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Abstract
In this paper, a combined viscoelasticity–viscoplasticity model, coupled with anisotropic damage and moisture effects, is
developed for short fiber reinforced polymers (SFRPs) with different fiber contents and subjected to a variety of strain rates.
In our model, a rate-dependent yield surface for the matrix phase is employed to identify initial yielding of the material. When
an SFRP is loaded at small deformation before yielding, its viscoelastic behavior can be described using the generalized
Maxwell model, while when plasticity occurs, a scalar internal state variable (ISV) is used to capture the hardening behavior
caused by the polymeric constituent of the composite. The material degradation due to the moisture absorption of the
composite is modeled by employing another type of ISV with different evolution equations. The complicated damage state
of the SFRPs is captured by a second rank tensor, which is further decomposed to model the subscale damage mechanisms
of micro-voids/cracks nucleation, growth and coalescence. It is concluded that the proposed constitutive model can be used
to accurately describe complicated behaviors of SFRPs because the results predicted from the model are in good agreement
with the experimental data.

Keywords Short fiber reinforced polymer · Internal state variable · Anisotropic damage · Moisture effect · Viscoelastici-
ty–viscoplasticity

1 Introduction

Short fiber reinforced polymers (SFRPs) are increasingly
applied in a wide range of industrial applications due to
their attractive properties such as specific strength/stiffness
to density ratio, high corrosion resistance, and ease of pro-
cessing. Especially for the parts used in automotive industry
such as dashboards, bumper beams, sunroof frames, and
the like, SFRPs has been widely used to replace traditional
metallic materials. However, such materials are sensitive to
environment conditions and their mechanical behavior is
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very complicated. Due to the existence of fibers with large
aspect ratios in the matrix, SFRPs display a strong direc-
tional dependence (anisotropy) in their mechanical, thermal,
and damage behaviors. In addition, numerous interdependent
phenomena exhibited by SFRPs have been experimentally
observed, including rate/time dependence, moisture effects,
permanent strain, and material deterioration due to subscale
cracks/voids. It is therefore of great interest to formulate an
accurate constitutive relationship for such materials to prop-
erly capture their plasticity and damage behaviors.

In the past decades, a large number ofworks havemodeled
the aforementioned phenomenological behaviors of SFRPs,
though only a few of them could cover all or most of those
behaviors. The viscoelastic phenomenon of SFRPs has been
modeled, in a properway, byNguyen et al. [1], andAndriyana
et al. [2] with the concept that the entire composite mate-
rial system is interpreted as a spring-dashpot mechanical
device. On the other hand, Klinkel et al. [3] and Notta-Cuvier
et al. [4] proposed elastoplasticity models aimed at describ-
ing the post-yielding behaviors of SFRPs. Deterioration of
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the composite material due to damagewas theoretically stud-
ied byVoyiadjis andDeliktas [5], where anisotropic tensorial
damage variables were introduced to represent the material
surface discontinuity in the form of microcracks. In addi-
tion to the above phenomenological behaviors exhibited by
the SFRPs, it is also well known that most polymers absorb
moisture in humid conditions, which leads to the degradation
of polymer-based composites [6]. This moisture degradation
effect on composite materials was recently modeled by Pan
andZhong [7]with the introduction of internal state variables
(ISVs). However, none of the current models are capa-
ble of capturing the very comprehensive and complicated
behaviors of composites as featured with viscoelasticity,
viscoplasticity, thermoelasticity, thermoplasticity, and dam-
age, still fewer can reveal the dominant micromechanisms
of those materials at different loading and environmental
conditions. A general modeling method concerning the com-
plicated mechanical responses of composite materials and
their governing mechanisms still remains unclear. There-
fore, we propose in this paper a comprehensive theoretical
modeling framework based on combined viscoelasticity–vis-
coplasticity and damage mechanisms to capture the general
behavior of composite materials during different strain rate
processes in a universal sense by properly addressing the
coupling effects of anisotropic damage and moisture effects.
The modeling strategy follows the ISV theory presented by
Horstemeyer and Bammann [8] and involves the following
features.

(1) The modeling framework in the present study is taken
from the works of Nguyen et al. [1], Klinkel et al. [3],
and Notta-Cuvier et al. [4], in which SFRPs are consid-
ered as an isotropic continuum medium embedded with
several bunches of fiberswith different orientations. The
fibers are assumed to exhibit different behaviors from
the matrix phase, so these two constituents are modeled
in different manners.

(2) The elastic behavior of SFRPs is assumed to be time
dependent (viscoelasticity). The viscoelastic constitu-
tive equations are taken from the generalized Maxwell
model (spring-dashpot mechanical system) that addi-
tively decomposes the total stress of the composites
into a pure elastic part (spring-like part) and a time-
dependent part (dashpot-like part). The viscoelastic
model is then modified, with the help of ISVs proposed
by Pan and Zhong [7], to account for material degrada-
tion due to the moisture absorbed by the SFRPs. The
coupling between the elastic and moisture effects is
modeled in a similar manner to that used in continuum
damage mechanics when dealing with damage effects.

