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Abstract
The perturbation method is applied to investigate the frictionally excited thermoelastic dynamic instability (TEDI) of a
functionally graded material (FGM) coating in half-plane sliding against a homogeneous half-plane. We assume that the
thermoelastic properties of the FGM vary exponentially with thickness. We also examine the effects of the gradient index,
sliding speed, and friction coefficient on the TEDI for various material combinations. The transverse normal stress for two
different coating structures is calculated. Furthermore, the frictional sliding stability of two different coating structures is
analyzed. The obtained results show that use of FGM coatings can improve the TEDI of this sliding system and reduce the
possibility of interfacial failure by controlling the interfacial tensile stress.

Keywords Thermoelastic dynamic instability · Frictional heat · Functionally graded materials · Stress analysis

1 Introduction

The effective material properties of functionally graded
materials (FGMs) can change in a continuous and smooth
manner, since they are usually formed from twodistinctmate-
rial phases with continuously varying fractions [1]. Over
the past 20 years, contact problems involving FGMs have
attracted attention frommany researchers. The frictional con-
tact problem of an FGM coating structure acted on by rigid
parabolic and cylindrical stamps was analyzed by Guler and
Erdogan [2–5], whereas El-Borgi et al. [6] and Elloumi et al.
[7] investigated the axisymmetric receding contact problem
for FGMs and the fully coupled partial slip contact problem
for a graded layer. A linear multilayer model was developed
by Ke and Wang [8] to analyze the fretting contact prob-
lem for FGM coating structures. Such studies in the fields
of tribology and contact mechanics suggest that resistance to
contact deformation and damage can be improved by using
FGM coatings [9–18].
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In recent years, researchers have paidmore attention to the
thermoelastic contact of FGMs, due to their excellent ther-
momechanical properties. Since FGMs are frequently used in
high-temperature environments, it is important to understand
their thermoelastic contact properties for use in practical
applications. It was Choi and Paulino [19] and Barik et al.
[20] who first tried to investigate the thermoelastic contact
problem of FGM coatings and interlayers, investigating the
effect of frictional heat generation on the contact stress distri-
butions.With consideration of frictional heat, Shahzamanian
et al. [21,22] used the finite element method to solve the tem-
perature and contact stress distributions in an FGM rotating
brake disk. The thermoelastic frictional contact problem of a
graded layerwas investigated byChen et al. [23,24],who also
discussed the interface traction and temperature distribution
under a prescribed thermoelastic environment for different
parameter combinations. The cited results show that FGMs
have great potential to provide better resistance in such ther-
moelastic contact problems.

For the sliding frictional contact problem, the frictional
heat generation at the contact interface depends on the contact
pressure, friction coefficient, and sliding speed. If the sliding
speed exceeds a critical value, the contact becomes unstable
under small perturbations. This class of instability involving
coupled thermal and mechanical effects is called friction-
ally excited thermoelastic instability (TEI) [25]. The hot spot
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and hot judder effects in brakes and clutches are related to
TEI. Some numerical and theoretical results have shown that
FGMs have potential to enhance the stability behavior of
brake and clutch systems [26–29]. The frictionally excited
TEI of FGMs in brake and clutch systems was first consid-
ered [26–28], including the thermoelastic contact problems
of an FGM-coated disk, an FGM half-plane sliding against a
homogeneous half-plane, and an FGM layer sliding against
two homogeneous half-planes. It was observed by Hernik
[29] that application of FGMs in brake disk structures can
reduce the possibility of TEI, compared with homogeneous
materials. These results showed that FGMs can delay inter-
face separation and improve contact stability in frictional
sliding systems.

Work by Afferrante et al. [30–34] revealed that the inher-
ent elastodynamic vibrationmode becomes unstable because
of the extremely weak coupling between elastodynamic and
thermoelastic effects, resulting in instability of the system at
any, low speed. This new phenomenon is known as ther-
moelastic dynamic instability (TEDI). They considered a
homogeneous elastic layer sliding against a rigid half-plane
and two conducting elastic half-spaces sliding each other.
More recently, Liu et al. [35] investigated theTEDI of an elas-
tic half-plane sliding against a homogeneous layer half-plane.
Because of the advantages of FGMs in improving frictionally
excited TEI, we believe that FGMs could be further used to
improve the TEDI of sliding systems. However, to date, liter-
ature on TEDI of FGMs remains very limited. The dynamic
instability of an FGM-coated structure with exponentially
varying elastic properties was analyzed recently by Liu et al.
[36]. However, they did not consider the thermal effect on
the dynamic contact characteristics of the FGM.

In the present study, we examined the stability of the ther-
moelastic wave caused by a perturbation in an FGM-coated
structure, with consideration of frictional heat. The thermoe-
lastic properties of the FGM coating are assumed to vary
exponentially through the coating thickness. The effects of
the gradient index, friction coefficient, and sliding speed on
the TEDI of the sliding system are discussed. Furthermore,
the transverse normal stress distribution in the depth direc-
tion is calculated for a homogeneous half-planewith an FGM
or homogeneous coating.

We studied the TEI of FGMs in our previous papers
[36–38]. However, that work considered the dynamic insta-
bility of the FGM coating structure without taking account of
the thermal effect [36] or only studied the static thermoelastic
instability of FGMs induced by the pressure-dependent ther-
mal contact resistance [37, 38]. In this paper, we attempt to
improve these studies by: (1) taking account of the coupling
between thermal and dynamic effects, (2) considering the
dynamic effect on the TEI of FGMs, and (3) paying special
attention to the thermal stress distribution in FGM-coated

structures, which is important for understanding interfacial
failure.

