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Abstract
In this paper, the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently
developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows, including inviscid LBFS I,
viscous LBFS II, hybrid LBFS III and hybrid LBFS IV. Hybrid LBFS can automatically realize the switch between inviscid
LBFS I and viscous LBFS II through introducing a switch function. The resultant hybrid WENO–LBFS scheme absorbs
the advantages of WENO scheme and hybrid LBFS. We investigate the performance of WENO scheme based on four kinds
of LBFS systematically. Numerical results indicate that the devopled hybrid WENO–LBFS scheme has high accuracy, high
resolution and no oscillations. It can not only accurately calculate smooth solutions, but also can effectively capture contact
discontinuities and strong shock waves.

Keywords WENO scheme · Hybrid · Lattice Boltzmann flux solver · Compressible inviscid flows · Contact discontinuities ·
Shock waves

1 Introduction

In order to avoid numerical oscillations in solving compress-
ible inviscid flows and to obtain uniform high-order accuracy
both in time and space, Harten and Osher [1] proposed
an essentially non-oscillation (ENO) scheme with easing
restrictions of non-growing total variation and allowing small
increase in total variation. Most of key functions of ENO
scheme are applied only on the smooth stencil among all the
stencils to evaluate variables at the cell interface formaintain-
ing high-order accuracy in the smooth region and suppressing
oscillations in the non-smooth region [2]. To overcome the
drawback of ENO scheme, i.e. other stencils are aban-
doned except the smoothest stencil, Liu et al. [3] proposed
a weighted ENO (WENO) scheme using a convex combina-
tion of all candidate stencils instead of only using the optional
smooth stencil. Furthermore, WENO scheme was improved
by Jiang and Shu [4] and Shu [5], in which a general form of
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smoothness indicators and nonlinear weights was specified
in detail. WENO scheme has been significantly improved
in terms of accuracy and resolution, compared with ENO
scheme. After that, finite difference WENO (FD-WENO)
scheme [4,6] and finite volumeWENO (FV-WENO) scheme
[7,8] have been greatly developed, and Shu [5] strongly sug-
gested using FD-WENO scheme in practice owing that it
has higher accuracy, higher resolution and a small amount
of calculations. In recent decades, WENO scheme has been
used well to solve the problems with strong shocks, contact
discontinuities and rarefaction waves [9–12].

An important component of WENO scheme is the calcu-
lation of numerical fluxes. In most of various fluxes in the
literature, the numerical fluxes that are based on the smooth
function approximation [13,14] and exact or approximate
Riemann solvers are widely used , such as the Lax-Friedrichs
(LF) numerical flux, Harten-Lax-van Leer (HLL) flux [15],
HLLC flux [16] (a modification of the HLL flux), a flux
limiter centered (FLIC) flux [17] and multi-stage predictor-
corrector (MUSTA) flux [18]. The flux solver based on
smooth function approximation cannot resolve discontinu-
ity problems such as compressible flows with shock wave,
and the flux solver based on Riemann solver or approximate
Riemann solver usually pursues approximate solution of 1D
Euler equations along the normal direction to the cell inter-
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face. An alternative approach is gas kinetic flux solver which
is based on Boltzmann equation [19]. This solver can be well
applied for simulation of both compressible flow and incom-
pressible flow [20–23]. Most of existing gas kinetic schemes
are developed on the basis of the Maxwellian distribution
function [19,24,25]. Owing to complexity of theMaxwellian
distribution function, its are usuallymore complex and rather
inefficient than conventional flux solves.