(3) The viscoplasticity is modeled using the polymer ISV
equations proposed by Bouvard et al. [9]. A scalar
ISV is introduced to physically represent the internal

strain caused by polymeric entanglement points, which
is assumed, based on molecular dynamic simulations,
to be themicromechanisms that govern themacroscopic
hardening exhibited by thematerial. The rate-dependent
yield surface of the composites is a modification of
the metallic crystal plasticity model [10] for polymeric
materials.

(4) The coupling between damage and viscoelasticity–vis-
coplasticity is achieved by employing the effective
variable concept [11] and the anisotropic tensorial dam-
age variable is taken from Murakami [12]. Based on
experimental observations obtained by Rolland et al.
[13,14], the total damage tensor is further additively
decomposed into damage nucleation, growth, and coa-
lescence tensors. Each of them is determined with
physically based evolution equations [15]. Those equa-
tions are different from the damage evolution equations
of composites used byVoyiadjis andDeliktas [5], which
were motivated by the unified damage evolution equa-
tions of Lemaitre and Chaboche [16].

Standard notation is used throughout this paper. For exam-
ple, tensors are denoted with bold face characters with
capital letters to represent the second and fourth order ten-
sors and lower case letters of the vectors. Scalar variables are
representedwith standard text font. The symbol colon “:” rep-
resents the scalar product of two second order tensors A and
B, in which the index notation is A : B ⇒ Ai j : Bi j . Other
tensor operations used in this paper include: AB � A · B ⇒
Ai j B jk , a ⊗ b ⇒ (a ⊗ b)i j � aib j , and ‖A‖ � √

Ai j Ai j .

2 Constitutive formulation

This section is dedicated to the constitutive description of
the coupled thermal viscoelastic–viscoplastic damage model
for SFRPs. It is assumed that these composites are made of
a polymeric matrix uniformly embedded with several short
fiber families. (Fibers that share a similar orientation in the
matrix phase are grouped into one family.)

Due to the large aspect ratio of the short fibers, they are
assumed to be one-dimensionalmedia that deformonly along
their own direction. This method of approximating the fiber
phase as a one-dimensional medium has been adopted by
many other researchers [1,3,4], and is extended in this study
by considering amore general case that takes both elastic and
inelastic behaviors of the composites into account. It is worth
mentioning that the polymeric materials, when reinforced by
short brittle fibers, usually exhibit small strains before their
failure [17]. It is therefore reasonable to decompose the total
strain of the matrix and fiber families in the framework of
infinitesimal deformation into the following components
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ε � εmve + εmθ + εmvp, ε f i � ε f i
e + ε

f i
θ (i � 1, 2, . . . , n),

(1)

where the superscripts “m” and “f ” denote the matrix and
the fiber phases, respectively. Because there may be more
than one fiber family in the material system, the super-
script “i” indicates different fiber families. The total local
strain of the matrix phase is assumed to be the same as that
of the composites (ε) and is decomposed into the compo-
nents of viscoelasticity (εmve), thermal expansion (εmθ ), and
the viscoplasticity (εmvp). The one-dimensional fiber family

is assumed to exhibit only pure elasticity (ε f i
e ) and thermal

expansion (ε f i
θ ) due to the brittle nature of many fiber mate-

rials such as glass and carbon fibers. It should be noticed
that the damage deformation in the current kinematic for-
mulation is not taken as an independent component, but is
considered to implicitly occur in both the elastic state and the
inelastic state [5]. The local strain ε f i measuring the exten-
sion/compression of the fiber families can be obtained by
using a set of structure tensors [1,3,4] as follows

ε f i � A f i : ε, A f i � ai ⊗ ai (i � 1, 2, . . . , n), (2)

where the vector ai represents the orientation of the i-th fiber
family. The structure tensor A f i can be considered as a pro-
jection tensor that maps the total strain (ε) of the composites
into a local one-dimensional strain along the fiber direction.
The thermal expansion of both matrix and fiber families are
assumed to be linearly dependent on the temperature change,
so the corresponding strain components are defined as

εmθ � βm
θ × (θ − θref),

ε
f i
θ � β

f i
θ × (θ − θref) (i � 1, 2, . . . , n),

(3)

where θ and θref are the current temperature and the ref-
erence temperature, respectively. The term β

f i
θ represents

scalar coefficients of thermal expansion (CTE) for the fiber
families, while a tensorial CTE (βm

θ ) is used for the matrix
phase. When the material made of the matrix phase deforms
equally along different directions under a thermal condition,
βm

θ becomes an isotropic tensor and can be fully described
with a scalar such as βm

θ � βm
θ I, where I is the identity

tensor. The viscoplastic strain component (εmvp) of the matrix
will be determined by a flow rule given in Sect. 2.2.

