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Abstract
A numerical model based on a boundary element method (BEM) is developed to predict the performance of two-body self-
reacting floating-point absorber (SRFPA) wave energy systems that operate predominantly in heave. The key numerical issues
in applying the BEM are systematically discussed. In particular, some improvements and simplifications in the numerical
scheme are developed to evaluate the free surface Green’s function, which is a main element of difficulty in the BEM. For
a locked SRFPA system, the present method is compared with the existing experiment and the Reynolds-averaged Navier–
Stokes (RANS)-based method, where it is shown that the inviscid assumption leads to substantial over-prediction of the heave
response. For the unlocked SRFPA model we study in this paper, the additional viscous damping primarily induced by flow
separation and vortex shedding, is modelled as a quadratic drag force, which is proportional to the square of body velocity.
The inclusion of viscous drag in present method significantly improves the prediction of the heave responses and the power
absorption performance of the SRFPA system, obtaining results excellent agreement with experimental data and the RANS
simulation results over a broad range of incident wave periods, except near resonance in larger wave height scenarios. It
is found that the wave overtopping and the re-entering impact of out-of-water floating body are observed more frequently
in larger waves, where these non-linear effects are the dominant damping sources and could significantly reduce the power
output and the motion responses of the SRFPA system.
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1 Introduction

The possibility of utilizing wave energy resources for gener-
ating power has gained much interest in recent years. Since
Salter [1] published a notable paper about the nodding-duck
device, a wide variety of wave energy converter (WEC)
designs have been proposed. As one of the simplest WEC
devices, the self-reacting floating-point absorber (SRFPA)
is widely applied in oceans all over the world. SRFPAs are
generally axisymmetric and predominantly operate in heave,
extracting energy from the relative motion between two or
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more bodies. An SRFPA typically consists of two parts, a
buoyant, free-surface piercing body referred to as the float
and a second free-surface piercing body referred to as the
reacting body.When the float reacts against the reacting body
in waves, mechanical energy of the induced motion is con-
verted into electricity by a power take-off (PTO) system. The
most representative design strategies of the current SRFPA
devices can be seen from the OPT PowerBuoy [2], wavebob
[3] and inter project service buoy [4–6].

In the numerical simulation of SRFPAs, the hydrodynamic
analysis is the focus of research, which can be regarded as
a wave-body interaction problem. As the most commonly
used approach for predicting the behaviour of ships and off-
shore structures in waves [7,8], boundary element methods
(BEMs) are based on potential flow theory with assump-
tion that the fluid is inviscid, homogeneous, impressible and
the flow is irrotational. To model FPAs with more compli-
cated geometries, a frequency domain method is commonly
used, where wave excitation forces and hydrodynamic coef-
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ficients are calculated using BEMs that solve radiation and
diffraction problems. Then the dynamic response and the
power extraction performance of FPAs are obtained by solv-
ing the motion equation. Recent works about this can be
found in Refs. [9–12]. In the frequency domain method with
BEMs, boundary conditions of body surface and free sur-
face are both linearised, which implies that the method is
generally limited to relatively small waves and oscillation
amplitudes of both the fluid and floating-bodies. Compared
to computational fluid dynamics (CFD) methods, although
being unable to give reliable prediction for the complex non-
linear hydrodynamic wave-body interaction problems, it can
still obtain satisfactory inviscid resultswithmuch lower com-
putational cost [13]. Therefore, this approach has been often
used in search of resonant frequencies in short time and in the
study of optimal tuning and control strategies for FPAs [14–
19]. Recently, Sinha et al. [20] used this frequency domain
modelling to optimize the power generation performance of
heaving FPA arrays in various arrangements.

Overall, most of these frequency domain analyses of the
mentioned FPAs were conventionally conducted by the use
of commercial BEM-based package WAMIT (developed by
the Massachusetts Institute of Technology) [21]. The code
WAMIT employs the three-dimensional (3D) free-surface
Green’s function in frequency domain, which implies that
it is only required to distribute singularities with unknown
strengths on body surfaces [22] based on the boundary inte-
gral equation. The evaluation of the 3D free-surface Green’s
function is the primary difficulty in applications of the BEM
as it is a singular function of complex variable. For the cases
of infinite water depth, Newman [23–25] introduced an alter-
native form of the Cauchy principle value integral and did
excellent works on the problem. Based on Newman’s work,
Yao et al. [26] simplified the numerical scheme of the evalu-
ation and achieved an accuracy of six decimals. For the cases
of finite water depth, a series method is preferably used for
the evaluation in far field while an integral method is cho-
sen in near field. The work of Newman [24] used the integral
method through series expansion andpolynomial approxima-
tion to gain satisfactory accuracy. Then, work by Chen [27]
presented similar approach with the Chebyshev polynomial
approximation. However, the approximation intervals should
be determined appropriately in their numerical schemes,
which restricted the use of corresponding codes in comput-
ers.

To model complicated geometries of SRFPAs in waves,
this paper systematically describes the numerical method-
ology in applying the frequency domain analysis with the
BEM, as follows: (i) a linear, heave constrained dynamic
model with a spring-damper system is used to analyse the
power capture performance of SRFPAs; (ii) the boundary-
value problems for an SRFPA in waves are specified; (iii)
formulation of the classical BEM is presented, and the key

numerical issues in the evaluation of the free-surface Green’s
function are discussed in detail wherein we update the algo-
rithms and simplify the numerical scheme; (iv) the additional
viscous damping induced byflow separation and vortex shed-
ding for the SRFPA system is modelled as the quadratic drag
force, and we assume that the drag coefficient depends on
body geometries and the Keulegan–Carpenter number. Fur-
thermore, the diffraction and radiation problems of a floating
hemisphere in waves are analysed to validate the present
BEM solver.

The primary objective of this work is to validate the BEM
model for predicting motion response and power absorption
performance of SRFPA systems. To achieve this, we provide
complete comparative analyses of the present method with
the experimental measurements and the Reynolds-averaged
Navier–Stokes (RANS) simulations fromYu and Li [28] of a
locked 1/33-scale model and a unlocked 1/100-scale model
over a range of incident wave periods and heights, where the
models are inspired by OPT PowerBuoy.

This paper is organized as follows. In Sect. 2, a heave-
constrained dynamic model of SRFPA systems in frequency
domain is developed (Sect. 2.1); the boundary conditions for
the general wave-SRFPA interaction problems and the for-
mulation of the BEM are described (Sect. 2.2); the detailed
algorithms for the free surfaceGreen’s function are presented
in Sect. 2.3; a validation study on the present BEM solver is
performed in Sect. 2.4. Sections 3 and 4 present comparative
analyses of the present method with existing experimental
data and RANS simulations for a locked SRFPA model and
a unlocked SRFPA model respectively. In Sect. 5, the power
absorption efficiency of the unlocked SRFPA system is dis-
cussed. The conclusions are draw in Sect. 6

2 Numerical modelling

2.1 Dynamics

Asmentioned, a linear, heave constrained, dynamic model in
the frequency domain is used to investigate the motion and
power capture of a SRFPAWEC in waves, which contains a
linear spring-damper to represent the PTO mechanism. The
spatial domain is assumed to have infinite size. A schematic
representation of a two-body axisymmetric SRFPA is shown
in Fig. 1. Based on Newton’s second law, for the rigid two-
body system, the constrained heave motion can be written as
[29]:

Kz = f e, (1)

whereK is the complex stiffness matrix given by Eq. (2). The
wave excitation force in heavemode on body j ( j = 1 for the
float and j = 2 for the reacting body) is generally written as
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Fig. 1 Schematic representation of an SRFPA model

Fej = Re[ feje−iωt ] where fej and ω are the complex excita-
tion force amplitude and the incident wave frequency.m j and
k j are the inertia mass and the hydrostatic stiffness of body
j . A j (ω) and Bj (ω) represent the added mass and radiation
damping of body j in heave. The hydrodynamic radiation
coupling term kc(ω) between the float and the reacting body,
as a small quantity, can be neglected [9,29]. For each body,
the wave excitation force and hydrodynamic coefficients are
obtained from either BEMs or diffraction and radiation tests
in wave tank. The complex amplitudes of body displace-
ments are written as z = [z1, z2]T, and the complex velocity
amplitudes can be expressed as u = −iωz.