Recently, lattice Boltzmann method (LBM) has received
much attention for studying different complex fluid flows
[26–31], due to its natural parallel characteristic, simplicity
and clear physical background. However, the conventional
LBM is limited to viscous flows, uniform mesh and tie up
of time interval and space step. To develop a more efficient
solver for compressible flows, a lattice Boltzmann flux solver
(LBFS) was proposed by Ji et al. [32], which is based on the
local solution of lattice Boltzmann equation (LBE). Differ-
ent from conventional flux solvers, which are based on the
smooth function approximation [13,14] or Riemann solver
approximation [33–35], LBFS applies local reconstruction
of solution of lattice Boltzmann equation (LBE) [36,37] to
evaluate the inviscid flux at the cell interface. It was further
improved and extended to simulate incompressible flows by
Yang et al. [38] and Shu et al. [39,40]. The LBFS can provide
good positivity property for simulation of flows with shock
waves [38] and can be well applied to simulate both com-
pressible and incompressible flows [20,40–44]. However, in
the existing LBFS, the inviscid flux at the cell interface is
directly computed by using the distribution functions that
streamed from neighboring points. Since non-free parame-
ter D1Q4 model is only used along the normal direction to
the cell interface, the existing LBFS can be only applied to
simulate inviscid flows [38]. Furthermore, the distribution
function at cell interface makes up for the equilibrium part
and non-equilibriumpart. From theChapman-Enskog expan-
sion analysis [45,46], the equilibrium distribution function
acts on the inviscid flux, while the non-equilibrium distribu-
tion function acts on the viscous flux. The non-equilibrium
part of the distribution function is regarded as numerical
viscosity, and the dimensionless collision time is viewed as
the weight of the numerical viscosity. Basing on the above
reviews, Yang et al. [44] presented two kinds of LBFS. One
is inviscid LBFS (LBFS I) which only considers the equilib-
rium part, while the other is viscous LBFS (LBFS II) which
takes the equilibrium part and non-equilibrium part into con-
sideration and the coefficient in front of the non-equilibrium
part is equal to 1. The existing LBFS is viscous LBFS II
[32,39]. Inviscid LBFS I is used to obtain the primitive vari-
ables in a straightforward way, while viscous LBFS II is
used to directly compute the inviscid flux. On the other hand,
in simulating the compressible inviscid flow, the numerical
viscosity has benefit of capturing complex wave structures
and strong shock waves, but it will affect the solution of

smooth problems. Hence, taking control of the numerical
viscosity is the key to simulate the inviscid flows. As a
consequence, inviscid LBFS I can accurately calculate the
solution of smooth regions, but it may diverge or oscillate
for simulation of hypersonic flows, while viscous LBFS II
has good performances on capturing strong shock waves,
but it has an influence on smooth solution. To overcome the
drawbacks and combine the advantages of inviscid LBFS I
and viscous LBFS II, a hybrid lattice Boltzmann flux solver
(denoted as hybrid LBFS III hereafter), which involves a
governing function to realize the switch between inviscid
LBFS I and viscous LBFS II, was proposed by Yang et al.
[44,47]. The hybrid LBFS III cannot only accurately calcu-
late a smooth solution, but also effectively capture strong
shock waves.

In the previous work [48], we systematically studied and
compared the performance of WENO scheme combining
viscous LBFS II, LF, HLLC, MUSTA and FLIC fluxes. It
indicated that the viscous WENO-LBFS II scheme has bet-
ter performance when all factors including the cost of CPU
time, numerical errors and resolution in the solution near dis-
continuities and shock waves are considered. In this paper,
the hybrid WENO-LBFS III scheme combines the advan-
tages of WENO scheme, inviscid LBFS I and viscous LBFS
II. In the meantime, we present a hybrid WENO-LBFS IV
scheme. Different from the hybrid WENO-LBFS III scheme
in which the governing function is the maximum value of
the governing function of the left and right control vol-
umes, the governing function in the hybrid WENO-LBFS
IV scheme is determined by all the neighboring control
volumes of the cell. Comparing with the inviscid WENO-
LBFS I scheme and the viscous WENO-LBFS II scheme,
we demonstrate the accuracy and efficiency of the present
hybrid WENO-LBFS III scheme and hybrid WENO-LBFS
IV scheme.