2.1 Viscoelasticity coupled withmoisture effects

Based on the thermodynamic framework proposed by Notta-
Cuvier et al. [4], the total stress (σ ) of the composites can be

written in terms of the local stress of the fiber families (σ f i )
and the matrix phase (σm) as the following

σ �
n∑

i�1

ϕ f i Aiσ f i Ai + ϕmσm, (4)

where ϕ f i and ϕm are the volume fractions of the i-th fiber
family and the matrix phase, respectively. The local stress
σ f i is defined with respect to the material coordinate system
and the structure tensor Ai in Eq. (4) acts as a transformation
tensor that maps σ f i along the global (loading) system. The
polymeric matrix phase is assumed to have a viscoelastic
behavior before yielding, so its corresponding local stress
(σm) can be described by the generalized Maxwell model as

σm � σm
eq +

k∑

j�1

σmj
neq, (5)

where σm
eq is the equilibrium stress that describes the

pure elasticity of the matrix material while a set of non-
equilibrium stresses σ

mj
neq denote the time-dependent (vis-

cosity) nature of the polymeric matrix. Based on the stress
decomposition in Eq. (5), constitutive relationships can be
obtained for σm

eq (linear elasticity) and σ
mj
neq (linear viscoelas-

ticity) as

σm
eq � 2μm(θ)εmve + λm(θ)tr

(
εmve

)
I,

σmi
neq �

t∫

0

� jexp

[
− (t − x)

τ j

]
∂εmve(x)

∂x
dx ( j � 1, 2, . . . , N ),

(6)

where t represents the current time instant and � j is a non-
dimensional free energy factor that is defined as the ratio
of the instantaneous elastic stored energy to the total free
energy in the material [18]. The relaxation time τ j is defined
as the ratio of viscosity to stiffness of the material, which
can physically represent the time that the material needed to
reach an equilibrium state in a stress relaxation process. The
temperature-dependent shearmodulusμm(θ) and Lamé con-
stantλm(θ) can be expressed in terms of theYoung’smodulus
Em(θ) and Poisson’s ratio vm of the polymeric matrix mate-
rial as follows

λm(θ) � Em(θ)vm

(1 + vm)(1 − 2vm)
, μm(θ) � Em(θ)

2(1 + vm)
,

Em(θ) � Cm
1 + Cm

2 (θ − θref), (7)

where Cm
1 and Cm

2 are two material constants. For the fiber
families, simple one-dimensional linear elasticity equations
are used, given as the following

σ f i � E f i (θ)ε f i
e ,

E f i (θ) � C f i
1 + C f i

2 (θ − θref) (i � 1, 2, . . . , n), (8)

123



498 G. He, et al.

where C f i
1 and C f i

2 are two material constants for the i-
th fiber family. It is well known that polymeric materials
and their corresponding composites are sensitive to humidity
changes in the environment due to the fact that polymer-based
materials absorb moisture in humid conditions. Moisture
absorption, observed by experiments [6], leads to a strong
degradation of mechanical properties of the composites.
Therefore, we modify the constitutive relationships of the
matrix and fiber families (Eqs. (6) and (8)) by employing the
moisture effect equations proposed by Pan and Zhong [7].
The modified equations incorporate the moisture degrada-
tion effect and are given as

σm
eq � [

2μm(θ)εmve + λm(θ)tr
(
εmve

)
I
]

×
[
1 − ϕ f β1

(
ϕ f

)
α
]
,

with β1

(
ϕ f

)
� β̄1 ×

(
ϕ f

)2
,

σ f i � E f i (θ)ε f i
e ×

(
1 − β2α

i
)
,

ϕ f �
n∑

i�1

ϕ f i , α � 1

n

n∑

i�1

αi ,

(9)

where β̄1 and β2 are two material parameters that physically
represent the degrees to which the moisture affects the stiff-
ness of the matrix and fiber phase, respectively. αi is an ISV
that represents the swelling process of the i-th fiber family,
which varies from 0 (dry state) to 1 (saturated state). To sim-
plify the model, the average value (α) of these ISVs is used
for thematrix phase instead of introducing a new ISV for that
phase. In order to solve Eq. (9), evolution equations for αi

are needed. Here, the following equations proposed by Pan
and Zhong [7] are used

α̇i

1 − αi
� ϕ f i qiμ f i

D
(i � 1, 2, . . . , n), (10)

where qi is a material constant and D is defined as a fiber
content independent parameter that governs the rate of energy
dissipation aswell as themoisture absorption.μ f i is the shear
modulus for the ith fiber family.

2.2 Viscoplasticity

Because of our assumption that the viscoplastic behavior of
a polymer-based composite is contributed solely by its poly-
meric constituent, the ISV proposed by Bouvard et al. [9] for
polymers is used in thismodel to capture theviscoplasticity of
the composites. Considering that fiber reinforced composites
usually fail at small strain levels, only the scalar strain-like
ISV (ξm) is used, which physically represents internal strain
due to the presence of defects/obstacles such as entanglement
points in the polymers. It is well known that the intensity

of the topological restriction of molecular motion by other
chains (entanglement density) has a significant effect on the
material behavior of polymers. In this paper, we consider
this entanglement to be a microscopic defect (similar to the
dislocation defect for metallic materials) that constrains the
motion of polymer molecular chain, thus, we introduce an
internal strain (ξm) to indicate such a defect-induced inter-
nal strain. In the view of thermodynamics, there should be
a thermodynamic force (also the thermodynamic conjugate
to the internal strain) that governs the change of this internal
strain; this thermodynamic stress is given below Eq. (12) and
is considered in our work as the isotropic hardening variable
used in classical plasticity. The evolution equation for ξm is
given as