2 Problem description

In this paper, we consider a homogeneous elastic, conduct-
ing half-plane (half-plane 2 in Fig. 1) sliding (with relative
speed V̂0) against an FGM-coated half-plane (half-plane 1 in
Fig. 1). As shown in Fig. 1, the normal force P̂0 and tangen-
tial force Q̂0 are applied to half-plane 2. Coulomb friction is
assumed to occur at the contact surface, i.e.,

Q̂0 � f P̂0, (1)

with f being the friction coefficient, generating heat at the
interface. The heat flux is equal to the product of the contact
pressure, friction coefficient, and sliding speed

q � f P̂0V̂0. (2)

The contact problem is defined in a coordinate system
(x̂, ŷ) moving with constant speed V̂ , where V̂ does not
necessarily equal V̂0. The homogeneous half-plane 1 and
half-plane 2 have mass density ρ1 and ρ2, shear modulus
μ1 and μ2, thermal expansion coefficient α1 and α2, thermal
conduction coefficient K1 and K2, and thermal diffusivity
coefficient k1 and k2, respectively. It is assumed that the FGM
coating and the lower half-plane are perfectly bonded to each
other, and that the thermoelastic properties of the FGM vary
in the thickness direction according to the exponential forms

ρ(ŷ) � ρ0e
ε ŷ, μ(ŷ) � μ0e

ε ŷ, α
(
ŷ
) � α0e

η ŷ,

K
(
ŷ
) � K0e

τ ŷ, (3)

where ρ0, μ0, α0, and K0 are the mass density, shear modu-
lus, thermal expansion coefficient, and thermal conduction
coefficient at the bottom (ŷ � 0) of the FGM coating,
respectively, while ε, η, and τ are the gradient indexes.
The Poisson’s ratio and thermal diffusivity coefficient are
assumed to be constant (ν0 and k0) for simplicity.

We now study the stability of the above sliding system.
We assume that the system is disturbed by a small perturba-
tion, then analyze the properties of the thermoelastic wave
formed and propagating in it. The sliding is stable if this
thermoelastic wave decays with time; otherwise, the sliding
is unstable.

For linear isotropic elastic half-planes, the thermoelastic
wave motion equations based on the moving coordinate sys-
tem can be written as

∂2θ̂

∂ x̂2
+

∂2θ̂

∂ ŷ2
� 1

k

(
∂θ̂

∂ t̂
− V̂

∂θ̂

∂ x̂

)

, (4)
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Fig. 1 Homogeneous elastic half-plane sliding against an FGM-coated half-plane

2(1 − ν)

1 − 2ν

∂2ûx
∂ x̂2

+
∂2ûx
∂ ŷ2

+
1

1 − 2ν

∂2û y

∂ ŷ∂ x̂
− 2(1 + ν)α

1 − 2ν

∂θ̂

∂ x̂

� ρ

μ

(
∂2ûx
∂ t̂2

+ V̂ 2 ∂2ûx
∂ x̂2

− 2V̂
∂2ûx
∂ x̂∂ t̂

)
, (5)

2(1 − ν)

1 − 2ν

∂2û y

∂ ŷ2
+

∂2û y

∂ x̂2
+

1

1 − 2ν

∂2ûx
∂ ŷ∂ x̂

− 2(1 + ν)α

1 − 2ν

∂θ̂

∂ ŷ

� ρ

μ

(
∂2û y

∂ t̂2
+ V̂ 2 ∂2û y

∂ x̂2
− 2V̂

∂2û y

∂ x̂∂ t̂

)
, (6)

where ν is the Poisson’s ratio. For the FGM coating, the
thermoelastic wave motion equations are

∂2θ̂

∂ x̂2
+

∂2θ̂

∂ ŷ2
+ τ

∂θ̂

∂ ŷ
� 1

k0

(
∂θ̂

∂ t̂
− V̂

∂θ̂

∂ x̂

)

, (7)

2(1 − ν0)

1 − 2ν0

∂2ûx
∂ x̂2

+
∂2ûx
∂ ŷ2

+
1

1 − 2ν0

∂2û y

∂ x̂∂ ŷ

+ ε

(
∂ ûx
∂ ŷ

+
∂ û y

∂ x̂

)
− 2(1 + ν0)

1 − 2ν0
αeη ŷ ∂θ̂

∂ x̂

� ρ0

μ0

(
∂2ûx
∂ t̂2

+ V̂ 2 ∂2ûx
∂x2

− 2V̂
∂2ûx
∂ x̂∂ t̂

)
, (8)

2(1 − ν0)

1 − 2ν0

∂2û y

∂ ŷ2
+

∂2û y

∂ x̂2
+

1

1 − 2ν0

∂2ûx
∂ x̂∂ ŷ

+ ε

[
2(1 − ν0)

1 − 2ν0

∂ û y

∂ ŷ
+

2ν0
1 − 2ν0

∂ ûx
∂ x̂

]

− 2(1 + ν0)

1 − 2ν0
(η + ε)α0e

η ŷ θ̂ − 2(1 + ν0)

1 − 2ν0
α0e

η ŷ ∂θ̂

∂ ŷ

� ρ0

μ0

(
∂2û y

∂ t̂2
+ V̂ 2 ∂2û y

∂ x̂2
− 2V̂

∂2û y

∂ x̂∂ t̂

)
. (9)

In the next sections, we examine the stability of the ther-
moelastic wave by solving Eqs. (4)–(9) under the boundary
conditions.

3 Thermoelastic wave field

The following quantities are introduced:

x � x̂
/
l, y � ŷ

/
l, t � t̂ cs

/
l, V � V̂ /V̂ cscs,

cs �
√

μ
/

ρ, θ � θ̂α(1 + ν)

(1 − ν)
, (10a)

ux (x, y, t) � ûx
(
x̂, ŷ, t̂

)/
l, uy(x, y, t) � û y

(
x̂, ŷ, t̂

)/
l.