The rest of the paper is organized as follows: In Sect. 2,
four WENO scheme-based LBFS for simulation of com-
pressible inviscid flows are outlined in detail, including
the inviscid WENO-LBFS I scheme, viscous WENO-LBFS
II scheme, hybrid WENO-LBFS III scheme and hybrid
WENO-LBFS IV scheme. In Sect. 3, the present hybrid
WENO-LBFS III scheme and hybrid WENO-LBFS IV
scheme are used to solve continuous flows and compress-
ible flow problems with contact discontinuities, strong shock
waves and complex wave structures. Comparisons among
the inviscid WENO-LBFS I scheme, viscous WENO-LBFS
II scheme, hybrid WENO-LBFS III scheme and hybrid
WENO-LBFS IV scheme are also given in Sect. 3. Numeri-
cal results indicate that the present hybrid WENO-LBFS III
scheme and hybrid WENO-LBFS IV scheme can not only
accurately calculate smooth solutions, but also can effec-
tively capture contact discontinuities and strong shockwaves.
Finally, the conclusions are given in Sect. 4.
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2 Methodology

2.1 Euler equations discretized by finite difference
method

In this work, the governing equations of compressible invis-
cidflows,which are conventionalEuler equations, are given as

∂U
∂t

+ ∂F(U)

∂x
+ ∂G(U)

∂ y
= 0, (1)

with

U =

⎛
⎜⎜⎝

ρ

ρu
ρv

ρE

⎞
⎟⎟⎠ , F(U) =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv

(ρE + p)u

⎞
⎟⎟⎠ ,

G(U) =

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p
(ρE + p)v

⎞
⎟⎟⎠ , (2)

where ρ and p are density field and pressure field, respec-
tively. (u, v) is velocity field. The total energy of the mean
flow E is defined as

E = e + 1

2
(u2 + v2), (3)

here e = p/[(γ − 1)ρ] is the potential energy of the mean
flow, and the specific heat ratio is γ = 1.4 for diatomic gas.

For finite difference method, the spatial derivative is dis-
creted by a conservative approximation, and then spatial
semi-discretization of Eq. (1) could be given as

dU i j (t)

dt
= − 1

�x

(
F̂i+ 1

2 , j − F̂i− 1
2 , j

)

− 1

�y

(
Ĝi, j+ 1

2
− Ĝi, j− 1

2

)
. (4)

For convenience, the first order ordinary differential equa-
tion (ODE) system of Eq. (4) could be rewritten as compact
form

dU(t)

dt
= L (U) . (5)

Usually, a three-step Runge-Kutta method is applied to solve
the first order ODE system of Eq. (5), which is described as
Ref. [2]

U (1) = Un + �tL(Un),

U (2) = 3

4
Un + 1

4
U (1) + 1

4
�tL(U (1)),

Un+1 = 1

3
Un + 2

3
U (2) + 2

3
�tL(U (2)),

(6)

where L is spatial discretization operator and �t is updated
time step. Obviously, the key of solving Eq. (4) is to evalu-
ate the inviscid fluxes F̂ and Ĝ. Next, a lattice Boltzmann
model to evaluate the inviscid fluxes used in this paper will
be introduced.

2.2 Non-free parameter D1Q4model to evaluate the
inviscid fluxes F̂ and Ĝ

A lattice Boltzmann flux solver (LBFS) [32,38–40], which
uses a local reconstruction of solution of 1D lattice Boltz-
mann equation (LBE) to evaluate the inviscid flux, can
effectively simulate compressible inviscid flows. Next, the
non-free parameter D1Q4 model used in this paper will be
discussed in detail.