ξ̇m � Hm
(
1 − ξm

ξ∗m

)
γ̇m
vp, ξ̇∗m � [

ξ∗m
sat (θ) − gm0 (θ)ξ∗m]

γ̇m
vp,

(11)

where Hm is a temperature independent hardening modu-
lus; ξ∗m is the internal strain threshold for polymer chain
slippage, with a temperature-dependent saturated value of
ξ∗m
sat (θ); γ̇m

vp is the viscoplastic strain rate of the polymeric
matrix and will be determined by the corresponding flow
rule; ξ∗m

sat (θ), gm0 (θ), and the initial value (ξ∗m
0 ) of ξ∗m at

time t � 0 are assumed to have a linear dependence on the
temperature as

ξ∗m
sat (θ) � Cm

3 + Cm
4 (θ − θref), gm0 (θ) � Cm

5 + Cm
6 (θ − θref),

ξ∗m
0 (θ) � Cm

7 + Cm
8 (θ − θref). (12)

The thermodynamic stress-like conjugate (κm) with
respect to ξm is taken from the work of Bouvard et al. [9]
as κm � 2Cm

κ μm(θ)ξm , where Cm
κ is a material parameter.

In viscoplasticity, κm acts as an isotropic hardening vari-
able and will be introduced into the flow rule to describe the
expansion of the yield surface. Based on this, the viscoplastic
flow rule for the composites is given following Bammann’s
approach [10] as

ε̇mvp � γ̇m
vp0√
2
sinh

[
τmeq − Ym(θ)

Nm(θ)

]
Nm

vp, (13)

where γ̇m
vp0 is a parameter representing the reference vis-

coplastic strain rate; τmeq is defined as the effective shear
stress acting on the polymeric matrix to cause its viscoplas-
tic flow, and can be calculated based on the local stress

σm and hardening variable κm as τmeq � σm′
√
2

− κm , where

“′” is a deviatoric operator; Nm
vp determines the flow direc-

tion of the matrix phase and is calculated as Nm
vp � σm′

∣∣∣
∣∣∣σm′ ∣∣∣

∣∣∣
;

Ym(θ) and Nm(θ) are two parameters that represent the rate-
independent and rate-dependent components of the initial
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yield surface [10] and are assumed to be temperature depen-
dent as Ym(θ) � Cm

9 + Cm
10(θ − θref) and Nm(θ) � Cm

11 +
Cm
12(θ − θref).

2.3 Anisotropic damage

The modeling of progressive damage phenomena in SFRPs
[13,14] is addressed in this work using the physics-based
continuum damage mechanics method [15], which consid-
ers the deterioration of the composites as a process of
microvoids/cracks nucleation, growth and coalescence. In
general, the damage process of the fiber reinforced compos-
ites under deformation is a complicated procedure includ-
ing fiber breakage, interfacial debonding, matrix cracking
[13,14]. However, for models aimed at capturing damage
degradation phenomena of composites at macroscale, those
damage mechanisms have to be properly represented in the
models. In the present model, a single damage variable is
used to represent all the damage mechanisms occurring at
the microscale. This approach of treating the damage mech-
anisms was also used by Voyiadjis and Deliktas [5]. For a
more complicated damage model that uses different equa-
tions for different damage mechanisms, the reader is referred
to the work of He [19]. In order to capture the anisotropic
damage nature of fiber reinforced composite materials, a sec-
ond damage tensor, φ, is introduced and further additively
decomposed as follows

φ̇ � φ̇η + φ̇ν + φ̇c, (14)

where the principal components of the total damage tensor
(φ) physically represent the area reduction densities mea-
sured at three principal planes of the material system [12].
φη,φν , andφc are the second order damage tensors for nucle-
ation (η), growth (ν), and coalescence (c), respectively. In our
work, the damage nucleation represents the point at which
the microscopic voids/cracks start to appear in the mate-
rial during deformation; the volume or area change of these
nucleated microvoids/cracks is termed as damage growth;
when the voids/cracks grow up to the point that adjacent
microvoids/cracks link together, such process is termed as
damage coalescence. The total damage tensor φ could not
be calculated until all of its components are uniquely deter-
mined by corresponding evolution equations.