(10b)

These are made dimensionless using the characteristic
length l defined as

l � λ

2π
� 1

ω
, (11)

whereω andλ are thewavenumber andwavelength of the per-
turbation, respectively. Using the dimensionless quantities,
the thermoelastic wave motion Eqs. (4)–(6) can be expressed
in dimensionless form as

∂2θ j

∂x2
+

∂2θ j

∂y2
� k̂ j

γ

(
∂θ j

∂t
− Vj

∂θ j

∂x

)
, (12)

β2
j
∂2ux j
∂x2

+
∂2ux j
∂y2

+
(
β2
j − 1

)∂2uyj

∂x∂y
− β2

j
∂θ j

∂x

� χ2
j

(
∂2ux j
∂t2

+ V 2
j
∂2ux j
∂x2

− 2Vj
∂2ux j
∂x∂t

)
, (13)
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β2
j
∂2uyj

∂y2
+

∂2uyj

∂x2
+
(
β2
j − 1

)∂2ux j
∂x∂y

− β2
j
∂θ j

∂y

� χ2
j

(
∂2uyj

∂t2
+ V 2

j
∂2uyj

∂x2
− 2Vj

∂2uyj

∂x∂t

)
, (14)

where

β2
j � 2(1 − ν j )/(1 − 2ν j ), k j � k1/k j , χ j � cs j/cs1,

γ � k1
/

(cs1l), Vj � V̂ j/cs1, (15)

with subscripts j � 1, 2 denoting the half-planes 1 and
2, respectively, and V2 −V1 � V0, V0 � V̂0/V̂0cs1. It is
assumed that the constant V̂1 and V̂2 are the sliding speeds
of the half-planes 1 and 2, respectively.

For the FGM coating, Eqs. (7)–(9) can be rewritten as

∂2θ0

∂x2
+

∂2θ0

∂y2
+ τ ′ ∂θ0

∂y
� k̂

γ

(
∂θ0

∂t
− V1

∂θ0

∂x

)
, (16)

β2
0
∂2ux0
∂x2

+
∂2ux0
∂y2

+
(
β2
0 − 1

)∂2uy0

∂x∂y

+ ε′
(

∂ux0
∂y

+
∂uy0

∂x

)
− β2

0 e
η′y ∂θ0

∂x

� χ2
0

(
∂2ux0
∂t2

+ V 2
1

∂2ux0
∂x2

− 2V1
∂2ux0
∂x∂t

)
, (17)

β2
0
∂2uy0

∂y2
+

∂2uy0

∂x2
+
(
β2
0 − 1

)∂2ux0
∂x∂y

+ ε′
[
β2
0
∂uy0

∂y
+
(
β2
0 − 2

)∂uy0

∂x

]

− β2
0

(
η′ + ε′)eη′yθ0 − β2

0 e
η′y ∂θ0

∂y

� χ2
0

(
∂2uy0

∂t2
+ V 2

1
∂2uy0

∂x2
− 2V1

∂2uy0

∂x∂t

)
, (18)

with

k̂ � k1
/
k0, β2

0 � 2(1 − ν0)
/

(1 − 2ν0), χ0 � cs1
/
cs0,

cs0 �
√

μ0
/

ρ0, τ ′ � τ l, ε′ � εl, η′ � ηl. (19)

In addition, the constitutive relations between the dimen-
sionless stress and displacement are defined by

σxx j � σ̂xx j
/

μ j � β2
j e

ε′y ∂ux j
∂x

+
(
β2
j − 2

)
eε′y ∂uyj

∂y

− β2
j e

(ε′+η′)yθ j , (20)

σyy j � σ̂yy j
/

μ j � β2
j e

ε′y ∂uyj

∂y
+
(
β2
j − 2

)
eε′y ∂ux j

∂x

− β2
j e

(ε′+η′)yθ j , (21)

σxy j � σ̂xy j
/

μ j � eε′y
(

∂ux j
∂y

+
∂uyj

∂x

)
, j � 0, 1, 2.

(22)

We can obtain the constitutive relations for the lower and
upper homogeneous half-planes from Eqs. (20)–(22) by set-
ting ε′ � η′ � 0.

We suppose a perturbed temperature and displacements
of the form

θ j (x, y, t) � Θ j (y)e
bt+ix , (23)

ux j (x, y, t) � Ux j (y)e
bt+ix , (24)

uyj (x, y, t) � Uyj (y)e
bt+ix , (25)

where j � 0, 1, 2, i � √−1, Θ j (y), Ux j (y), and Uyj (y)
are complex functions, and b � bR + ibI. Thus bR is the real
part of b and represents the exponential growth rate of the
disturbance. Note that bR is positive for unstable sliding, zero
at the threshold of instability, and negative for stable sliding.

Substituting Eqs. (23)–(25) into Eqs. (12)–(14) yields

k1Θ
′′
j − [

γ + k j
(
b − iVj

)]
Θ j � 0, (26)

U ′′
x j −

[
β2
j + χ2

j

(
b − iVj

)2]
Ux j

+ i
(
β2
j − 1

)
U ′

y j − iβ2
jΘ j � 0, (27)

β2
j U

′′
y j −

[
1 + χ2

j

(
b − iVj

)2]
Uyj

+ i
(
β2
j − 1

)
U ′
x j − β2

jΘ
′
j � 0, (28)

with j � 1, 2. The general solutions for the lower half-plane
can be expressed as

Θ1(y) � d1A13e
s13y, (29)

Ux1(y) � A11e
s11y + A12e

s12 y + A13e
s13y, (30)