In this paper, the non-free parameter D1Q4 model pro-
posed by Yang et al. [38,49] is adopted. The equilibrium
distribution functions fα(ρ, u, p) and lattice velocities eα

are given as following

f1(ρ, u, p) =
ρ

(
−d1d

2
2 − d22u + d1u

2 + d1c
2 + u3 + 3uc2

)

2d1
(
d21 − d22

) ,

f2(ρ, u, p) =
ρ

(
−d1d

2
2 + d22u + d1u

2 + d1c
2 − u3 − 3uc2

)

2d1
(
d21 − d22

) ,

f3(ρ, u, p) =
ρ

(
d21d2 + d21u − d2u

2 − d2c
2 − u3 − 3uc2

)

2d2
(
d21 − d22

) ,

f4(ρ, u, p) =
ρ

(
d21d2 − d21u − d2u

2 − d2c
2 + u3 + 3uc2

)

2d2
(
d21 − d22

) ,

(7)

e1(ρ, u, p) = d1, e2(ρ, u, p) = −d1,
e3(ρ, u, p) = d2, e4(ρ, u, p) = −d2,

(8)

with

d1 =
√
u2 + 3c2 −

√
4u2c2 + 6c4,

d2 =
√
u2 + 3c2 +

√
4u2c2 + 6c4,

(9)

and c = √
p/ρ is the peculiar velocity of particles.

Furthermore, this model can be used to simulate hyper-
sonic flows with strong shock waves (see Refs. [38,39,49]
for more details). Consider the following 1D Riemann prob-
lem

(ρ, u, p) =
{

(ρ−, u−, p−), x < 0,

(ρ+, u+, p+), x � 0.

Thus, the equilibrium distribution function fα(0, t) at the
cell interface could be decided by the location of the point
x = 0. Specifically, fα(0, t) can be given as
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fα(0, t) =
{
f Lα , if α = 1, 3,

f Rα , if α = 2, 4,
(10)

where f Lα and f Rα are the equilibrium distribution function
at the two sides of cell interface, respectively. f Lα and f Rα
can be rewritten as

f L1 = f1(ρ
−, u−, p−), f R2 = f2(ρ

+, u+, p+),

f L3 = f3(ρ
−, u−, p−), f R4 = f4(ρ

+, u+, p+),
(11)

with the corresponding lattice velocities given as

eL1 = e1(ρ
−, u−, p−), eR2 = e2(ρ

+, u+, p+),

eL3 = e3(ρ
−, u−, p−), eR4 = e4(ρ

+, u+, p+).
(12)

According to the physical conservation laws, the density
ρ, velocity u and pressure p at the point x = 0 can be given
as

ρ =
4∑

α=1

f kα ,

ρu =
4∑

α=1

f kα e
k
α,

(
1

γ − 1
p + 1

2
ρuu

)
=

4∑
α=1

f kα

(
1

2
ekαe

k
α + λk

)
,

(
γ

γ − 1
p + 1

2
ρuu

)
u =

4∑
α=1

f kα

(
1

2
ekαe

k
α + λk

)
ekα,

(13)

where k is the index of the left and right sides, and λ =
[1 − (γ − 1)/2]e is the potential energy of particles.

Now, the non-free parameter D1Q4 model is used to eval-
uate the inviscid flux. In general, the distribution function
fα(0, t) is formed from the equilibrium part f eqα (0, t) and
non-equilibrium part f neqα (0, t), i.e.,

fα(0, t) = f eqα (0, t) + f neqα (0, t). (14)

From the discrete velocity Boltzmann equation, f neqα can be
written as

f neqα (0, t) = −τ0

(
∂ fα
∂t

+ eα · ∇ fα

)
. (15)

Using Taylor series expansion in space and time for the above
equation, the distribution function fα(0, t) at the cell inter-
face can be given as

fα(0, t) = f eqα (0, t) − τ,[
f eqα (0, t) − f eqα (−eαδt, t − δt)

] + O(δt2), (16)

here τ = τ0
δt is the dimensionless collision time and δt

is streaming time step. f eqα (−eαδt, t − δt) is the equilib-
rium distribution function at the surrounding point of the
cell interface. From the Chapman-Enskog expansion analy-
sis [45,46], the equilibrium distribution function acts on the
inviscid fluxes. Hence, for simulating compressible inviscid
flows, the non-equilibrium part of the distribution function is
regarded as numerical viscosity, and the dimensionless colli-
sion time is viewed as the weight of the numerical viscosity.
Basing on the value of τ , Yang et al. proposed three kinds of
LBFS [44]. Next, the descriptions of evaluating the inviscid
flux F̂ in the x-direction at the cell interface are given (see
Refs. [44] for more details).