The evolution equation for the damage nucleation tensor
is obtained by slightly modifying the anisotropic damage
law proposed by Hammi and Horstemeyer [15] and Lemaitre
et al. [20], which is given as

φ̇η �
(
Ye
H

)h
χ

KIC
P : |ε̇|, (15)

where Ye is the strain energy release rate density of the
composites, which can be expressed in terms of energies
from the matrix and fiber families as Ye � 1

2σ
m : εmve +

1
2

∑n
i�1 σ f iε

f i
e . It is well understood that the material dam-

age process is also an energy-release process. The high speed
of damage evolution in materials usually results in a high
energy dissipation rate. Therefore, according to Lemaitre
et al. [20], the damage evolution rate is assumed to be pro-
portional to the strain energy release rate as given in Eq. (15),
H and h are two material constants, KIC is the fracture
toughness of the bulk composite material, the parameter χ

has two definitions depending on whether the fiber frac-
ture (χ � d1/2/ϕ f 1/3) or the crazing of polymer matrix
(χ � Mw) is the dominant mechanism of the void/crack
nucleation in composites, where d is the average length of
the fibers and Mw is the molecular weight of the polymeric
matrix [21]. When |·| is applied to a second order tensor, it
would return the absolute value of its principal components.
The fourth order tensor P is introduced to acount for the
effects of loading/stress states and the density and orienta-
tion of microvoids/cracks during damage nucleation [15]. Its
index notation in the Cartesian coordinate system is repre-
sented as

P(i jkl) � 1

Cload

[
1 +

ρ(i j)(φ)

φ
Nc(i j)

]
δ(ik)δ( jl) (no sum on i and j),

(16)

where δ(ik) and δ( jl) are theKronecker delta;Cload is a param-
eter that has different values for different stress/loading states
such as tension, compression and torsion. The choice ofCload

is dependent on the sign of the components of the deforma-
tion direction tensor Nc(i j) of the composites, as illustrated
in the following equation

Cload �
⎧
⎨

⎩

Ctension if Nc(i j) � 0, i � j,
Ccompression if Nc(i j) < 0, i � j
Ctorsion ∀Nc(i j), i 
� j,

, (17)

where the direction tensor is calculated with Nc � σ
‖σ‖ ;

ρ(i j)(φ) in Eq. (16) is a symmetric damage density tensor rep-
resenting the amount and orientation of microvoids/cracks in
the material system and can be expressed as [22]

ρ(φ) � 15

8π

[¨
ρ(n)n ⊗ ndS − ρ0

5
I
]
, (18)

where ρ(n) is a microvoids/cracks area density distribution
function and is direction dependent (n is a direction vector),
ρ0 represents the density of all damages that occur within a
representative volume element (RVE).

Apart from damage nucleation, growth of microvoids
and cracks is another mechanism that might affect the
degradation of the composites. Although in most cases,
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the microvoids/cracks nucleated within the composites have
irregular geometric features and would change both their
shapes and volumes during the deformation process, we
assume that all the nucleated voids/cracks can be treated
as having spherical shapes and only undergo volumet-
ric change during the entire deformation process. Thus,
it would be sufficient to use a scalar variable to describe
the damage growth state; its evolution equation is given as
[23]

φ̇v �
√
3ℵε̇

2(1 − g)
sinh

[√
3(1 − g)

√
2I1

3
√
J2

]

, (19)

where ℵ is a material constant and g represents the strain
hardening effect contributed by the polymeric matrix phase.
It iswell known that the damage growth is strongly dependent
on the stress triaxiality state (I1/

√
J2) of the material, where

I1 and J2 are two stress invariants defined as I1 � tr(σ ) and
J2 � 1

2σ
′ : σ ′, respectively. The damage growth tensor, φν ,

is then expressed as a isotropic tensor as φν � φv I .
Similar to the microvoids/cracks nucleation model given

in Eq. (15), the tensor φ̇c that captures the change of damage
rate due to voids/cracks coalescence is also assumed to be
governed by the total strain rate of the composites. According
Ref. [15], that tensor can be expressed as

φ̇c � Cc

[
Ye
Sc

]sc
Π(φ) : |ε̇|, Π(i jkl) � (

φ(i j) − φc
)
δ(ik)δ( jl),

(20)

where Cc, Sc, and sc are three material constants that need
to be identified through appropriate damage quantification
tests. φc is a critical value of φ(i j) that governs the initi-
ation of damage coalescence. After choosing the damage
variables and their corresponding evolution equations, the
damage degradation effects on the mechanical properties of
the composite materials can be addressed within the frame-
work of continuum damage mechanics using the concept of
effective stress [11] as the following

σ̃ � T (φ) : σ , (21)

where the Cauchy stress σ is transformed, through a
fourth order tensor T (φ), into an effective stress ten-
sor σ̃ . It is defined with respect to an equivalent net
area without damage. The strain equivalence principle
[16] is then adopted. This principle assumes that the
constitutive equation for a damaged material can be
obtained by simply replacing the stress of the correspond-
ing undamaged material with an effective stress, while
keeping the strain unchanged. The damage effect tensor,
T (φ) is given in a diagonal matrix form [15] as

T (φ) �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1√
1−φ(11)

0 0 0 0 0

0 1√
1−φ(22)

0 0 0 0

0 0 1√
1−φ(33)

0 0 0

0 0 0 1√
1−φ(12)

0 0

0 0 0 0 1√
1−φ(13)

0

0 0 0 0 0 1√
1−φ(23)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(22)