K =
[
K1(ω) + Kpto kc(ω) − Kpto

kc(ω) − Kpto K2(ω) + Kpto

]
, (2)

K j = −ω2[m j + A j (ω)] − iωBj (ω) + k j , (3)

Kpto = kpto − iωcpto, (4)

In Eqs. (1)–(4), a spring-damper force Fpto = Re[ fptoe−iωt ]
between the float and the reacting body is quantified as

fpto = −cptour − kptozr , (5)

where kpto is the spring stiffness, cpto is the power absorp-
tion damping. ur = u1 − u2 and zr = z1 − z2 are the
relative velocity and displacement between the float and the
reacting body, respectively. For this PTO mechanism, the
time-averaged power extracted by the SRFPA is equal to the
time-averaged power dissipated across the resistance of the
PTO, which results in following equation:

P = 1

2
cpto‖ur‖2 = ω2

2
cpto‖zr‖2. (6)

2.2 Hydrodynamics

2.2.1 Boundary-value problems (BVPs)

As defined in Fig. 1, we consider the wave-body interac-
tion problem of the SRFPA model. The water depth for the
analysis is h. The spatial domain is assumed to have infinite

size. It is supposed that O − xyz is a right-handed Cartesian
coordinate system, with O − xy plane coinciding with the
undisturbed free surface. Let z-axis lie along the central axis
of the SRFPA and be positive upwards against gravity. In the
context of potential flow, we can introduce a velocity poten-
tial Φ(x, y, z, t) to express the fluid field, which is defined
as

Φ = Re
[
(φI + φd + u1φr1 + u2φr2)e

−iωt
]
, (7)

where φI is the incident wave potential; φd is the diffraction
potential when these bodies are held fixed;φrj is the unit radi-
ation potential related to the body velocity u j in heave. With
assumption of the linear potential flow theory, the diffraction
and radiation potentials satisfy boundary conditions below:

∇2φ(d,r) = 0, (x, y, z) ∈ Ω, (8)

∂φ(d,r)

∂z
− ω2

g
φ(d,r) = 0, z = 0, (9)

∂φ(d,r)

∂z
= 0, z = −h, (10)

φ(d,r) = O

(
1√
R
eik0R

)
, R =

√
x2 + y2 → ∞, (11)

∂φd

∂n
= −∂φI

∂n
, on Sb1 & Sb2, (12)

∂φr1

∂n
=

{
n3, on Sb1,

0, on Sb2,
(13)

∂φr2

∂n
=

{
0, on Sb1,

n3, on Sb2,
(14)

where the simplified notation φ(d,r) denotes the diffraction
potential or the radiation potential. Ω represents the whole
fluid domain. g is the gravity acceleration. k0 is the incident
wave number. Sb1 and Sb2 are the mean wetted surfaces of
the float and the reacting body, respectively. n denotes the
normal unit vector on body surfaces directed into the float
and the reacting body, where n3 is the Cartesian component
along the z-axis.

2.2.2 Boundary element method (BEM)

To solve the BVPs, the boundary integral equation derived
from Green’s third identity is applied for the evaluation of
φd and φr:

α(p)φ(p) =
∫∫

S

[
G(p, q)φn(q) − φ(q)Gn(p, q)

]
ds, (15)

where G(p, q) is the free-surface Green’s function with
respect to a field point p(x, y, z) and a source point q(ξ, η, ζ ).
α(p) is an interior solid angle at the corresponding point
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p(x, y, z) on the body surface S(Sb1 + Sb2). Subscript “n”
denotes the normal derivative with respect to q(ξ, η, ζ )

(φn = ∂φ/∂nq , Gn = ∂G/∂nq ). φ could be either diffrac-
tion potential or radiation potential depending on the BVP to
solve.

Letting the field point p(x, y, z) approach to S, we can
obtain an integral equation for known φn and unknown φ on
S.Wediscretize theboundary integral equation and subdivide
S into a number of small panel elements:

S =
Ne∑
j=1

�S j , (16)

where Ne represents the total number of panel elements on
S. These boundary elements can be substituted by planar
geometries (quadrilateral or triangular panels). An approxi-
mation of constant source and dipole strengths on each panel
is made. Thus, the integral equation can be discretized as

Ne∑
j=1, j 	=i

φ j

∫∫
�S j

Gn(pi , q)ds + 2πφi

=
Ne∑
j=1

φnj

∫∫
�S j

G(pi , q)ds, (i, j = 1, 2, . . . , Ne),

(17)

where the collocation point pi is the centroid of the panel
�S j . When i = j , the solid angle α(pi ) is equal to 2π.
In Eqs. (12)–(14), the known φn is prescribed by boundary
conditions. As a consequence, the unknown φ on S leads to
a system of linear equations as follows

C{φ} = D{φn}, (18)

Ci j =
∫∫

�S j
Gn(pi , q)ds (i 	= j), Cii = 2π, (19)

Di j =
∫∫

�S j
G(pi , q)ds. (20)

The system of equations can be solved by a direct or iter-
ative scheme such as the direct Gauss elimination method or
the generalized minimum residual method. After determin-
ing the radiation and diffraction potentials on body surfaces,
the hydrodynamic coefficients andwave excitation forces can
be obtained from

A j = ρ

∫∫
Sbj

Re
(
φr j

)
n3ds, (21)

Bj = ρω

∫∫
Sbj

Im
(
φr j

)
n3ds, (22)

fej = iρω

∫∫
Sbj

(φI + φd) n3ds, (23)

where ρ is the water density. j = 1 for the float and j = 2
for the reacting body.

2.3 Evaluation of the free-surface Green’s function

In the present BEM, it is critical to construct influence coef-
ficient matrices C and D. These influence coefficients are
virtually integrals of the free-surface Green’s function and
its normal derivative over panel elements, where the integrals
cannot be evaluated analytically. In this section, simplified
algorithms for the Green’s function are described. The key
numerical issues in the construction of influence coefficient
matrices are also discussed.

2.3.1 The integral method

An expression of the free-surface Green’s function for finite
water depth is first given by Wehausen and Laitone [30]:

G(p, q) = 1

r
+ 1

r̄

+ P.V.
∫ ∞

0

2(k + ν)e−kh cosh[k(ζ + h)] cosh[k(z + h)]
k sinh(kh) − ν cosh(kh)

J0(kR)dk

+ i2π
(k0 + ν)e−k0h cosh[k0(ζ + h)] cosh[k0(z + h)]

(1 − νh) sinh(k0h) + k0h cosh(k0h)
J0(k0R),

(24)

where

ν = ω2/g = k0tanh(k0h), (25)

R =
√

(x − ξ)2 + (y − η)2, (26)

r =
√
R2 + (z − ζ )2, r̄ =

√
R2 + (z + ζ + 2h)2, (27)

J0(x) is the zero-order Bessel function of the first kind. The
wave number k0, as the only one positive real root of the dis-
persion relation equation (25), can be extracted by numerical
methods.

The main difficulty resides with the evaluation of the
third term of the expression (24), where a Cauchy principle-
value integral Gc contains a singularity at k = k0. Newman
[24] and Chen [27] divided the computational domain (O −
Rz) into several regions wherein series expansions and
polynomial approximations were used for the evaluation.
Nevertheless, their numerical schemes were both empiri-
cal and complicated, which is difficult for researchers to
implement. A direct method to evaluate the principle-value
integral using theGauss–Laguerre quadrature was developed
by Endo [31], and Li [32] used it to investigate two ship inter-
actions in shallowwater. In reality, Endo’s method converges
slowly so that much more computational time is needed. To
accelerate convergence, we rewrite the principle-value inte-
gral as
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Gc = P.V.
∫ ∞
0

e−kh

[
1+ 2ν+(k + ν)e−2kh

[k tanh(kh) − ν](1 + e−2kh)

]
Ē(k)J0(kR)dk,

(28)

where

Ē(k) = ek(z+ζ+h) + e−k(−z+ζ+h) + e−k(z−ζ+h) + e−k(z+ζ+3h). (29)

In Eq. (28), the portion without singularity can be evalu-
ated based on the formula below

∫ ∞

0
e−ax J0(bx)dx = (a2 + b2)−1/2. (30)

While the remaining portion G ′
c with a singularity can be

represented by

G ′
c = P.V.