2.2.1 Inviscid lattice Boltzmann flux solver [44]

When τ is set to 0, this kind of LBFS is noted as inviscid
LBFS (inviscid LBFS I). According to Eq. (13), the density,
momentum and energy in normal direction at the cell inter-
face can be calculated by

W x,α+ 1
2

=
[
ρ, ρu,

1

2
ρuu + ρe

]T
=

4∑
α=1

φβ f eqα (0, t),

(17)

where φβ can be defined by

φβ =
(
1, eα,

1

2
e2α + λ

)T

. (18)

The consistency condition [50] gives

4∑
α=1

φβ f neqα (0, t)

= −
4∑

α=1

φβτ [ f eqα (0, t) − f eqα (−eαδt, t − δt)] = 0. (19)

The above two equations give

W x,α+ 1
2

=
4∑

α=1

φβ f eqi (−eαδt, t − δt), (20)

where f eqi (−eαδt, t − δt) can be computed by Eq. (10).
Basing on non-free parameter D1Q4 model, the density ρ,
normal velocity u and pressure p at the cell interface can be
evaluated by Eq. (13). However, another velocity component
v at the cell interface should be evaluated, which is given as

ρv =
∑

α=1,3

f kα · v− +
∑

α=2,4

f kα · v+. (21)
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By Eqs. (13) and (21), the density, normal velocity, tangen-
tial velocity and pressure can be obtained. Substituting these
primitive variables into Eq. (2), the inviscid flux in the x-
direction at the cell interface can be evaluated. An alternative
indirectway is to substitute these primitive variables intoEqs.
(7)–(9) to evaluate f eqi (0, t). Then, the inviscid flux F̂ in the
x-direction at the cell interface can be calculated by

F̂
(I) =

⎛
⎜⎜⎝

ρu
ρuu + p

ρuv

(ρE + p) u

⎞
⎟⎟⎠ . (22)

The inviscid flux Ĝ in the y-direction is similar to F̂. It
only needs that u is replaced by v.

2.2.2 Viscous lattice Boltzmann flux solver [38,39,44]

When τ is equal to 1, this kind of LBFS is noted as viscous
LBFS (viscous LBFS II). After obtaining the density, normal
velocity and pressure at the cell interface computed by Eq.
(13), the inviscid flux F̂ in the x-direction can be evaluated
as following

F̂
(II) =

⎛
⎜⎜⎜⎝

F̂1
F̂2
F̂3
F̂4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4∑
α=1

f kα e
k
α

4∑
α=1

f kα e
k
αe

k
α

F̂1v
4∑

α=1
f kα e

k
α

( 1
2e

k
αe

k
α + λk

) + 1
2 F̂1v

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(23)

where f kα and ekα are computed by Eqs. (11) and (12). The
tangential velocity at the cell interface v is given as

ρuv =
∑

α=1,3

eLα f Lα v− +
∑

α=2,4

eRα f Rα v+, (24)

ρuv2 =
∑

α=1,3

eLα f Lα (v−)2 +
∑

α=2,4

eRα f Rα (v+)2. (25)

Similar to F̂, the inviscid flux Ĝ in the y-direction can be
evaluated as

Ĝ
(II) =

⎛
⎜⎜⎜⎝

Ĝ1

Ĝ2

Ĝ3

Ĝ4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4∑
α=1

f kα e
k
α

Ĝ1u
4∑

α=1
f kα e

k
αe

k
α

4∑
α=1

f kα e
k
α

( 1
2e

k
αe

k
α + λ

) + 1
2 Ĝ1u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(26)

with

eL1 = e1(ρ
−, v−, p−), eR2 = e2(ρ

+, v+, p+),

eL3 = e3(ρ
−, v−, p−), eR4 = e4(ρ

+, v+, p+),
(27)