2.4 Adiabatic heating

The viscoplasticity of composites is a dissipative process
that is usually associated with significant amounts of energy
released in the form of heat. When the material is loaded at a
lowstrain rate level, the heat introducedbyviscoplasticity has
sufficient time to conduct through thematerial. However, in a
high or even moderate strain rate condition [24], the temper-
ature increase in the material becomes adiabatic because the
time afforded for such heat conduction is very short. Based
on that, the localized temperature change in the composites
is assumed to be solely contributed by the viscoplasticity of
the polymeric matrix phase and has the following expression

θ̇ � ωϕmσm : ε̇mvp

ρcCc
, (23)

where ρc is the average mass density of the composite mate-
rial and Cc is the average specific heat capacity. Parameter
ω is a conversion factor that denotes the fraction of the vis-
coplastic dissipation (σm : ε̇mvp) which has been converted to
heat.

3 Examples of numerical application

Before numerical implementation of the developed model,
a flowchart that illustrates the organization of the paper is
given in Fig. 1, which follows a sequence of model devel-
opment, calibration, and validation. Model development was
presented in the previous section and in this section, model
calibration and validationwill be given. The deformation and
damage behaviors of twodifferent short fiber reinforced com-
posites are simulated using the developed constitutivemodel.
The first composite is a unidirectional sisal fiber reinforced
benzylated wood [7,25]. This example is used to calibrate
the material constants related to the moisture degradation
effects on the mechanical properties of the short fiber rein-
forced composites and to validate the accuracy of the present
model. It is worth mentioning that due to the lack of experi-
mental data of moisture degradation effects and the evolution
of absorbed water content in polymer-based composites,
we only use wood-based composites here to investigate the
capacity of the present model in capturing the moisture
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Fig. 1 Proposed theoretical approach of model development, calibration, and validation

effects. An experimental study on polymer-based composites
will be conducted in the future. The secondmaterial is a short
glass fiber reinforced polyamide 6,6 [2,13,14,17], which is
used for testing the capacity of our model in predicting other
material behaviors such as viscoelasticity, viscoplasticity,

and damage. The constitutive equations given in Sect. 2 are
rendered into Matlab code to predict all the aforementioned
mechanical behaviors.

In the first example, three samples of unidirectional sisal
fiber reinforced benzylated woods with different volume
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fractions (10.2%, 19.7%, and30.4%)were immersed inwater
for moisture absorption for a given period of time, and then
their elastic moduli along the fiber direction were measured
through mechanical tests [25]. In the current model, the pre-
dicted elastic modulus (E(11)) of the composites is obtained
by taking the derivative of the total stress σ(11) in Eq. (4) with
respect to the total viscoelastic strain (εve(11) � εmve(11)) as
follows:

E(11) � dσ(11)

dεmve(11)

∣∣∣∣∣
εmve(11)�0

� ϕ f dσ f + ϕmdσm
eq(11) + ϕm ∑k

j�1 dσ
mj
neq(11)

dεmve(11)

∣∣∣∣∣∣
εmve(11)�0

� ϕ f
[
E f × (1 − β2α)

]
+ ϕm

{(
2μm + λm

) ×
[
1 − β̄1 ×

(
ϕ f

)3
α

]}
+ 2ϕm

k∑

j�1

� j .

(24)

In the above equation, we ignore the temperature depen-
dence of elastic constants of the material and consider only
a single viscous contribution by letting k � 1 , such that
� � �1. Because the matrix phase is reinforced by unidi-
rectional fibers, the number of fiber families is reduced to
1 (i �1) and the elastic modulus of the fiber phase along
the loading direction (same as the fiber direction) is denoted
as E f � E f 1. Similarly, the ISV representing the absorbed
water content of the fiber family becomes α � α1. Combin-
ing Eq. (24) and the evolution equation for α (Eq. 10), there
are five parameters (λm , �, β̄1, β2, and D̄ � q

D ) that need
to be calibrated before the model can be used for numerical
analysis. Other elastic constants can be found in published
literature [7,26] as E f � 37,000MPa, μ f � 9818.2MPa,
and μm � 140MPa. In order to calibrate the first four
parameters (λm , �, β̄1, β2), theoretical predictions of elastic
moduli (E(11)) of the composites at dry (α � 0) and mois-
ture saturation (α � 1) states with respect to different fiber
volume fractions are first obtained by introducing these two
conditions (α � 0 and α � 1) into Eq. (24). The pre-
dicted results are then fitted to the experimental data [7,25]
to determine values for the four parameters. The curve fitting
processes are plotted in Figs. 2 and 3 with the material con-
stants determined as λm � 220MPa, � � 8MPa, β̄1 � 146,
and β2 � 0.662.