∫ ∞

0
e−kh f (k)

g(k)
dk, (31)

where

f (k) =
[
2ν + (k + ν)e−2kh

]
Ē(k)J0(kR), (32)

g(k) = [k tanh(kh) − ν](1 + e−2kh). (33)

Clearly, g(k) has a first-order zero at k = k0 with the con-
sequence that f (k)/g(k) is no longer bounded, where the
Gauss–Laguerre quadrature cannot be applied. To remove
singularity, we expand g(k) near k = k0 using the Taylor
polynomials with a first-order approximation

g(k) ≈ g(k0) + (k − k0)g
′(k0) = (k − k0)g

′(k0). (34)

Then G ′
c becomes

G ′
c =

∫ ∞

0
e−kh

[
f (k)

g(k)
− f (k0)

(k − k0)g′(k0)

]
dk

+ f (k0)

g′(k0)
P.V.

∫ ∞

0

e−kh

k − k0
dk. (35)

In Eq. (35), the first integral without singularity can be
directly evaluated using the Gauss–Laguerre quadrature, and
the second integral is obtained by the exponential integral
function [33]

G ′
c =

n∑
j=1

w j · F(x j ) − f (k0)

g′(k0)
e−k0hEi(k0h), (36)

wherew j is the weight at the j-th Gauss–Laguerre sampling
point x j = k j h; n is the total number of sampling points,
and Ei(x) is the exponential integral function. In addition,

Table 1 Computational results within h = 10 m, ω = 1 rad/s,
R = 0.05h, ζ = 0, z = −0.01h, g = 9.8 m/s2

n Gc GcR Gcz

10 2.358949 −4.114809 1.202678

20 2.354964 −4.118952 1.202272

30 2.344998 −4.118217 1.201255

100 2.348521 −4.118136 1.201614

Table 2 Computational results within h = 10 m, ω = 1 rad/s,
R = 0.05h, ζ = 0, z = −0.05h, g = 9.8 m/s2

n Gc GcR Gcz

10 1.646718 −1.542709 1.733955

20 1.647111 −1.543346 1.733995

30 1.646784 −1.543329 1.733962

100 1.646806 −1.543327 1.733964

Table 3 Computational results within h = 10 m, ω = 1 rad/s,
R = 0.05h, ζ = 0, z = −0.1h, g = 9.8 m/s2

n Gc GcR Gcz

10 1.000135 −0.406281 0.916077

20 1.000243 −0.406348 0.916088

30 1.000238 −0.406348 0.916088

100 1.000238 −0.406348 0.916088

analogous to the Green’s function G(p, q), we implement
similar numerical schemes for the evaluation of its partial
derivatives GR = ∂G/∂R and Gz = ∂G/∂z [34].

Tables 1–3 list the computational values of Gc and its
partial derivatives GcR , Gcz with different number of the
Gauss–Laguerre sampling points. First, the results show
that the present method converges well as the number of
sampling points increases. Second, the parameter z has an
influence on the numerical convergence: the present method
converges faster as the absolute value of z increases. Because
G(p, q) ≡ G(q, p), it is clear that the parameter ζ has
the same influence on it as z. To keep balance between
the numerical accuracy and the computational efficiency, 30
Gauss–Laguerre sampling points are used for the evaluation
of G, GR and Gz in the present BEM.

2.3.2 The series method

Alternatively, the free-surface Green’s function can be
expressed in term of an infinite-series expansion, which was
derived from John [35]:
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Fig. 2 Comparison of the computational values of G between the series method and the integral method in the case h = 10 m, ω = 1.2 rad/s,
z = ζ = −0.01h. a Real part. b Imaginary part

G(p, q)=4
∞∑
n=1

k2n + ν2

h(k2n + ν2) − ν
cos[kn(ζ + h)] cos[kn(z + h)]K0(kn R)

− i2π
ν2 − k20

h(k20 − ν2) + ν
cosh[k0(ζ + h)] cosh[k0(z + h)]H(1)

0 (k0R),

(37)

where K0(x) is the zero-order modified Bessel function of
the second kind. H(1)

0 (x) is the zero-order Hankel function
of the first kind. kn denotes the n-th positive real root of

k tan(kh) = −ν. (38)

It is worthwhile to note that

(n − 1/2)π � knh � nπ, n = 1, 2, . . . ,∞. (39)

For small n, these roots can be extracted by the bisection
method or theNewton downhillmethod. In addition, for large
n, kn ≈ nπ/h. The asymptotic expansion series of the m-
order Bessel function Km(x) is used here

Km(x) = π

2
√
x
e−x , x → ∞, m = 0, 1, 2, . . . ,∞. (40)

Based on Eq. (40), for large n we can have

K0(kn R) = O
(
e−nπR/h

)
. (41)

Thus, we can conclude that the convergence of this series
primarily depends on the ratio R/h, and the number of series
terms required for a given accuracy is proportional to h/R.
Compared to the integral method, the series method is prefer-
able in the far-field (large values of R/h). However, it is
useless for small values of R/h, since each series term con-
tains a logarithmic singularity (K0(x) → ∞)when R/h = 0,
so only the integral method is feasible for small values of
R/h. In addition, algorithms for the partial derivatives GR

and Gz are analogous to G.

A comparison of the real and the imaginary parts of the
computational values ofG obtained from the present integral
method with these obtained from the series method is made
in Fig. 2a, b. The Green’s function is evaluated for the case
h = 10 m, ω = 1.2 rad/s, z = ζ = −0.01h. The test was
conducted using the FORTRAN compiler on a 4 GHz Intel
i7-4790K processor. Thirty Gauss–Laguerre sampling points
are used in the integral scheme and the series expansion is
truncated when it achieves an accuracy of six decimals in the
series scheme. As can be seen from Fig. 2, the results are
virtually identical.

The total CPU time consumed in the evaluation of G,
GR and Gz for two cases: (i) h = 10 m, ω = 1.2 rad/s,
z = ζ = −0.01h; (ii) h = 20 m, ω = 0.8 rad/s,
z = ζ = −0.2h, is shown in Fig. 3a, b, for numerical tests
across the 0.02–5 range of the ratio R/h. In different cases,
similar results are observed in Fig. 3a, b. This indicates that
parameters h, ω, z and ζ have little effect on the compu-
tational speed for both the integral scheme and the series
scheme. For the integral method, an increase in the ratio
R/h tends to increase the total computational time. A con-
verse trend is evident for the series method, especially below
R/h = 0.1: the computational time increases rapidly with
decreasing ratio R/h. Clearly, due to the singularity of the
Bessel function Km(x), the series method converges slowly
when the ratio R/h approaches zero, which consequently
results in increasing computational time. While the trend of
CPU time consumed in the integral scheme with increasing
ratio R/h is explainable by considering that the evaluation of
the Bessel function Jm(x) costs more running time for larger
ratio R/h.