The tangential velocity at the cell interface v is replaced by
u given as

ρuv =
∑

α=1,3

eLα f Lα u− +
∑

α=2,4

eRα f Rα u+, (28)

ρu2v =
∑

α=1,3

eLα f Lα (u−)2 +
∑

α=2,4

eRα f Rα (u+)2. (29)

2.2.3 Hybrid lattice Boltzmann flux solver [44]

Introduce a governing function to combine inviscid LBFS I
with viscous LBFS II. Particularly, a governing function μ

which ranges from 0 to 1 is defined as

μ = tanh

(
C

|p− − p+|
P− + P+

)
, (30)

here tanh(x) is the hyperbolic tangent function, and C = 10
applied in this paper is a coefficient.Hence, the inviscidfluxes
across the cell interface can be evaluated by

F(III) = (1 − μ)F(I) + μF(II),

G(III) = (1 − μ)G(I) + μG(II).
(31)

This kind of LBFS is noted as hybrid LBFS III. On one hand,
hybrid LBFS III can achieve transformation between inviscid
LBFS I and viscous LBFS II because μ is a variable, which
enables the governing function to switch into inviscid LBFS
I for continuous problems and change into viscous LBFS
II for strong shock waves. On the other hand, to remove
oscillations in simulating hypersonic flows, a new governing
function referred to as hybrid LBFS III∗ [44] is given as

μ∗ = max(μL , μR), (32)

μL = max
l=1,··· ,Nl

(μl), μR = max
r=1,··· ,Nr

(μr ), (33)

where Nl and Nr are the number of the faces of the left
and right control volumes, respectively.Correspondingly, Eq.
(31) can be rewritten as

F(III∗) = (1 − μ∗)F(I) + μ∗F(II),

G(III∗) = (1 − μ∗)G(I) + μ∗G(II).
(34)

Basing on the hybrid LBFS III, we propose a hybrid LBFS IV
in which the governing function μ∗ is the maximum value of
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the governing function of all the neighboring control volume
at the cell. Hence,

F(IV) = (1 − μ∗)F(I) + μ∗F(II),

G(IV) = (1 − μ∗)G(I) + μ∗G(II).
(35)

2.3 WENO scheme to reconstruct the values�±, u±,
v± and p±

Consider the reconstruction of the flow variables ρ±, u±,
v± and p± in the x-direction at point (xi+ 1

2
, y j ). Usually,

the conservation variables U± are reconstructed in physical
space directly, and then the flow variables can be computed.
Unfortunately, the reconstruction process cannot deal with
the problem of shockwaves very well, as discontinuous solu-
tionwith low resolution and numerical oscillations. Owing to
that, we adopt another way proposed by Shu [5], where the
reconstruction process is done in characteristic space. The
details of the whole reconstruction process are given, here.

As the conservation variables U are known on all grid
nodes (xi , y j ), we have the local left eigenvectors LF and
right eigenvectors RF of the Jacobian matrix ∂F

∂U

∣∣
x
i+ 1

2
,y j

as

following

RF =

⎛
⎜⎜⎝

1 1 1 1
u − c u u u + c

v 0 1 v

γ e + u2+v2

2 − uc u2−v2

2 v + u2−v2

2 γ e + u2+v2

2 + uc

⎞
⎟⎟⎠ ,

(36)

LF =

⎛
⎜⎜⎜⎜⎝

u2+v2

4γ e + u
2c − 1

2c − u
2γ e − v

2γ e
1

2γ e

1 − u2+v2

2γ e + v(u2+v2)
2γ e

u−uv
γ e

v−v2

γ e − 1 v−1
γ e

− v(u2+v2)
2γ e

uv
γ e 1 + v2

γ e − v
γ e

u2+v2

4γ e − u
2c

1
2c − u

2γ e − v
2γ e

1
2γ e

⎞
⎟⎟⎟⎟⎠

, (37)

here the average state U i+ 1
2 , j is computed by the simple

mean as following

U i+ 1
2 , j = 1

2

(
U i, j + U i+1, j

)
. (38)