Uy1(y) � a11A11e
s11y + a12A12e

s12 y + a13A13e
s13y, (31)

with

s11 �
√
1 + (b − iV1)2, s12 �

√
1 + (b − iV1)2/β2

1 ,

s13 � √
1 + (b − iV1)/γ , (32)

a11 � 1/(is11), a12 � − is12, a13 � − is13,

d1 � (b − iV1)[β
2
1/γ − (b − iV1)]/(iβ

2
1 ). (33)

and

Re{s11} < 0, Re{s12} < 0, Re{s13} < 0. (34)

The general solutions for the upper half-plane are

Θ2(y) � d2A23e
s23y, (35)
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Ux2(y) � A21e
s21y + A22e

s22 y + A23e
s23y, (36)

Uy2(y) � a21A21e
s21y + a22A22e

s22 y + a23A23e
s23y, (37)

with

s21 � −
√
1 + χ2

2 (b − iV2)2, s22 � −
√
1 + χ2

2 (b − iV2)2/β2
2 ,

s23 � −√1 + k21(b − iV2)/γ , (38)

a21 � 1
/

(is21), a22 � −is22, a23 � −is23,

d2 � (b − iV2)
[
β2
2k21

/
γ − χ2

2 (b − iV2)
]/(

iβ2
2

)
, (39)

and

Re{s21} > 0, Re{s22} > 0, Re{s23} > 0. (40)

The general solutions for the FGM coating are given by

Θ0(y) � d05A05e
s05 y + d06A06e

s06 y, (41)

Ux0(y) �
4∑

k�1

A0ke
s0k y + A05e(

s05+η′)y + A06e(
s06+η′)y, (42)

Uy0(y) �
4∑

k�1

a0k A0ke
s0k y + a05A05e(

s05+η′)y + a06A06e(
s06+η′)y,

(43)

where

s01 � −1

2
ε′ − 1

2β0

√
q1 + q2, s02 � −1

2
ε′ − 1

2β0

√
q1 − q2,

(44a)

s03 � −1

2
ε′ + 1

2β0

√
q1 + q2, s04 � −1

2
ε′ + 1

2β0

√
q1 − q2,

(44b)

s05 � −τ ′/2 +
√

τ ′2/4 + 1 + k̂(b − iV1)/γ ,

s06 � −τ ′/2 −
√

τ 2′/4 + 1 + k̂(b − iV1)/γ , (44c)

with

q1 � 2χ2
0 (b − iV1)

2
(
β2
0 + 1

)
+ β2

0

(
4 + ε′2),

q2 � 2
√

χ4
0 (b − iV1)4

(
β2
0 − 1

)2 − 4ε′2β2
0

(
β2
0 − 2

)
, (45)

and

a01 � i{−(β2
0 − 1)[χ2

0 (b − iV1)
2 + 2β2

0 ] + q2/2}
/{2β2

0 [ε
′ + (β2

0 − 1)s01]}, (46a)

a02 � − i
[
2ε′(β2

0 − 2
)
+ 2s02

(
β2
0 − 1

)]

/
{(

β2
0 − 1

)[
χ2
0 (b − iV1)

2 + 2
]− q2

/
2
}
, (46b)

a03 � i
{−(β2

0 − 1
)[

χ2
0 (b − iV1)

2 + 2β2
0

]
+ q2

/
2
}

/
{
2β2

0

[
ε′ + /

(
β2
0 − 1

)
s03
]}

, (46c)

a04 � − i
[
2ε′(β2

0 − 2
)
+ 2s04

(
β2
0 − 1

)]

/
{(

β2
0 − 1

)[
χ2
0 (b − iV1)

2 + 2
]− q2

/
2
}
, (46d)

a0 j � i{[k̂(b − iV1)/γ − χ2
0 (b − iV1)

2

+ 3η′(η′ − τ ′) + (τ ′ − ε′)2 + 4ε′η′]s0 j
+ (3η′ − τ ′ + 2ε′)k̂(b − iV1)/γ − (η′ + ε′)χ2

0

(b − iV1)
2 + η′[(η′ + ε′)2 + 2] − τ ′}

/[χ2
0 (b − iV1)

2 − k̂(b − iV1)/γ − (2η′ − τ ′)s0 j
− η′2 + ε′2], j � 5, 6, (46e)

d0 j � −i{(ε′ + 2η′ − τ ′)χ2
0 (b − iV1)

2s0 j + β2
0 (ε

′ + 2η′ − τ ′)
[−2k̂(b − iV1)/γ + χ2

0 (b − iV1)
2 + ε′(τ ′ − 2η′)

− (τ ′ − η′)2 − η′2]s0 j − β2
0 [k̂(b − iV1)/γ ]

2

2ε′2 − χ4
0 (b − iV1)

4 − β2
0 [k̂(b − iV1)/γ ]

[(2η′ − τ ′)2 + 2ε′(3η′ − τ ′)ε′2 + 2η′2]
+ (1 + β2

0 )[k̂(b − iV1)/γ + η′2 + ε′η′]
χ2
0 (b − iV1)

2β2
0 [(2η

′ − τ ′)2 + 2ε′(η′3 − τ ′ + 2η′)
+ ε′2(2 + η′2) + η′4]}
/{β2

0 [χ
2
0 (b − iV1)

2 − k̂(b − iV1)/γ

+ (τ ′ − 2η′)s0 j − η′5 + ε′2]}, j � 5, 6. (46f)

In Eqs. (32), (38), and (44), the multivalued “ ” func-
tions are taken as the branches with positive real part.