To calibrate the parameter D̄ � q
D , the moisture evolu-

tion equation (Eq. 10) is solved for α and the result is fitted
to the experimental data for the composite sample with fiber
volume fraction of 0.197. The calibration process is drawn
in Fig. 4 and the calibrated parameter D̄ � 3.9×10−9. After
calibrating the five parameters, the present model is used
to predict the moisture effect on the elastic modulus of the

Fig. 2 Calibration of material constants λm and �

Fig. 3 Calibration of material constants β̄1 and β2

material, and the numerical results are compared with the
experimental data [7,25] to validate this model. The com-
parison results are displayed in Fig. 5. From that figure it
can be seen that the calculated elastic moduli of the compos-
ites with fiber volume fraction of 0.197 and 0.304 are in good
agreement with the experimental data. However, for the com-
positewith afiber volume fractionof 0.102, the presentmodel
overestimates the evolution of its elastic modulus. By care-
fully checking themodel and the experimental data,we found
that the difference between the numerical predictions and the
experimental results in Fig. 5 may arise from the inaccurate
prediction of the initial modulus (E(11)) of the composite in
its dry state (α � 0). This inaccuracy might be caused by the
inconsistency of the experimental data taken from Pan and
Zhong [7] and Lu et al. [25]. As shown in Fig. 2, the experi-
mental data show a linear dependence of the modulus on the
fiber volume fraction. However, in Fig. 3, this dependence
becomes nonlinear. Since our model is calibrated using the
linear dependence of modulus on the fiber volume fraction
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Fig. 4 Calibration of material constant D̄. The fiber volume fraction of
the composites is 0.197

Fig. 5 Comparison of the numerical prediction and experimental data
of the elastic modulus evolution

as given in Fig. 2, the numerical prediction of the modu-
lus at the very beginning in Fig. 5 does not agree well with
the experimental data. One way to improve the agreement
is to test more samples and obtain more consistent average
experimental data for the modulus evolution, as well as its
dependence on the fiber volume fraction.

In the second example, the present model is calibrated for
a short E-glass fiber reinforced polyamide 6,6 (PA66GF),
and the calibrated model is then used for numerical analysis
to predict the damage-coupled viscoelasticity, viscoplasticity
of that material. The numerical results are compared with the
experimental data obtained by Andriyana et al. [2], Rolland
et al. [13,14], and Mouhmid et al. [17] for validation of the
developed model. Material properties of PA66GF have been
published in Refs. [17,27], and are listed in Table 1.

In this example, the fibers in the matrix are assumed to
align along the uniaxial tensile loading direction, so the dam-

Table 1 Material properties of the polyamide/glass (PA66GF) compos-
ite

Materials Fiber (E-glass) Matrix (polyamide 6,6)

Young’s modulus (GPa) 76 2

Shear modulus (GPa) 34 0.71

Poisson ratio 0.22 0.41

CTE (K−1) 6.0×10−6 90×10−6

Specific heat (J·(g·K)−1) 0.803 1.67

Bulk density (g·cm–3) 2.62 1.15

age state (φ) of the composites can be expressed in terms of a
diagonalmatrix form [5] under the loading coordinate system
as

φ �
⎡

⎣
φ11 0 0
0 φ22 0
0 0 φ33

⎤

⎦, (25)

where each damage tensor physically represents the micro-
cracks/voids area density defined with respect to principal
plane of the damage state. φ11 is defined on the plane
that is perpendicular to the loading direction while φ22 and
φ33 are defined on corresponding transverse planes. Due to
the symmetries of the loading state, damage state and the
microstructure of the composites, it is reasonable to assume
that φ22 � φ33. Since there is a lack of experimental data
about the temperature dependence on the viscoelasticity, vis-
coplasticity, and damage behaviors of the SFRPs, we neglect
the temperature effect by setting relevant parameters to 0.
However, the temperature increment in the material due to
viscoplasticity is taken into account with Eq. (23).

In this case, the viscoelastic part of the model is first
calibrated and validated using the stress relaxation data of
PA66GF obtained by Andriyana et al. [2], the comparisons
results are displayed in Fig. 6. The stress relaxation data
obtained from the test started at a strain level of 0.02mm/mm
is used to identify the corresponding viscoelastic parame-
ters (τ � 400 s and � � 8MPa), and another set of data
for the strain level of 0.01 mm/mm is used for validation.
From Fig. 6, it can be found that although the initiation point
at which the stress starts to relax is slightly underestimated
by the model at the strain level of 0.01 mm/mm, the trend
of the relaxation curve is well predicted with our model.
The inaccurate numerical prediction of the initial normalized
stress associated with the strain level of 0.02 mm/mm may
arise from the viscoelastic contribution of the fiber phase in
stress relaxation tests. In the present model, we assume that
the viscoelasticity of the composites is solely contributed by
its matrix phase, however, the existence of the fibers in the
matrix may also contribute or at least affect the total vis-
coelastic behavior of the composites. In the future study, an
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Fig. 6 Comparison of the stress relaxation test data and the model
prediction for PA66GF. These tests started from the strain levels of
0.01 mm/mm and 0.02 mm/mm