Then, we transform the conservation variablesUk, j to the
local characteristic variables V k, j by using the left eigenvec-
tors LF as

V k, j = LFUk, j , i − 2 � k � i + 3. (39)

Furthermore, the local characteristic variables V±
i+ 1

2 , j

could be reconstructed. In general, the 5th order WENO
reconstruction formulas ofV−

i+ 1
2 , j

are given.And for this, the

local characteristic variables V i−1, j , V i, j , V i+1, j , V i+2, j

and V i+3, j are chosen, then we have

V−
i+ 1

2 , j
= ω1V

(1)
i+ 1

2 , j
+ ω2V

(2)
i+ 1

2 , j
+ ω3V

(3)
i+ 1

2 , j
, (40)

where

V (1)
i+ 1

2 , j
= −1

6
V i−1, j + 5

6
V i, j + 1

3
V i+1, j ,

V (2)
i+ 1

2 , j
= 1

3
V i, j + 5

6
V i+1, j − 1

6
V i+2, j ,

V (3)
i+ 1

2 , j
= 11

6
V i+1, j − 7

6
V i+2, j + 1

3
V i+3, j , (41)

ωr = σr
3∑

r=1
σr

, σr = θr

(ε + βr )2
, (42)

β1 = 13

12
(V i−1, j − 2V i, j + V i+1, j )

2

+1

4
(V i−1, j − 4V i, j + 3V i+1, j )

2,

β2 = 13

12
(V i, j − 2V i+1, j + V i+2, j )

2

+1

4
(V i+2, j − V i, j )

2,

β3 = 13

12
(V i+1, j − 2V i+2, j + V i+3, j )

2

+1

4
(3V i+1, j − 4V i+2, j + V i+3, j )

2, (43)

θ1 = 3

10
, θ2 = 3

5
, θ3 = 1

10
. (44)

Similar to the reconstruction process of V−
i+ 1

2 , j
, V+

i+ 1
2 , j

can be reconstructed by the local characteristic variables
V i−2, j , V i−1, j , V i, j , V i+1, j and V i+2, j .

Finally, we transform the local characteristic variables
V±

i+ 1
2 , j

to the conservation variables U±
i+ 1

2 , j
by using the

right eigenvectors RF as

U±
i+ 1

2 , j
= RFV±

i+ 1
2 , j

. (45)

Thus we can get the flow variables ρ±
i+ 1

2 , j
, u±

i+ 1
2 , j

, v±
i+ 1

2 , j

and p±
i+ 1

2 , j
.

The reconstruction processes of the flow variables ρ±,
u±, v± and p± in the y-direction at point (xi , y j+ 1

2
) are the

same as in the x-direction. Here, the local left eigenvectors

and right eigenvectors of the Jacobian matrix ∂G
∂U

∣∣∣
xi ,y j+ 1

2

are

given as

RG =

⎛
⎜⎜⎝

1 1 1 1
u 0 1 u

v − c v v v + c

γ e + u2+v2

2 − vc v2−u2
2 u + v2−u2

2 γ e + u2+v2

2 + vc

⎞
⎟⎟⎠ ,

(46)
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LG =

⎛
⎜⎜⎜⎜⎝

u2+v2

4γ e + v
2c − u

2γ e − 1
2c − v

2γ e
1

2γ e

1 − u2+v2

2γ e + u(u2+v2)
2γ e

u−u2
γ e − 1 v−uv

γ e
u−1
γ e

− u(u2+v2)
2γ e 1 + u2

γ e
uv
γ e − u

γ e
u2+v2

4γ e − v
2c − u

2γ e
1
2c − v

2γ e
1

2γ e

⎞
⎟⎟⎟⎟⎠

.