A critical value 0.1 of the ratio R/h can be observed in
Fig. 3a, b. The integral method exhibits much higher com-
putational efficiency below 0.1, and the series method costs
much less running time above 0.1. Therefore, an optimized
strategy that the integral scheme implemented for R/h < 0.1
and the series scheme implemented for R/h > 0.1 is adopted
in the present BEM.
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Fig. 3 Total CPU time in the evaluation of G, GR and Gz in two cases. a h = 10 m, ω = 1.2 rad/s, z = ζ = −0.01h. b h = 20 m, ω = 0.8 rad/s,
z = ζ = −0.2h

2.3.3 Deep water cases

As is well known, when the wavelength λ is small compared
to the water depth h (large ratio h/λ), it can be deemed a
deep water wave. In these cases, distorted computations of
the free-surface Green’s function and its partial derivatives
frequently arise in the numerical schemes. To overcome it,
the free-surface Green’s function in infinite water depth is
introduced here, and it can be expressed as

G(p, q) = 1

r
+ 1

r̄
+ 2νP.V.

∫ ∞

0

ek(z+ζ )

k − ν
J0(kR)dk

+ i2πνeν(z+ζ )J0(νR), (42)

where

r =
√
R2 + (z − ζ )2, r̄ =

√
R2 + (z + ζ )2. (43)

The expression (42) was the first derived by Havelock
[36]. The main difficulty resides with the evaluation of the
third term of the expression, where a Cauchy principle-value
integral contains a singularity at k = ν. To solve this problem,
Yao et al. [26] developed a simplified algorithm to gain at
least an accuracy of 6 decimals, wherein series expansion
and Gauss–Legendre quadrature were used in sub-domains
(O − Rz). For deep water cases, Sun’s algorithm for the
Green’s function and its partial derivatives is adopted in the
present BEM. The detailed algorithm can be found in Ref.
[26].

2.3.4 Influence coefficients

As seen in Eqs. (24), (37) and (42), the free surface Green’s
function G(p, q) can be represented by the Rankin source
Green’s function and the remaining portion: G = 1/r + G ′,
then the influence coefficients can be written as

Fig. 4 A generic four-node quadrilateral element and its projection in
the parametric space (u ∈ [−1, 1], v ∈ [−1, 1])

Ci j =
∫∫

�S j

∂(1/r)

∂n
ds +

∫∫
�S j

G ′
n(pi , q)ds (i 	= j),

(44)

Di j =
∫∫

�S j

1

r
ds +

∫∫
�S j

G ′(pi , q)ds, (45)

Because of the singularity of 1/r when pi approaches to
q on the element �Si , the integrals of the Rankin source
Green’s function in Eqs. (44) and (45) have to be evaluated
analytically [37]. The remaining portion G ′ and its nor-
mal derivatives G ′

n can be directly integrated on each panel
element using the two-dimensional Gauss–Legendre quadra-
ture. To implement it, every four-node quadrilateral element
�S j should be mapped to a standard square Es

j (u ∈ [−1, 1],
v ∈ [−1, 1]) in a parametric space, as shown in Fig. 4.

Thus, the influence coefficients can be evaluated by

∫∫
�S j

G ′
n(pi , q)ds =

∫ 1

−1

∫ 1

−1
f (u, v)dudv

=
n∑

k=1

n∑
l=1

wkwl f (uk, vl),

∫∫
�S j

G ′(pi , q)ds =
∫ 1

−1

∫ 1

−1
g(u, v)dudv

=
n∑

k=1

n∑
l=1

wkwl g(uk, vl), (46)
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Fig. 5 Panel meshes (triangle elements) used for BEM analysis of a
hemisphere

where

f (u, v) = G ′
n

(
pi (xi , yi , zi ), q[ξ(u, v), η(u, v), ζ(u, v)]) J (u, v),

g(u, v) = G ′ (pi (xi , yi , zi ), q[ξ(u, v), η(u, v), ζ(u, v)]) J (u, v).

(47)

For triangular elements, Eq. (46) is rewritten as

∫∫
�S j

G ′
n(pi , q)ds =

n∑
k=1

n∑
l=1

Rkwkwl f (uk, vl),

∫∫
�S j

G ′(pi , q)ds =
n∑

k=1

n∑
l=1

Rkwkwl g(uk, vl), (48)

where

vl = 1

2
(1 + uk) + 1

2
(1 − uk)ul . Rk = 1

2
(1 − uk). (49)

In Eqs. (46)–(49), wk is the weight at the k-th Gauss–
Legendre sampling point uk in u ∈ [−1, 1], and wl is the
weight at the l-th sampling point vl in v ∈ [−1, 1]. n is
the number of sampling points used in the Gauss–Legendre
quadrature. J (u, v) is the Jacobian determinant. The detailed
transformation relation between �S j and Es

j is given in the
Appendix.

Apparently, the influence coefficients can be evaluated
numerically using the values of the Green’s function and
its normal derivative at the sampling points on panel ele-
ments. The computational accuracy depends on the number
of sampling points used in the Gauss–Legendre quadrature.
In general, for small panel elements, satisfactory results can
be obtained when at least four sampling points (n = 2) are
used.

2.4 BEM validation

In this section, an example concerning the diffraction-
radiation problem of a floating hemisphere with radius R0 =
1 is investigated to validate the present BEM algorithm. As

shown in Fig. 5, the wetted surface of the hemisphere is dis-
cretized by 610 triangular panel elements with 326 nodes.
The numerical test is performed for 100 wave frequencies
across a range of k0R0 varying from 0 to 10.

Both the added mass ma and radiation damping Bd in
heave can be determined according to the analytical solution
for a floating hemisphere derived from Hulme [38]:

ma(ω) = 2

3
ρπR3

0a33, Bd(ω) = 2

3
ρπR3

0ωb33, (50)

where ρ is the water density. a33 and b33 are the heave added
mass and radiation damping coefficients, respectively. These
results of a33 and b33 obtained from the present BEM and
Hulme are reported in Fig. 6a, b.

The complex wave excitation force fe on the floating
hemisphere in heave is derived by Chen et al. [39] using
a numerical approach:

fe(ω) = ρgπR3
0 f3, (51)

where the real and imaginary parts of the heave force coeffi-
cient f3 obtained from the present BEM and Chen et al. are
reported in Fig. 7a, b, respectively. It is noted that the theoret-
ical solutions for a hemisphere from Hulme [38] and Chen et
al. [39] refer to deep water conditions, and are believed to be
accurate from two up to four decimal places based on their
studies.

By comparison, it is evident that the present calculations
agree well with the available results, which proves that the
proposed BEM can accurately provide inviscid hydrody-
namic results of floating bodies in waves.

3 Locked SRFPAmodelling

Generally, in extreme wave scenarios, SRFPAs are automat-
ically locked to increase survivability such that no relative
motion occurs between the float and the reaction body. In
this section, a series of studies is first performed by using
a locked SRFPA without the consideration of power extrac-
tion. As discussed in Sect. 2.1, the heave constrained motion
equation for it is formulated as a single body:

[
−ω2(m + A(ω)) − iωB(ω) + k

]
z = fe, (52)

where A(ω) and B(ω) are added mass and radiation damp-
ing in heave; k is the hydrostatic stiffness; fe is the wave
excitation force complex amplitude in heave on the locked
model; z is the complex amplitude of heave displacement. In
addition, an experimental heave decay test and a RANS sim-
ulation of the locked SRFPAmodel in waves were conducted
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Fig. 6 a Added mass. b Radiation damping coefficients of a hemisphere in heave

Fig. 7 Complex wave excitation force. a Real part. b Imaginary part on a hemisphere in heave

Fig. 8 Locked SRFPA geometry and dimension in the heave decay test
and the RANS simulation

by Yu and Li [28]. The data is used to validate the numerical
dynamic model.

3.1 SRFPA geometry and dimension

Figure 8 shows the geometry and the dimension of the locked
SRFPA model used in the heave decay test and the RANS
simulation. In the RANS simulation, only a basic structural

design was considered, where the model geometry neglected
the supporting jacket and the details of the reaction plate. A
samemodel was used in the present BEM, and the top central
column was neglected. The inertial mass of full-scale model
used in the present BEM and the RANS simulation is about
250 metric tons with the gravity center located 22.4 m below
the still free surface.