interaction term will be added in the viscoelastic model so as
to improve the model accuracy in predicting viscoelasticity.
As for the viscoplastic part of the model, it can be calibrated
and validated through the tensile experiment data obtained
from pure matrix materials (polyamide 6,6) by Mouhmid
et al. [17] based on the assumption that the viscoplasticity
of a composite material is solely contributed by its matrix
phase. The comparison results are displayed in Fig. 7. It can
be deduced from that figure that the present model could
properly predict the flow stress of PA66GF at a strain rate
of 0.0011 s−1 but slightly overestimates the flow stress at
the rate of 0.056 s−1. The experimental data in Fig. 7 show
a work hardening strain rate sensitivity of the polyamide
6,6 when the material starts to yield. When the strain rate
increases, the hardening rate of the material decreases and
the polyamide 6,6 exhibits a phenomenon of recovery, which
can be clearly seen in Fig. 7 when the strain rate is 0.056 s−1.
However, the present model lacks a recovery term to capture
this phenomenon and thus results in a difference between
the numerical results and the experimental data, especially
at the strain rate of 0.056 s−1 as shown in Fig. 7. The model
will be modified in the future to capture the rate-dependent
material recovery. The calibrated parametric values related
to viscoplasticity of the SFRPs are listed in Table 2.

Figure 8 compares the average stress–strain response of
PA66GF measured under uniaxial tension at the strain rate
of 0.0056 s−1 [17] with the numerical results yielded from
this model. For the PA66GF with 15 wt% and 30 wt% fiber
contents, the numerical results agree verywellwith the exper-
imental data at the small strain level, while they are slightly
less than the experimental data as the strain level increases.
For the material with the 50 wt% fiber content, the overall
trend of the stress–strain curve is well captured by the model
despite small deviations between the experimental data and

Fig. 7 Comparison of the tension test result and the model prediction
for polyamide 6,6. The model was calibrated to the test data measured
at strain rate of 0.0056 s−1 and then was validated with respect to the
experimental data collected at 0.056 s−1 and 0.0011 s−1

Table 2 Calibrated values of the viscoplastic parameters for polyamide
6,6

Parameters Values

γ̇m
vp0 0.01

Hm 3

Cm
3 0.045

Cm
5 1.2

Cm
7 0.02

Cm
9 (MPa) 6

Cm
11 (MPa) 3.5

Cm
κ 1.15

ω 0.5

the numerical results. The deviations shown in Fig. 8 may
be caused by the fact that the short fiber reinforced compos-
ite samples used in those tests were not ideal unidirectional
fiber reinforced composites and the short fibers did not orient
perfectly along the same direction in the matrix. To account
for the non-perfect fiber orientation effect, the approach pro-
posed by Mouhmid et al. [17] was followed to introduce a
fiber orientation parameter in the numerical model. However,
the value of the fiber orientation parameter was somehow
underestimated (this is equivalent to overestimating the fiber
disorientation effect), which results in a composites model
with less stiffness comparedwith the experimental data at the
fiber content of 50 wt%. Damage parameters are calibrated
by fitting the numerical results to the macroscopic stress–s-
train data measured from the material with the 30 wt% fiber
content (Fig. 8) and taking into account the physical consis-
tency with the work of Rolland et al. [13,14]. In Rolland’s
work, the observed total damage volume fraction in the ten-
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Fig. 8 Comparison of the tensile test data and the model prediction for
PA66GF with different fiber contents (15 wt%, 30 wt%, and 50 wt%
glass) at an applied strain rate of 0.0056 s−1

Table 3 Calibrated damage parameters for PA66GF

Parameters Values

H (mJ·mm–3) 1.4×10−3

h 0.5

Ctension (MPa−1) 6.5

g 0.45

ℵ 6.1×10−5

sile specimen of PA66GF with the fiber content of 30 wt%
did not exceed 1%. Table 3 lists the calibrated values for
the damage parameters and the corresponding total dam-
age evolution curves (longitudinal and transverse to the fiber
direction) for PA66GF with the 30 wt% fiber content are
plotted in Fig. 9. The predicted evolution of the damage area
can be obtained by solving the damage evolution equations
given in Sect. 2.3 with the calibrated damage parameters. In
experiments, those damage areas can be obtained by cutting
the composite samples along different principal directions
and measuring the crack/void areas or area density on each
principal plane using scanning electron microscope (SEM).
For a detailed description, the readers are referred to thework
of Voyiadjis and Venson [28].

4 Conclusion

This study develops a constitutive relationship for SFRPs
with different fiber contents to properly identify their dam-
age and moisture effects coupled viscoelastic, viscoplastic
behaviors subjected to a range of strain rate levels. The
numerical model is developed based on the additive decom-
position of the total strain, evolving ISVs are introduced to

Fig. 9 Damage (area fraction) of the constitutive model showing the
damage progression of different damage components for the 30 wt%
PA66GF. The loading condition is a tension load applied at a strain rate
of 0.0056 s−1

the formalism to account for the expansionmechanism of the
yield surface exhibited by the polymeric constituent of the
SFRPs. The damage part of the model is formulated based on
the mechanisms of micro-voids/cracks nucleation, growth,
and coalescence as observed by Rolland et al. [13,14] and
can properly predict the anisotropic damage progression of
such materials. The theoretical predictions of the proposed
model are overall in a good agreement with the experimen-
tal data within a broad range of moisture absorption content,
strain rate, and fiber content.
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