 
result of 3-segment system for a longer time. Though the 
shape of the cable started to deviate the desired shape after 
t = 3 s, the controller managed to achieve the desired shape 
again when t = 20 s and t = 33.5 s (Fig. 12a, b). Also from 
the error graph (Fig. 12c), we can see that the error increased 
and decreased periodically, which means the shape of cable 
achieved and deviated the desired shape periodically. The 
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controller kept trying to correct the shape of the cable to 
the desired shape. Based on these simulations, our proposed 
controller has the capability to control the shape of the cable 
continuously, attempting to reduce the error whenever the 
system diverges from the desired shape.

3.2.3 � Simulations with drag force and without gravity

In some conditions, when the cable moves at a high speed, 
the air drag plays a significant role on the system, although 
we can still neglect the effect of gravity because of high 
inertial forces. Including the drag forces however can actu-
ally help dissipate the unwanted build-up of inertial/kinetic 
energy in the system and thus help attain stability. Figure 13 
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shows the initial shape and desired shape (resembling a sine 
curve) for a 5-segment system. The sets of desired angles are 
�D = [0, 0, 0, 0, 0] and �D = [

π

3
,
7π

12
,
3π

4
,
7π

12
,
π

6
].

Figure 14 shows the simulation result from MATLAB 
simulation. We note that when t > 5 s the shape of the cable 
approximated the desired shape and then cable moved with 
a very low velocity and its shape nearly kept constant, sta-
bilized due to the drag force.

Figure 15 shows the graphs of forces and error of the 
simulation. From the force graph (Fig. 15a), we note that 
the control force was very small when t > 5 s due to the 
shape was very close to the desired shape. From the error 
graph (Fig. 15b), we note that the error decreased rapidly 
until t = 5 s and then the error decreased in a very low rate, 
which means cable kept deforming to the desired shape at 
a low rate.

3.2.4 � Simulations with gravity and drag force

Finally we present a simulation result with a large value of 
n in presence of small drag ( Cd = 0.001 ) and gravity. Fig-
ure 16 shows the results from a simulation of a 15-segment 
model and a plot of error with time. We used Ki = 0.6I as 

the gain matrices. As can be observed from the plot of the 
error, the error oscillates with time, but due to the low drag 
coefficient and presence of gravity, the system has energy 
build-up in it, which makes the periodic low error configura-
tions accumulate more error over time.

As discussed earlier we use Mathematica to generate the 
symbolic equations of motion. With higher values of n the 
generation of the governing equations take longer. However, 
the integration of the equations using MATLAB is still quite 
efficient. In fact, the integration of the governing equations 
for the period of about 25 s (shown in Fig. 16) in fact took 
about 17 s of actual processor time to compute, thus making 
the controller much faster than required in real-time, even 
for models with large n.

4 � Stability of the shape controller

4.1 � Quasi‑static model

The controller we designed in the last chapter is a linearized 
controller for a nonlinear system, and hence complicated for 
long-term stability analysis. Thus, we need to simplify the 
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discrete segment model in order to obtain the state error func-
tion. In some occasions, we can ignore the inertial forces if the 
drag forces dominate over inertial forces. For examples, a 
slow-moving light cable in spaceship is justified for the quasi-
static model because there is no gravity in space and air resist-
ance exists in the spaceship. In addition, a detector connected 
to a submarine is also a reasonable example if the buoyancy 
of the detector and cable equals gravity allowing us to ignore 
the gravity in water. The water resistance dominates over iner-
tial forces for the detector in a very low speed. Under these 
slow-moving conditions, the accelerations are extremely small. 
We assume the accelerations �̈ and �̈ and gravity acceleration 
g are all 0. Thus the potential energy V = 0 and the Lagrangian 
ℒ = K . Also �ℒ

�ql
= 0 because Lagrangian does not consist of 

� and � , where ∀ql ∈
{
�1, �2,… , �n,�1,�2,… ,�n

}
 . Since 

𝜕ℒ

𝜕q̇l
 are linear with 𝜃̇i and 𝜙̇i , 

d

dt

(
𝜕ℒ

𝜕q̇l

)
 are linear with 𝜃̈i and 𝜙̈i . 

According to our assumptions, all the accelerations 𝜃̈i and 𝜙̈i 
are all 0. Then d

dt

(
𝜕ℒ

𝜕q̇l

)
= 0 . The Lagrange equations of 

motion for the system (Eq. (12)) can be simplified to

where Q�i
 and Q�i

 are given by Eq. (8).
We note that the external forces Fi and torques �i are lin-

ear in the speeds 
{
𝜃1, 𝜃2,… , 𝜃n, 𝜙̇1, 𝜙̇2,… , 𝜙̇n

}
 . Thus the Q�i

 
and Q�i

 are linear in 
{
𝜃1, 𝜃2,… , 𝜃n, 𝜙̇1, 𝜙̇2,… , 𝜙̇n, fx, fy, fz

}
.