Since the FGMcoating is perfectly bonded to half-plane 1,
the components of the displacement and stress on the bonded
interface (y � 0) satisfy the continuity conditions. We can
write them in dimensionless form as

ux1(x, 0, t) � ux0(x, 0, t), uy1(x, 0, t) � uy0(x, 0, t),
(47)

(
μ1
/

μ0
)
σxy1(x, 0, t) � σxy0(x, 0, t),(

μ1
/

μ0
)
σyy1(x, 0, t) � σyy0(x, 0, t). (48)

The perturbation of temperature is also continuous at
y � 0 as

θ1(x, 0, t) � θ0(x, 0, t)D0α1

α0
,

K1

K0

∂θ1(x, 0, t)

∂y

∣∣∣∣
y�0

� α1D0

α0

∂θ0(x, 0, t)

∂y

∣
∣∣∣∣
y�0

, (49)

where

D0 � β2
0

(
3β2

1 − 4
)

β2
1

(
3β2

0 − 4
) . (50)
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We can express Eqs. (47)–(49) in matrix form with the
help of general solutions Eqs. (29)–(31) and Eqs. (41)–(43):

M1
[
A11 A12 A13

]T � M0
[
A01 A02 A03 A04 A05 A06

]T
,

(51)

with

M1 �

⎡

⎢⎢
⎣

1 a11 (s11 + ia11)μ1/μ0
[
β2
1 s11a11 + i

(
β2
1 − 2

)]
μ1/μ0 0 0

1 a12 (s12 + ia12)μ1/μ0
[
β2
1 s12a12 + i

(
β2
1 − 2

)]
μ1/μ0 0 0

1 a13 (s13 + ia13)μ1/μ0
[
β2
1 s13a13 + i

(
β2
1 − 2

)− β2
1d13

]
μ1/μ0 d13 s13d13K1/K0

⎤

⎥⎥
⎦

T

, (52a)

M0 �

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

1 a01 s01 + ia01 β2
0 s01a01 + i

(
β2
0 − 2

)
0 0

1 a02 s02 + ia02 β2
0 s02a02 + i

(
β2
0 − 2

)
0 0

1 a03 s03 + ia03 β2
0 s03a03 + i

(
β2
0 − 2

)
0 0

1 a04 s04 + ia04 β2
0 s04a04 + i

(
β2
0 − 2

)
0 0

1 a05 s05 + η′ + ia05 β2
0

(
s05 + η′)a05 + i

(
β2
0 − 2

)− β2
0d05 D0d05α1

/
α0 D0s05α1

/
α0

1 a06 s06 + η′ + ia06 β2
0

(
s06 + η′)a06 + i

(
β2
0 − 2

)− β2
0d06 D0d06α1

/
α0 D0s06α1

/
α0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

T

. (52b)

The solution of Eq. (51) is

A0k � Fk1A11 + Fk2A12 + Fk3A13, k � 1, 2, . . . , 6, (53)

where Fkj is the element of matrix M−1
0 M1. Finally, the

dimensionless displacement and stress at the frictional slid-
ing interface (with y � −h) are required to satisfy the
boundary conditions

σxy0(x,−h, t) � − f σyy0(x,−h, t),

σxy2(x,−h, t) � − f σyy2(x,−h, t), (54)

uy0(x,−h, t) � uy2(x,−h, t),
(
μ0
/

μ2
)
σyy0(x,−h, t) � σyy2(x,−h, t).

(55)

Substituting Eqs. (35)–(37), Eqs. (41)–(43), and Eq. (53)
into Eqs. (54) and (55) yields

A13 � η11A11 + η12A12, A23 � η21A11 + η22A12, (56)

A21 � l11A11 + l12A12, A22 � l21A11 + l22A12, (57)

where η1j, η2j, l1j, and l2j (j� 1, 2) are given in theAppendix.
Half-plane 1 is regarded as stationary, while half-plane 2

moves along the x-direction with speed V̂0. Therefore, the
dimensionless speed (V s) and contact traction (P) at the con-
tact interface are

P(x, 0, t) � P0 − σyy0
(
μ0
/

μ1
)
, (58)

Vs(x, 0, t) � V0 −
(

∂ux0
∂t

− ∂ux2
∂t

)
, (59)

with Vs(x, 0, t) � V̂s(x, 0, t)/Cs1 and P0 � P̂0/μ1. In addi-
tion, we consider that the frictional heat, the continuity of
temperature, and the heat flux on the frictional sliding inter-
face (y � − h) can be formulated as

θ0(x, h, t) � D2α0θ2(x, h, t)
/

α2, (60)

q̂2(x, h, t) + q̂0(x, h, t)

� f P(x, h, t)Vs(x, h, t) − f P0V0, (61)

with

D2 � β2
2

(
3β2

0 − 4
)

β2
0

(
3β2

2 − 4
) . (62)

Substituting Eqs. (58) and (59) into Eq. (61) and dropping
the second-order term in the product (PV s) yields

− α0
/

α2

K0
/
K2

D2
∂θ2(x, h, t)

∂y
+ eτ ′h ∂θ0(x, h, t)

∂y

� f H1

2γ
ξ

[(
∂ux2(x, h, t)

∂t
− ∂ux0(x, h, t)

∂t

)
P0−

μ0V0σyy0(x, h, t)

μ1

]
, (63)

with

H1 � 2μ1α1k1
K1

1 + ν1

1 − ν1
, ξ � K1

/
K0

α1
/

α0

1

D0
. (64)

Substitution Eqs. (35)–(37), Eqs. (41)–(43), and Eqs. (58)
and (59) into Eqs. (60) and (63) yields

g11A11 + g12A12 � 0, g21A11 + g22A12 � 0, (65)
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with

g1 j �
(
d05F53e

s05h + d06F63e
s06h

)
η1 j

− D2d23e
s23h(η21l1 j + η22l2 j )α0/α2, (66)

g2 j � f H1

2γ
ξ

4∑

k�1

(
P0b + V0e

ε′hγ F
2kμ0/ μ1

)

(Fkj + η1 j Fk3)e
s0kh

+
f H1

2γ
ξ

6∑

k�5

{V0eε′h[β2
0a0k(s0k + η′) + i(β2

0 − 2)]