3.2 Radiation problem and heave decay test

3.2.1 Radiation problem analysis

The present BEMcode is used to obtain the inviscid hydrody-
namic coefficients of the locked SRFPAmodel in heave. The
panel meshes used in the calculation are shown in Fig. 9,
which include 1864 panel elements with 1744 nodes. The
water depth for the analysis is 150 m.

The added mass normalized by the model’s inertial mass
derived from the BEM is plotted in Fig. 10a, for the cal-
culation across the 6–18 s range of oscillation periods. Key
observations of the results are as follows. First, the added
mass in heave exhibits a very slight increase with oscilla-
tion period, which indicates that the oscillation period has
little effect on the added mass. Second, the added mass is
about four to five times the model’s inertial mass (250 tons)
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Fig. 9 Panel meshes used for BEM analysis of the locked SRFPA

in operational oscillation periods. It is clear that, as a damper
plate, the reaction plate of the lockedSRFPAprovides amuch
larger added mass effect because it pulls and pushes a large
volume of fluid during the heave motion.

The radiation damping derived from the BEM is shown in
Fig. 10b, across the same range of oscillation periods. The
results show that an increase in oscillation period decreases
the radiation damping obviously. Since the wave radiation
is a free-surface phenomenon, and the reaction plate lies far
from the free surface, the radiation damping on the reaction
plate is in fact negligible and the float provides a primary
radiation damping effect, which is also proved in Sect. 4.

3.2.2 Heave decay test

The heave decay test was conducted at UC Berkeley’s wave
tank, where a 1/100-scale model was built based on the full-
scale Solidworks design. More details of the experimental
design and settings are described in Ref. [28].

In the frequency domain analysis, the heave decay of a
floating body can be considered a radiation problem at its
natural frequency. For the locked SRFPA, if the initial veloc-
ity is assumed to be zero, its heave decay equation can be
expressed as

Z(t) = Z0e
−δt cos(ωr t), (53)

where

δ = − B(ωr )

2[m + A(ωr )] , ωr =
√

k

m + A(ωr )
, (54)

Fig. 10 BEMderived. aAddedmass. bRadiation damping coefficients
in heave as a function of oscillation period

Z0 is the initial displacement of the model; ωr is the nat-
ural frequency in heave; A(ωr ) and B(ωr ) are added mass
and radiation damping of the model at its natural frequency,
respectively.

Based on the BEM-derived added mass, the natural fre-
quency of the model (full scale) in heave can be determined
by the intersection of two curves plotted in Fig. 11, where
the natural frequency is found to be around 0.7 rad/s. Fig-
ure 12 shows the heave decay time history obtained from the
present BEM analysis in frequency domain and the exper-
imental measurement. Two key observations are made by
comparing these results. First, from the experimental data,
the natural decay period is found to be around 9 s, which
agrees well with the BEM analysis. Second, a faster decay
of heave amplitude is observed in the experiment. As seen
in Eq. (54), the natural frequency depends on the hydrostatic
stiffness, inertial mass and added mass. The hydrostatic stiff-
ness and inertial mass of the locked SRFPA were adjusted to
match the experimental decay test. It is apparent, therefore,
that the added mass at the natural frequency is well predicted
by the present BEM analysis because fluid inertial forces
are generally well defined by potential flow theory within
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Fig. 11 Determination of the natural frequency of the Locked SRFPA
model in heave

Fig. 12 Heave decay results from the BEM in frequency domain and
the experimental measurement (full scale)

the BEM. However, a faster heave decay indicates that the
damping on the model in the experiment is greater than the
BEM-derived damping. It is probable that viscous damping
has a significant effect on the heave decay process, while
the BEM analysis only accounts for the damping effect from
wave radiation but does not account for these viscous effects.

3.3 Heave response in waves

A series of RANS simulations was performed to investigate
the interaction between regular waves and the locked SRFPA
inwater depth 70musing a commercial CFDpackage STAR-
CCM+ [28], where the meshes with 1.6 million elements
were created. A 5th-order Stokes wave velocity profile was
specified at the inflow boundary to provide various wave sce-
narios. The panel meshes used in the BEM analysis are the
same as those shown in Fig. 9. The heave response ampli-
tude operators (RAOs) obtained from the present BEM and
theRANS simulations in two different incidentwave heights,
2m and 4m, are plotted in Fig. 13.

Fig. 13 Comparison of the heave RAOs (scaled by wave height H ) in
regular waves

As shown in Fig. 13, key observations aremade as follows.
First, satisfactory agreement can be seen between the heave
response derived from the dynamic model with BEM and the
RANS simulations at wave periods below 7 s and above 12
s, but the dynamic model with BEM heavily over-predicts
the heave response near resonance. Second, the same trends
of RAOs from the BEM analysis and the RANS simulations
are observed; the RAO under 2 m wave height has a peak
period 10 s close to the natural period obtained from theBEM
analysis; the heave amplitude is reduced near resonance and
the peak period shifts to about 13 s under 4 m wave height
compared to 2 m wave height scenarios.

Interpreting the RAO results from the BEM and the
RANS method yields the following points. First, because
the dynamic model with the present BEM in this paper is
a linear model, it does not account for the wave amplitude
dependence in the RANS simulations. Second, for opera-
tional wave conditions, when the wave period is sufficiently
longer or shorter than the resonant period, linear effects on
the interaction between waves and the locked SRFPA are
dominant while viscous effects are negligible. Therefore, the
inviscid BEM analysis can exhibit satisfactory agreement of
RAOresultswith theRANSsimulations under differentwave
heights at wave periods below 7 s and above 12 s. Third, near
resonance, the locked SRFPA exhibits fierce motion and a
much lager motion amplitude can be anticipated. In this sce-
nario, viscous effects are the dominant source of damping
for the SRFPA, particularly the viscous drag, as a result of
flow separation and vortex shedding for the float and reaction
plate, which greatly reduce the heave response amplitude.
Meanwhile, the nonlinear effects on the interaction between
waves and the SRFPA is quite significant, which may intro-
duce additional damping forces that reducemotion amplitude
as well. However, these issues are not accounted for in the
dynamicmodelwith theBEM,which leads to over-prediction
of heave response near resonance. Fourth, the reducedmotion
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Fig. 14 Two-body SRFPA model in RANS

amplitude and the shift of the peak period under 4 m wave
height indicate that the SRFPA is subject to a larger damping
in lager wave height scenarios. Note that wave overtopping
barely occurred under 2 m wave height in the RANS simula-
tions, but it was frequently observed in the 4 m wave height
scenarios. As a result, it is anticipated that wave overtop-
ping may result in an additional damping force to restrain
the SRFPA motion. In summary, by comparison of the RAO
results, notable differences near resonance attributed to these
viscous and nonlinear effects discussed, illustrate that the
inclusion of these effects within the total damping are crit-
ical to the validity of the numerical model with the present
BEM. In the following section, an additional nonlinear drag
force term will be introduced into the numerical dynamic
model, which will be used to investigate the motion response
and power generation of SRFPAs.

4 Two-body SRFPA in waves

The dynamics and hydrodynamics with the present BEM of
the two-body SRFPA system have been discussed in Sect. 2,
where the power generation depends on the relative motion
between the float and the reaction body. By introducing a
viscous drag term to the dynamic model, a series of the BEM
analyses is performed to investigate the motion response
and power extraction potential of the SRFPA system. Note
that the investigation is not focused on the optimal control
strategy. The results are compared with the experimental
measurements and RANS simulation results [28] for vali-
dation.

Fig. 15 Panel meshes used for BEM analysis of the SRFPA

4.1 SRFPA geometry and settings

Figure 14 shows the geometry and dimension of the two-
body SRFPA system used in the RANS simulation, where
the numerical settings and the mesh resolution are similar
to those applied in the locked SRFPA simulations. Similar
geometry and dimension were set in the BEM analysis, and
the top central column of the float was neglected. Figure 15
shows the panel meshes used in the BEM calculation, which
include 1940 panel elements with 1719 nodes. As seen in
Fig. 14, the reaction section is fully submerged and keeps
neutrally buoyant. The float and the reaction section weigh
84.5metric tons and165metric tons respectively, and they are
connected by a mass-spring-damper system which is applied
to provide the PTO mechanism of the dynamics model dis-
cussed in Sect. 2.1. The spring is mainly utilized to connect
the two sections and a small stiffness 20kN/m is specified
to keep the reaction section in initial equilibrium. The power
absorption damping is a specified constant in each numerical
simulation.