Consequently, the equations of the quasi-static model can 
be written as

where �̇ = [𝜃1, 𝜃2,… , 𝜃n]
T and �̇ = [𝜙̇1, 𝜙̇2,… , 𝜙̇n]

T.
By using this quasi-static model, we are able to imple-

ment a method to minimize the error. Then we rewrite the 
controller for the quasi-static model

where (⋅)+ is the Moore–Penrose pseudoinverse and K is an 
2n × 2n gain matrix.

Substituting the force controller back into Eq. (23), we 
have

(22)

Q�i
= 0,

Q�i
= 0,

∀i = 1, 2,… , n,

(23)A2n×2n

�
�̇

�̇

�
+ B2n×3

⎡⎢⎢⎣

fx
fy
fz

⎤⎥⎥⎦
= �,

(24)
⎡⎢⎢⎣

fx
fy
fz

⎤⎥⎥⎦
= −B+AK

��
�D

�D

�
−

�
�

�

��
,

(25)A

[
�̇

�̇

]
+ B

[
−B+AK

([
�D

�D

]
−

[
�

�

])]
= �.

Define the error between the current shape of cable and the 
desired shape of cable as

Take time derivatives on both sides of Eq. (26)

Take Eqs. (26) and (27) back to Eq. (25)

Then we can write the state error function as

where matrix C = A+BB+A.
Note that if all Re

{
�i(−CK)

}
 (i.e. the real parts of the 

eigenvalues of the matrix −CK ) are negative, then e(t) tends 
to be zero as t → 0 . However, matrix C is not full rank (B 
being a 2n × 3 matrix, the rank of the matrix C = A+BB+A 
is in fact 3). Thus some of the eigenvalues of C are zeros. 
Thus, we can only control the system to be marginally stable 
by choosing K such that Re

{
�i(−CK)

}
 are non-positive.

If square matrix C2n×2n is diagonalizable [19], then matrix 
C can be factorized as

where U is the square ( 2n × 2n ) matrix whose i-th column is 
the eigenvector qi of C and � is the diagonal matrix whose 
diagonal elements are the corresponding eigenvalues.

(26)e(t) =

[
�D

�D

]
−

[
�

�

]
.

(27)ė(t) = −

[
�̇

�̇

]
.

(28)A(−ė(t)) + B
[
−B+AKe(t)

]
= �.

(29)ė(t) = −CKe(t),

(30)C = U�U−1,
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Fig. 17   Shape control example: simulation result to achieve 
a sine curve with controlled gain matrix (5-segment). a Initial 
shape, b desired shape, c final shape attained, d error
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We can then choose the gain matrix to be K = U�+U−1 , 
where �+ is the pseudoinverse of matrix � ( � with its non-
zero diagonal elements reciprocated). Then

Note that matrix ��+ is a diagonal matrix whose diagonal 
elements are only 0 or 1. Thus Re

{
�i(−CK)

}
 becomes all 

non-positive (only 0 and −1 ) and this system is marginally 
stable. Though the error may not be zero as t → 0 . The cable 
will eventually reach an approximation of the desired shape 
after enough long time, though it may not reach the exact 
desired shape.

4.2 � Simulation results

Figure 17a, b shows the initial shape and desired shape. They 
are the same as the initial shape and desired shape in previ-
ous simulation in Sect. 3.2.3. As shown in Fig. 17c, the sim-
ulation result shows that the cable was not able to reach the 
exact desired shape (sine curve) but an approximation after 
a long time. Compared with Fig. 15b, the error curve shown 
in Fig. 17d has less oscillations obviously. In addition, the 
error decreased at a faster rate and reached a smaller value 
( < 0.1 ), which means the final shape is closer to the desired 
shape. These results confirmed that we could have a better 
performance on shape control by controlling the gain matrix.

5 � Conclusion and future direction

In this paper, we have demonstrated a method for controlling 
the shape of a cable fixed at one end and being manipulated at 
the other end. This problem is relevant to tethered UAVs that 
need to avoid obstacles. We have proposed a discrete model 
and derived the dynamic model of the cable in three dimen-
sions for both force controlled system and position controlled 
system. We have developed a controller to control the shape of 
the cable. Also, we have proposed a quasi-static discrete model 
to simplify the problem and derived the state error function to 
marginally stabilize this system by adjusting the gain matrix.

In future, we plan to make further refinements to the pro-
posed controller using novel methods, which can control the 
cable more precisely to attain a better approximation of the 
desired shape. We will also incorporate material/internal damp-
ing in the system which are highly relevant to real cables which 
do have a certain level of elasticity. As long as such damp-
ing results in a set of dynamic equations similar in form as 
described in Eq. (15), the controller design will be analogous. 
We also plan to use a continuous dynamic model, which is more 
realistic but more complex than the discrete model. In addition, 
practical challenges need to be addressed in the simulation and 
controller design, such as the friction at the joints, elasticity and 
the presence of physical obstacles in the environment.

(31)CK = U�U−1U�+U−1 = U��+U−1.
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