μ0/μ1 + P0b}Fk3e(s0k+η′)hη1 j

− f H1

2γ
ξV0β

2
0 e

(ε′+η′)h
(
d05F53e

s05h + d06F63e
s06h

)

η1 jμ0/μ1

+ eτ ′h
(
d05s05F53e

s05h + d06s06F63e
s06h

)
η1 j

− f H1

2γ
ξ P0b

(
l1 je

s21h + l2 je
s22h

)

−
(

f H1

2γ
ξ P0b +

α0/α2

K0/K2
D2d23s23

)

(η21l1 j + η22l2 j )e
s23h, j � 1, 2. (67)

The nontrivial solution of Eq. (65) requires

g11g22 − g12g21 � 0. (68)

When thematerial properties, friction coefficient, and slid-
ing speed are given, the complex nonlinear Eq. (68) can be
solved using the iterative method and the unknown complex
b obtained. Then, at the contact interface, the dimensionless
contact traction (P) and dimensionless speed (V s) can be cal-
culated via

P(x,−h, t) � P0 − (
μ0
/

μ1
)
C1A11e

bt+ix ,

Vs(x,−h, t) � V0 − bC2A11e
bt+ix , (69)

with

C1 � eε′h
4∑

k�1

γ2k
[
Fk1 − Fk2g12

/
g11

+Fk3
(
η11 − η12g11

/
g12
)]
es0kh

+ eε′h
6∑

k�5

[
β2
0

(
s0k + η′)a0k + i

(
β2
0 − 2

)]

Fk3
(
η11 − η12g11

/
g12
)
e(s0k+η′)h

− β2
0 e

(ε′+η′)h
(
d05F53e

s05h + d06F63e
s06h

)

(
η11 − η12g11

/
g12
)
, (70)

C2 �
4∑

k�1

(
Fk1 − Fk2g11

/
g12
)
es0kh

+
[
F53e(

s05+η′)h + F63e(
s06+η′)h

]

× (
η11 − η12g11

/
g12
)

−
[(

es21h + η21e
s23h

)(
l11 − l12g11

/
g12
)

+
(
es22h + η22e

s23h
)

× (
l21 − l22g11

/
g12
)]

. (71)

4 Results and discussion

When the effect of thematerial gradient property is neglected,
we can simplify the problem as two half-planes sliding
against each other, just like the study of the TEDI by
Afferrante et al. [34] between two frictional sliding elastic
homogeneous half-spaces. Thus we conduct a direct com-
parison between those results reported by Afferrante et al.
[34] and ours. The effect of the sliding speed (V0) on the
critical friction efficient (f cr) is presented in Fig. 2, revealing
excellent agreement between the present results and those in
Ref. [34].

The dynamic instability of the FGM-coated structure was
analyzed by Liu et al. [36], who found that the instability of
the Adams’ family wave occurs at almost zero friction with
small mass density ratio ρ2/ρ1. For the Rice’s family wave,
the instability occurs at small friction when the mass density
ratio ρ2/ρ1 is more 10 times larger than the modulus ratio
μ2/μ1. However, the material combination in the latter case
is rare in nature. Furthermore, the thermoelastic dynamic
instability of the homogeneous coated structure was studied
byLiu et al. [35],who found that theAdams’ familywavewas
more susceptible to thermoelastic dynamic instability than
the Rice’s family wave for the same material combinations.

0.8

0.6

0.4

0.2

0 0 0.1 0.2 0.3 0.4 0.5

f cr

V0

Present results

Afferrante’s results [34]

V=1-1.2cs
V=-cd

V=1-1.2cs
V=-cd

Fig. 2 Relations of fcr versus V0 for P0 � 0.1, χ � 0.2, γ � 10−4,
α1/α2 � 1.2, k1/k2 � 0.1, and K1/K2 � 0.1
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Therefore, this paper only presents the stability of Adams’
family wave for common material combinations and small
friction coefficient. We assume that the reference coordinate
system isfixed to the lowerFGM-coatedhalf-plane, i.e.,V1 �
0 andV2 �−V0. The thermoelastic properties are continuous
at the bonded interface y � 0, i.e., ρ0 � ρ1, μ0 � μ1, α0 �
α1, K1 � K2, and k0 � k1, and the gradient indexes satisfy
ε′ � τ ′ � η′ � λ. Also, the Poisson’s ratios of all materials
are chosen as ν1 � ν0 � ν2 � 0.25, γ � 10−4, and H1 � 1
[30,39].

4.1 Effect of gradient index on TEDI

Figures 3, 4, and 5 show the relations of the dimension-
less gradient index (λ) and exponential growth rate bR for
various material combinations (χ2

2 , μ1
/

μ2). It is seen that
bR remains unchanged when λ is less than a certain neg-
ative value; if λ is further increased, bR fluctuates and then
decreases gradually to zero. For given shear wave speed ratio
(χ2

2 ), b
R increases with decrease of μ1/μ2 when λ is pos-

itive and χ2
2 ≤ 1; bR increases with increase of μ1

/
μ2,

and the range of λ for instability increases when χ2
2 > 1

(Fig. 3). For given shear modulus ratio μ1
/

μ2, bR increases
with decrease of χ2

2 . The range of λ for instability increases
when λ is larger than a certain positive value (Fig. 4). Fig-
ure 5 shows that bR decreases with increase of μ1

/
μ2 when

we select χ2
2 � μ1

/
μ2. Interestingly, one can observe that

the sliding is stable when the gradient index is larger than a
certain positive value, remains unchanged when the gradient
index is less than a certain negative value, and fluctuates with
change of the gradient index from negative to positive.