4.2 Wave tank test

An experimental test of the SRFPA was performed using a
wave tank atUCSanDiego Scripps Institution ofOceanogra-
phy’s, where a 1/33-scale model was used in the experiment.
More details of the experimental design and settings are
described in Ref. [40]. The float and the reaction sectionwere
connected to a miniature hydraulic cylinder in closed circuits
with a needle valve to provide power absorption damping to
represent the PTO mechanism, where the damping is con-
trolled by turning the needle valve.
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Fig. 16 BEM derived. a Added mass. b Radiation damping of the SRFPA

Fig. 17 BEM derived excitation force. a Amplitude. b Phase on the SRFPA

4.3 Radiation and diffraction problem analyses

Based on the BVPs discussed in Sect. 2.2.1, the radiation
and diffraction analyses of the SRFPA are performed using
the present BEM, where hydrodynamic effects of the float
and reaction section are assessed in the presence of the other
body. For each body, the added mass, radiation damping and
excitation force in heave are obtained, for the calculation
across the 6–18 s range of wave periods.

The added mass normalized by the total inertial mass
(249.5 metric tons) of the SRFPA is shown in Fig. 16a. First,
the added mass for the float increases slightly with wave
period, whereas, for the reaction section, results exhibit no
variation. This indicates that the wave period has little effect
on the added mass of the SRFPA system. Second, the added
mass of the float is much smaller than the added mass of the
reaction section, because the circular plate on the reaction
section provides a larger added mass effect, as it pushes and
pulls a large fluid volume during the heave motion.

The radiation damping of the SRFPA system is shown in
Fig. 16b. Clearly, due to far distance from the free surface, the
radiation damping for the reaction section almost vanishes
across the whole range of wave periods. For the float, nearly
the same results as the lockedSRFPA (Fig. 10b) are observed.
It is apparent, therefore, that the heave motion of float is the
dominant source of radiation damping for the SRFPA system.

In fact, asmentioned inRef. [9], the viscous damping induced
by the reaction plate, as a result of flow separation and vortex
shedding, is the primary damping source for the reaction
section.

The BEM derived wave excitation forces for the float
and the reaction section are summarized by the wave period
dependent amplitude and phase shown in Fig. 17. The exci-
tation force amplitude curves seen in Fig. 17a, as normalized
by wave height, show that (i) an increase in wave period
increases the excitation force on the float; (ii) it is verified
that the excitation force on the float is much larger than on
the reaction section, because the motion of fluid particles
decreases rapidly with increasing depth below the free sur-
face. In addition, in Fig. 17b, almost zero phase between the
excitation force on the float and the incident wave is observed
across the whole range of wave periods whereas the phase
for the reaction section varies from−180◦ to 0◦. As the wave
period increases, the force phase difference between the float
and the reaction section is reduced and it is anticipated that
the excitation forces on them will be synchronised with the
incident wave when the wave period is sufficiently longer.

4.4 Additional viscous damping

Fluid viscosity has a significant impact on the dynamics of
the SRFPA in heave motion, particularly at resonance. To
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account for these viscous effects, a drag force is introduced
within the present dynamic model. In general, the total drag
force includes the form drag as a result of flow separation
and vortex shedding, and the friction drag as result of fluid
shear stress on body surfaces. As seen in Fig. 15, for the
float and the reaction plate, the drag forces should have a
much larger proportion of form drag compared to friction
drag because of relatively small thickness of hull walls and
sharp edges which lead to frequent flow separation. For the
central columns, compared to the float and the reaction plate,
the drag forces can be negligible due to their streamlined
shapes. In this paper, to represent drag forces on the float and
the reaction plate, a non-linear drag term is assumed, which
is proportional to the square of the velocity and expressed as
follows [41,42]

Fdrag = −1

2
ρAsCd Ż

∣∣Ż ∣∣ , (55)

where As is the cross sectional area of the float or the reaction
plate perpendicular to the heave direction and Cd is the drag
coefficient, ρ is the density of water. Note that the absolute
value of the velocity term is applied to ensure that the damp-
ing force is always in the opposite direction to the velocity.
This expression would have been more realistic if the rela-
tive velocity between the body and the fluid particles is used
instead of the body velocity. However, it is difficult to eval-
uate the velocity of fluid particles, because the flow around
bodies is quite complex in waves.

Generally, the value of drag coefficient depends on the
body geometry, the Reynolds number Re (in this problem,
Re ≈ 1 × 106 ∼ 10 × 106) and the Keulegan–Carpenter
number KC = 2πA/D, where A is the body motion ampli-
tude and D is the characteristic diameter of body. Similarly,
it is more realistic to define Keulegan–Carpenter number if
the relative motion amplitude between the body and the fluid
particles is used instead of the body motion amplitude. How-
ever, as discussed, it is difficult to evaluate themotion of fluid
particles around the body. For the present SRFPA system,
KC is generally less than 10. Within this range, Graham’s
study [43] showed that the variation of drag coefficient was
primarily induced by the strength of shed vortices. At low
Keulegan–Carpenter numbers, he assumed that vortex flow
was dominated by the local flow near sharp edges, and the
drag coefficient for plates became KC dependent

Cd ∝ KC−1/3. (56)

Based on Graham’s assumption [43], we suppose Cd, j =
δ j KC−1/3 ( j = 1 for the float and j = 2 for the reaction
plate), where the proportional coefficient δ is an empirical
coefficient depending on the plate geometry and dimension,
and is generally obtained by experimental tests. Because the

Fig. 18 SRFPA RANS vs. BEM with viscous damping (δ1 = 1.0,
δ2 = 3.5) derived heave response amplitude (scaled by wave height)
and phase (H = 2.5m)

reaction plate is much thinner than the float, it is clear that
vortices are shed more frequently and intensively near edges
of the reaction plate. Therefore, the proportional coefficient
δ2 should be larger than δ1.

In the frequency domain analysis, the non-linear drag term
canbe substitutedby a linear termusing theLorentz lineariza-
tion

Ż
∣∣Ż ∣∣ ≈ 8

3π
‖ − iωz‖ Re

(
−iωze−iωt

)
, (57)

thus

fdrag, j = 4iω2

3π
ρAs, jCd, j ‖z j‖ z j . (58)

The complex drag force fdrag, j ( j = 1 for the float and j = 2
for the reaction plate) is included in the constrained heave Eq.
(1). To solve the equation and overcome the nonlinearity, we
proceed through an iterative scheme so that a linear problem
is solved at each iteration.

4.5 Heave response in waves

Figure 18 shows the RANS and BEM derived heave RAOs
of the float and the reaction section, the relative motion and
the phase shift between the two bodies in 2.5m wave height
scenarios with a PTO absorption damping of 1200kN·s/m,
where the results are plotted against the wave period. In the
present BEM, drag coefficients for the float and the reaction
plate are determinedby the proportional coefficients δ1 = 1.0
and δ2 = 3.5, which is chosen based on the experimental
measurements from the wave tank test and the RANS simu-
lation results. Key observations to be made from Fig. 18 are
as follows. First, the BEM derived heave RAOs of the float
and the reaction section, and the relative motion RAO, agree
fairly well with the RANS simulation results. The agreement
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Fig. 19 SRFPA experimental test vs. BEMwith viscous damping (δ1 =
1.0, δ2 = 3.5) derivedheave response amplitude (scaledbywaveheight)
and phase (H = 2.5 m)

indicates that the non-linear drag term is capable of repre-
senting viscous effects on the SRFPA system. Second, the
heave motion of the float section is greater than that of the
reaction section, because the wave excitation force on the
float is much more larger than on the reaction section, based
on the analysis discussed in Sect. 4.3. The heave response of
the float has a peak period about T = 10 s, whereas the data
of the reaction section gradually increase with the incident
wave period, and no peak occurs in the heave response,which
implies that the reaction section is over-damped. Third, the
BEM and RANS results of the phase shift between the float
and the reaction section at wave periods less than 8 s, differ
by approximately 20%. The difference could be attributed to
other non-linear hydrodynamic and damping effects, which
are more significant when the wave period is shorter under
2.5 m wave height. The phase shift angle is reduced as the
incident wave period increases. It is anticipated that the angle
will vanish when the wave period is sufficiently longer while
the float and the reaction sectionwill follow themotion of the
incident wave. Moreover, the phase shift results in a relative
motion peak period about T = 8 s, which differs from the
peak period of the float.

The experimental and BEM derived heave RAOs of the
float and the reaction section, and the relativemotion between
them in 2.5 m wave height scenarios are shown in Fig. 19.
In the wave tank test, the PTO absorption damping was
controlled by adjusting the needle valve, and the averaged
PTO damping for the results presented in Fig. 19 were about
1800kN·s/m. Key observations to be made from this figure
are as follows. First, the heave RAOs of the float and the
reaction section, and the relative motion RAO derived from
the present BEM analyses are in general agreement with the
experimental results. Second, both heave responses of the
float and the reaction section have a peak period T = 10 s,
and similar trends of responses are observed. Compared to
Fig. 18, it is anticipated that the heave motion of the reac-

Fig. 20 Drag coefficients for the float and the reaction plate with dif-
ferent PTO damping (H = 2 m)

Fig. 21 Drag coefficients for the float and the reaction plate with PTO
damping 1200 kNs/m in different wave height scenarios

tion section tends to follow the motion of the float section
as the PTO absorption damping increases. Third, the relative
motion response between the two bodies is reduced when
wave energy is extracted by the PTO mechanism, and it also
decreases as the PTO absorption damping increases.

As discussed in Sect. 4.4, the drag coefficients Cd are
obtained when the iterative calculation of the motion equa-
tion converges. Figures 20 and 21 show the drag coefficients
for the float and the reaction plate against the wave period,
where the results are plotted across a range of PTOabsorption
damping (i.e. 600 kN·s/m, 1200 kN·s/m, 1800kN·s/m) and a
range of wave heights (i.e. 2 m, 4 m, 6m). Key observations
to be made from Figs. 20 and 21 are as follows. First, PTO
damping and wave height have little effect onCd for the float
whereas, for the reaction plate, it slightly decreases with PTO
damping and wave height. Second, at short wave periods, an
increase in wave period slightly decreases Cd for the float. A
similar trend is evident for the reaction plate: an increase in
wave period greatly decreasesCd. In fact, based onGraham’s
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Fig. 22 Power absorption performance (scaled by the square of wave
height) of the SRFPA system in 2.5 m wave height scenarios

Fig. 23 Power absorption performance (scaled by the square of wave
height) of the SRFPA system in 4 m wave height scenarios

assumption [43],Cd increases more rapidly as KC decreases
(its variation rate depends on the first-order derivative regard-
ing KC). Clearly, for smaller KC (short wave periods), the
variation rate of Cd for the reaction plate is larger than that
for the float. These factors above result in the visible trends
in Figs. 20 and 21. Third, for the SRFPA system, we can con-
clude that Cd for the float ranges from about 1 to 1.5 and Cd

for the reaction plate ranges from about 3 to 6 in operational
wave conditions.

4.6 Wave power absorption

Figures 22 and 23 show the wave power extraction perfor-
mance of the SRFPA system in 2.5 m and 4 m wave height
scenarios against wave period across a range of PTO absorp-
tion damping between 200kN·s/m and 2000kN·s/m, where
the present BEM prediction is compared to the RANS sim-
ulation data. Key observations to be made from Figs. 22
and 23 are as follows. First, after we introduce the viscous

damping, the BEM results agree well with the RANS calcu-
lated values in 2.5 m wave height scenarios whereas, in 4 m
wave height scenarios, the BEM derived power is greater
than the RANS results near resonance. The difference can
be attributed to other non-linear hydrodynamic effects, wave
overtopping and re-entering impact of out-of-water for the
float. In the RANS simulations, particularly near resonance,
wave overtopping and re-entering impact of out-of-water for
the float we observed in 4 m wave height scenarios occurred
much more frequently than that in 2.5 m wave height sce-
narios, which generally result in additional damping forces
that restrain the SRFPA motion and reduce wave power out-
put. This reveals that, in large wave height scenarios, wave
overtopping and re-entering impact of out-of-water phenom-
ena, as complex interaction effects between waves and the
SRFPA system, are the more significant damping source, but
our dynamic model does not account for these effects. Sec-
ond, short peak period is observed for small values of PTO
absorption damping. It is anticipated that the peak period
of wave power output decreases as PTO absorption damp-
ing decreases. Third, the SRFPA system have an optimal
power extraction performance when the PTO damping is in
the range between 700 kN·s/m and 1200kN·s/m. In Fig. 23,
the maximum time-averaged power 330 kW in 4 m wave
height scenarios is generated by the SRFPA system when
the PTO damping is equal to 1000kN·s/m.

5 Discussion

In this section, the power absorption efficiency of the SRFPA
system will be discussed. Based on the optimum radia-
tion pattern for heaving single-body point absorbers in ideal
potential flow, a well known upper bound on the power cap-
ture was derived by Evans [44]. Here J denotes the wave
energy flux per unit length of wave crest (W/m), λ and T are
the incident wave length and period, respectively.

P � Pmax = J

k0
= Jλ

2π
, (59)

J = ρg2T H2 tanh(k0h)

32π

[
1 + 2k0h

sinh(2k0h)

]
. (60)

For a given FPA geometry, it is clear that the maximum
wave power absorption Pmax and a capturewidthλ/2π can be
reached when the system is at resonance. Falnes’ study [29]
showed that, for a two-body axisymmetric system, it is pos-
sible to extract same amount of wave energy as a single-body
system. If we assume that the spring stiffness of the PTO is
equal to zero, as seen in the motion equation (2), the opti-
mum PTO damping for different incident wave frequencies
is determined by
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Fig. 24 Maximum power absorption of the SRFPA system for different
incident wave periods

Fig. 25 Optimal absorption damping of the PTO calculated by the
present BEM

coptpto = 1

ω

∥∥∥∥ K1K2

K1 + K2

∥∥∥∥ . (61)

We can obtain the potential flow power extraction limit for
the SRFPA system from Eq. (61) by using the present invis-
cid BEMsolver.Moreover, the optimal absorbedwave power
predicted from the present BEMwith additional viscous drag
and from the RANS simulations [28] are also presented,
where the optimal solutions are determined by selecting the
PTO damping to provide themaximum power extraction per-
formance for each wave period. A comparison is shown in
Fig. 24 to illustrate the difference between these solutions.
When viscosity is neglected, a maximumwave power extrac-
tion of the SRFPA system across the whole range of wave
periods is obtained at the resonant period of 8 s, which is
close to the power upper bound. Meanwhile, at wave periods
except resonant period, it is apparently impossible for the
SRFPA system to approach to the power upper bound even if
the optimal PTO absorption damping is selected. However,
in the presence of viscous drag, other non-linear wave and
wave-body interaction-induced damping forces, the power

extraction efficiency fromwaves is in realitymuch lower than
the results from the inviscid BEM analysis, particularly near
resonance. In addition, as shown in Fig. 24, both results from
theBEManalysiswith additional viscous drag and theRANS
simulations exhibit lower power extraction efficiency in 4 m
waves than that in 2.5 m waves, which reveals that viscous
drag and these non-linear interaction effects between waves
and the SRFPA system result in more wave energy dissipated
in larger wave height scenarios, where wave overtopping
and the re-entering impact of out-of-water for the SRFPA
systemare frequently observed and actually become the dom-
inant damping sources. In general, the viscous drag induced
by flow separation and vortex shedding, the wave overtop-
ping and the re-entering impact of out-of-water induced by
wave-body interactions, both highly depend on specific wave
scenarios and FPA designs. Therefore, it is difficult to quan-
tity these effects on power output using the present BEM.