4.2 Effects of friction coefficient and sliding speed
on TEDI

Figure 6 shows the relations of the friction coefficient f and
exponential growth rate bR for different values of the gradient
index λ. Note that, for fixed gradient index λ, bR increases
with increase of the friction coefficient. It is also seen that
different values of the gradient index correspond to different
critical friction coefficients. The relations of the dimension-
less sliding speedV0 and exponential growth rate bR for some
selected values of gradient index λ are presented in Fig. 7.
Note that bR decreases gradually to zero with increase of the
sliding speed. This implies that the system is susceptible to
TEDI even at small sliding speed.We define a critical sliding
speed V cr when the exponential growth rate bR is zero. It is
also shown that, for fixed V0, this critical sliding speed V cr

increases with increase of the gradient index. These results
imply that one can modify the sliding stability, critical fric-
tion coefficient, and critical sliding speed by adjusting the
gradient index of the FGM coating.
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Fig. 3 Relations of bR versus λ with k1/k2 � 0.1, α1/α2 � 1.2, and
K1/K2 � 0.1: a χ2

2�1.0, b χ2
2�0.5, c χ2

2�1.5

4.3 Thermal stress distribution

It is known that FGMcoatings are better for controlling inter-
facial tensile stress compared with homogeneous coatings.
This can improve sliding stability and reduce the possibil-
ity of interfacial failure [36]. To confirm this advantage of
FGM coatings, this section presents the distribution of trans-
verse normal thermal stress in the thickness direction, and
examines the effect of the FGM coating on it. We discuss
two cases: (1) an FGM coating with continuous material
properties at the bonded interface y � 0, i.e., ρ0 � ρ1, μ0

123



Frictionally excited thermoelastic dynamic instability of functionally graded materials 107
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Fig. 4 Relations of bR versus λ with k1/k2 � 0.1, α1/α2 � 1.2, and
K1/K2 � 0.1: a μ1/μ2�1.0, b μ1/μ2� 0.5, c μ1/μ2�1.5

� μ1, α0 � α1, K0 � K1, and k0 � k1, where the mate-
rial parameters of the lower and upper half-planes satisfy
μ1
/

μ2 � α1
/

α2 � k1
/
k2 � K1

/
K2 � ψ , and the coat-

ing gradient index is defined as λ � ln
(
1
/

ψ
)/

(−h); (2) a
homogeneous coating with the same material properties as
those of the upper half-plane.

As the stress increases with time, the calculation is for the
moment when loss of contact is just initiated, i.e.,

P0 �
∣
∣∣
(
μ0
/

μ1
)
C1A11e

bRt
∣
∣∣, (72)

with

|A11|� P0/|(μ0/μ1)C1e
bRt |. (73)
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Fig. 5 Relations of bR versus λ with k1/k2 � 0.1, α1/α2 � 1.2, and
K1/K2 � 0.1

0.10

0.08

0.06

0.04

0.02

0

f

bR

0.2 0.4 0.6 0.8 1.0

Fig. 6 Relations of bR versus f with P0 � 0.1, V0 � 0.1, χ2
2 � 0.3,

μ1/μ2� 0.3, k1/k2 � 0.1, α1/α2 � 1.2, and K1/K2 � 0.1

0.009

0.006

0.003

0

V

bR

82.042.002.061.021.080.00 0.04

Fig. 7 Relations of bR versus V0 with f � 0.2, P0 � 0.1, χ2
2 � 0.8,

μ1/μ2� 0.5, k1/k2 � 0.1, α1/α2 � 1.2, and K1/K2 � 0.1

Then, for the FGM-coated structure, the amplitude of the
tensile stresses can be expressed as

|σxx0| � P0
∣∣E0

/(
C1μ0

/
μ1
)∣∣, (74a)

|σxx1| � P0
∣
∣E1

/(
C1μ0

/
μ1
)∣∣, (74b)

|σxx2| � P0
∣∣E2

/(
C1μ0

/
μ1
)∣∣, (74c)
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with

E0 � eε′y
4∑

k�1

[
iβ2

0 +
(
β2
0 − 2

)
a0ks0k

]

[
Fk1 − Fk2g11

/
g12 + Fk3

(
η11 − η12g11

/
g12
)]
es0k y

+ eε′y
6∑

k�5

[
iβ2

0 + a0k
(
β2
0 − 2

)(
s0k + η′)]

Fk3
(
η11 − η12g11

/
g12
)
e

(
s0k+η

′)
y

− β2
0 e

(ε′+η′)y(d05F53es05y + d06F63e
s06y

)

(
η11 − η12g11

/
g12
)
, (75a)

E1 � [iβ2
1 + (β2

1 − 2)a11s11]e
s11y

− [iβ2
1 + (β2

1 − 2)a12s12]e
s12 yg11/g12

+ [iβ2
1 + (β2

1 − 2)a13s13 − β2
1d13]

(η11 − η12g11/g12)e
s13y, (75b)

E2 �
[
iβ2

2 +
(
β2
2 − 2

)
a21s21

](
l11 − l12g11

/
g12
)
es11y

+
[
iβ2

2 +
(
β2
2 − 2

)
a22s22

](
l21 − l22g11

/
g12
)
es22 y

+
[
iβ2

2 +
(
β2
2 − 2

)
a23s23 − β2

2d23
]

[
η21
(
l11 − l12g11

/
g12
)
+ η22

(
l21 − l22g11

/
g12
)]
es23y .
(75c)
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Fig. 9 Effect of dimensionless layer thickness h on the distribution of
the dimensionless dynamic normal stress (|σxx |) with ψ � 0.4

For the homogeneous coated structure, the results can be
obtained from Eq. (74) by setting ε′ � η′ � 0.

The amplitudes of the dimensionless transverse normal
stresses |σxx | for the two different coated structures with a
selected coating thickness are presented in Fig. 8a–e. The
amplitude of the dimensionless interfacial stress is contin-
uous at the bonded interface y � 0 for the FGM-coated
structure, while that in the homogeneous coated structure
is discontinuous because of the mismatch in materials prop-
erties between the lower half-plane and the coating. With
decrease of the coating thickness, the discontinuity in the
amplitude of the thermoelastic dynamic interfacial stress
becomes increasingly obvious at the bonded interface y �
0 in the homogeneous coated structure. Furthermore, the
amplitude of the thermoelastic dynamic interfacial stress in
the homogeneous coated structure is lower than that in the
FGM-coated structure at the sliding interface y � −h. This
continuous and smooth stress distribution can significantly
reduce the possibility of interfacial failure in the FGM-coated
structure.

Figure 9 shows the relations of the amplitude of the dimen-
sionless transverse normal stresses |σxx | and the dimension-
less layer thickness for the FGM-coated structure, revealing
that the amplitude of |σxx | decreases with increase of the
coating thickness at the bonded interface y � 0 as well as at
the sliding interface y � −h. At y � 0, the effect of the coat-
ing thickness on the distribution of |σxx | for some selected
values ofψ in the FGM-coated structure is shown in Fig. 10,
revealing that the amplitude of |σxx | decreases with decreas-
ing value of the material mismatch parameter ψ at y � −
h. These results indicate that the amplitude of the interface
stress can be effectively reduced by changing the coating
thickness properly. This is of practical importance because
large tensile stress |σxx | is themain cause of interfacial crack-
ing.
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Fig. 10 Relations of |σxx | versus h for selected values of ψ at the
bonded interface y � 0
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Fig. 11 Variation of the exponential growth rate bR with dimensionless
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Fig. 12 Variation of the exponential growth rate bR with ψ for h � 0.4

Analysis of the stability of the two different coated
structures for selected coating thicknesses are presented
in Figs. 11 and 12. For the given material mismatch,
bR increases as the coating thickness increases for both
coated structures, whereas bR in the FGM-coated struc-
ture is less than that in the homogeneous coated structure,
especially for large coating thickness (Fig. 11). For given
coating thickness, bR in the FGM-coated structure is less
than that in the homogeneous coated structure, especially
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for large material mismatch (Fig. 12). These results imply
that the frictional sliding of the FGM-coated structure is
more stable than that of the homogeneous coated structure,
especially for large coating thickness and/or large material
mismatch.

5 Conclusions

By considering the stability of the Adams’ family wave
caused by a perturbation, this paper investigates the fric-
tionally excited TEDI of an FGM-coated structure. The
thermoelastic properties of the FGM are assumed to vary
exponentially with thickness. We examined the effects of the
coating gradient index, sliding speed, and friction coefficient
on the TEDI for various material combinations. In addi-
tion, we calculated the transverse normal stresses varying
in the thickness direction for two different coating struc-
tures and analyzed the effects of the FGM coating on the
stress distribution and frictional sliding stability. It is found
that:

1. The exponential growth rate remains unchanged when
the gradient index is less than a certain negative value.
As the gradient index increases from negative to posi-
tive, the exponential growth rate fluctuates then decreases
gradually to zero.

2. The results imply that one canmodify the sliding stability,
critical friction coefficient, and critical sliding speed by
adjusting the gradient index of the FGM coating.

3. Unlike the homogeneous coating structure, the FGM-
coated structure has continuous tensile stresses at the
bonded interface.

4. The amplitude of the interface tensile stress can be
effectively reduced by changing the FGM coating thick-
ness properly. This means that FGM-coated structures
are more effective for controlling the interfacial tensile
stress. One can use this to reduce the possibility of inter-
facial failure.
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Appendix

η1 j �
4∑

k�1

(γ1k − f γ2k)Fkje
s0kh/δk, j � 1, 2, (A.1)

δk �
4∑

k�1

( f γ2k − γ1k)Fk3e
s0kh

− fβ2
0 e

η′h
(
d05F53e

s05h + d06F63e
s06h

)

+
6∑

k�5

{
f
[
β2
0a0k

(
s0k + η′) + i

(
β2
0 − 2

)]

−(s0k + η′ + ia0k
)}
Fk3e(

s0k+η′)h, (A.2)

r1k � s0k + ia0k, r2k � β2
0a0ks0k + i

(
β2
0 − 2

)
, (A.3)

l1 j � e−ε′h m1 jm24 − m2 jm14

m13m24 − m23m14
,

l2 j � e−ε′h m1 jm23 − m2 jm13

m14m23 − m24m13
, j � 1, 2, (A.4)

m1 j �
4∑

k�1

a0k Fk je
s0kh

+

[
4∑

k�1

a0k Fk3e
s0kh + a05F53e(

s05+η′)h + a06F63e(
s06+η′)h

]

η1 j , j � 1, 2, (A.5)

m13 � a21e
s21h + η21a23e

s23h,

m14 � a22e
s22h + η22a23e

s23h, (A.6)

m2 j � (
μ0
/

μ2
) 4∑

k�1

r2k Fk je
s0kh +

(
μ0
/

μ2
)

{
4∑

k�1

r2k Fk3e
s0kh +

6∑

k�5

[
β2
0a0k

(
s0k + η′)

+ i
(
β2
0 − 2

)]
Fk3e(

s0k+η′)h
}
η1 j

− β2
0

(
μ0
/

μ2
)[
d05F53e(

s05+η′)

+ d06F63e(
s06+η′)

]
η1 j , j � 1, 2, (A.7)

m23 �
[
β2
2a21s21 + i

(
β2
2 − 2

)]
es21h

+
[
β2
2a23s23 + i

(
β2
2 − 2
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− β2

2d23
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η21e

s23h, (A.8)

m24 �
[
β2
2 s22a22 + i

(
β2
2 − 2

)]
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+
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β2
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(
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)
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s23h . (A.9)
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