Figure 25 shows the optimal PTO absorption damping
for the SRFPA system at each wave period using the present
BEM.Near resonance, across a range ofwave periods 7–10s,
the inviscid BEM analysis derived optimal PTO damping
is much larger than that derived from the BEM with vis-
cous drag. This could be attributed to the drag force induced
by flow separation and vortex shedding, which dissipates
a large proportion of wave energy. Then only much lower
PTO damping is needed to convert the remaining proportion
of wave energy into useful power. This reveals that viscous
drag has a significant effect on the selection of PTO absorp-
tion damping, which should be carefully considered in FPA
designs.

6 Conclusions

We develop a frequency domain boundary element method
for the inviscid hydrodynamic analyses of wave-body inter-
actions. The method is based on the free-surface Green’s
function and the constant panel method. The key numeri-
cal issues in the evaluation of the Green’s function and the
influence coefficient matrices are also discussed. The invis-
cid hydrodynamic results for a floating hemisphere in heave
derived from the present BEM solver is validated by the the-
oretical and numerical solutions [38,39]. Two-body SRFPA
wave energy conversion systems are analysed using a lin-
ear, heave constrained dynamic model with a simplified PTO
mechanism,where the validatedBEMsolver is used to obtain
the inviscid hydrodynamic results. Experimental wave tank
tests and RANS simulations of locked and unlocked SRFPA
system models in regular waves were performed [28]. The
viscous damping induced byflow separation and vortex shed-
ding from sharp edges of the SRFPA system is treated as a
quadratic drag term, where we assume that the drag coeffi-
cient is determined by the Keulegan–Carpenter number. The
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heave response and the power absorption performance of the
SRFPA system model under various wave conditions pre-
dicted by the present BEM with viscous drag are validated
with the experimental data and RANS simulation results.

In our algorithms for the free-surface Green’s function,
30 Gauss–Laguerre sampling points are used in the integral
method to keep balance between the numerical accuracy and
the computational efficiency. The series method converges
faster in far field and has a singularity problem in near field,
the computational efficiency of which primarily depends on
the ratio R/h. The CPU time shows a critical value 0.1 of
R/h: the integral method consumesmuch less computational
time below 0.1, and so does the series method above 0.1.
Based on this discovery, a time-saving strategy is adopted in
the present BEM solver.

Comparative results show that the inviscid hydrodynamic
analyses of the SRFPA model using the present BEM lead
to notable over-prediction of heave response amplitudes and
wave power output near resonance, where viscous damping
and non-linear hydrodynamic loads could have significant
influence on the SRFPA system. After the viscous drag term
is included, our hydrodynamic model with the BEM derived
predicted results of heave responses and power extraction
performance of the SRFPA agree well with the experimental
measurements and the RANS simulation results in smaller
wave height scenarios, where the viscous drag force induced
by flow separation and vortex shedding is the dominant
damping source. When the wave height is larger, our pre-
dicted results comparewellwith theRANSsimulation results
over a broad range of incidentwave periods, but exhibit larger
values near resonance. In reality, the wave overtopping and
the re-entering impact of out-of-water for the SRFPA occur
frequently and becomemore significant in larger wave height
scenarios, but it is difficult to account for these complex non-
linear effects in our hydrodynamic model.
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Appendix

In the present BEM, all body surface boundaries are subdi-
vided into a number of curved surfaces, which are approx-
imated by spatial quadrilateral panels or triangular panels.
As seen in Fig. 4, the centroid Pc(xc, yc, zc) of each panel
element is represented as

xc =
∑n

k=1 xk
n

, yc =
∑n

k=1 yk
n

, zc =
∑n

k=1 zk
n

, (A1)

where Ak(xk, yk, zk) represents the k-th node of the panel
element, especially n = 3 for triangular panels, n = 4 for
quadrilateral panels.

Without losing generality, assuming the unit normal vector
n of the panel element directed from the fluid into bodies, for
triangular panels, it can be evaluated by

n = A1A2 × A2A3

|A1A2 × A2A3| , (A2)

for quadrilateral panels,

n = A1A3 × A2A4

|A1A3 × A2A4| . (A3)

In general, the four nodes of a spatial quadrilateral panel
are probably not located on the same plane, which makes it
useless in the present BEM. One treatment is applied here:
the whole panel element A1A2A3A4 is projected to a plane
(perpendicular to the normal vector n and contains the cen-
troid Pc), then it is approximately replaced by the projective
element A′

1A
′
2A

′
3A

′
4.

For convenience, the local coordinate system Pc − αβγ

on each panel element is established to evaluate the influence
coefficient matrices. On an arbitrary panel element �S j , the
centroid Pc(xc, yc, zc) is specified as the origin and let τα ,
τβ , τ γ signify the basis vectors of Pc −αβγ . We can choose
an arbitrary node Ak(xk, yk, zk) of the element to determine
the basis vector τα

τα = PcAk

|PcAk | , (A4)

and

τ γ = n, τβ = τ γ × τα. (A5)

Let τα , τβ , τ γ be column vectors, thus an orthogonal
coordinate-transformation matrix can be obtained

Ct = (τα, τβ, τ γ )T, (A6)

then the transformation relation between the coordinates
(x, y, z) in O − xyz and (α, β, γ ) in Pc − αβγ is repre-
sented as

⎛
⎝α

β

γ

⎞
⎠ = Ct

⎛
⎝x − xc
y − yc
z − zc

⎞
⎠ ,

⎛
⎝x
y
z

⎞
⎠ = CT

t

⎛
⎝α

β

γ

⎞
⎠ +

⎛
⎝xc
yc
zc

⎞
⎠ ,

(A7)

On the element �S j , a bilinear transformation between
the coordinates (α, β) in the local system Pc − αβγ and
(u, v) on the standard square Es

j is used here
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α(u, v) = ᾱ + aαu + bαv + cαuv, (A8)

β(u, v) = β̄ + aβu + bβv + cβuv, (A9)

where

ᾱ = 1

4

4∑
k=1

αk, aα = ᾱ − 1

2
(α2 + α3), (A10)

bα = ᾱ − 1

2
(α3 + α4), cα = ᾱ − 1

2
(α2 + α4),

β̄ = 1

4

4∑
k=1

βk, aβ = β̄ − 1

2
(β2 + β3), (A11)

bβ = β̄ − 1

2
(β3 + β4), cβ = β̄ − 1

2
(β2 + β4),

where (αk, βk) represents the local coordinates of the k-th
node on the element �S j . The Jacobian determinant associ-
ated with the transformation of the element �S j to its image
Es

j is evaluated by

J (u, v) =
∣∣∣∣D(α, β)

D(u, v)

∣∣∣∣ = aαbβ − bαaβ (A12)

+ (aαcβ − cαaβ)u + (cαbβ − bαcβ)v,

For triangular panel elements, the transformation Eqs.
(A8) and (A9) are no longer applicable. Without losing
generality, assuming the nodes A3 and A4 of the element
coinciding, we apply a linear transformation

α(u, v) = ᾱ + aαu + bαv, (A13)

β(u, v) = β̄ + aβu + bβv, (A14)

where

ᾱ = 1

2
(α1 + α3), aα = 1

2
(α1 − α2), bα = 1

2
(α2 − α3),

(A15)

β̄ = 1

2
(β1 + β3), aβ = 1

2
(β1 − β2), bβ = 1

2
(β2 − β3),

(A16)

and the Jacobian determinant becomes

J (u, v) =
∣∣∣∣D(α, β)

D(u, v)

∣∣∣∣ = aαbβ − bαaβ. (A17)
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