(47)

Finally, the whole procedure of theWENO-LBFS scheme
is given as following

Step 1 Reconstruct the values ρ±, u±, v± and p± by
WENO scheme

Step 1.1 Transform the conservation variables U to the
characteristic variables V based on the local left
characteristic vectors LF and LG by using Eqs.
(37), (47) and (39);

Step 1.2 Reconstruct the characteristic variables V± by
using Eqs. (40)–(44);

Step 1.3 Transform the characteristic variables V± to the
conservation variables U± based on the local
right characteristic vectors RF and RG by using
Eqs. (36), (46) and (45);

Step 1.4 Transform the conservation variables U± to flow
variables ρ±, u±, v± and p±.

Step 2 Evaluate numerical fluxes F̂ and Ĝ based on the
non-free parameter D1Q4 model.

Step 2.1 Compute the equilibrium distribution function f kα
and lattice velocities ekα by using Eqs. (7)–(27);

Step 2.2 Evaluate the numerical fluxes F̂ and Ĝ by using
Eqs. (22) or (23), (26) or (31) or (35).

Step 3 Solve the spatial semi-discretization Eq. (4) by using
the three-step Runge-Kutta method of Eq. (6) to
update the conservation variables U .

3 Numerical results

In this section, many numerical tests are performed to com-
pare the results ofWENO scheme based on the four different
lattice Boltzmann flux solvers outlined in the previous sec-
tion. The detailed numerical study is mainly performed for
the 1D and 2D system cases. Without special statement, the
CFL numbers are taken as 0.45 and 0.475 for 1D and 2D
states, respectively.

3.1 Accuracy test

First, we should have an accuracy test for compressible
flow problems with smooth solution to validate that WENO
scheme combining with inviscid LBFS I, viscous LBFS II,
hybrid LBFS III and hybrid LBFS IV (the inviscid WENO-

LBFS I scheme, viscous WENO-LBFS II scheme, hybrid
WENO-LBFS III scheme and hybrid WENO-LBFS IV) can
keep high-order accuracy and high efficiency.

Example 1 Consider the two dimensional Euler equations
(1). The initial conditions are set to be ρ(x, y, 0) =
1 + 0.2 sin(π(x + y)), u(x, y, 0) = 0.7, v(x, y, 0) =
0.3, p(x, y, 0) = 1 with a 2-periodic boundary condi-
tion. The final computational time is up to t = 2. The
exact solution is ρ(x, y, t) = 1 + 0.2 sin(π(x + y − (u +
v)t)), u(x, y, t) = 0.7, v(x, y, t) = 0.3, p(x, y, t) = 1.

The numerical errors and the orders of accuracy for the
density are shown in Table 1. From this table, it can be
seen that all of WENO scheme based on the above four
kinds of LBFS can achieve desired orders of accuracy. All
these schemes are of fifth order of convergence of L1 and
L∞ errors. The error of the WENO-LBFS II scheme is
the largest among all scheme, and there is no difference
between the WENO-LBFS I, hybrid WENO-LBFS III and
hybrid WENO-LBFS IV schemes. In other words, for this
smooth problem, the hybrid scheme switches into the invis-
cid WENO-LBFS I scheme that can better solve continuous
problem than the viscous WENO-LBFS II scheme.

3.2 Test 1D cases with shock waves

The problems of compressible flows usually arise shock
waves, which demand that the numerical algorithms are
robust. This robustness often performs avoiding numerical
oscillations and high resolution to shock-capturing. Here,
several classical shock problems are presented to test the
performance of the inviscidWENO-LBFS I scheme, viscous
WENO-LBFS II scheme, hybrid WENO-LBFS III scheme
and hybrid WENO-LBFS IV scheme.

Example 2 Shu–Osher problem. The initial condition is

(ρ, u, p) =
{

(3.857143, 2.629369, 10.333333) for x � −4,

(1 + ε sin(5x), 0, 1) for x > −4,

(48)

where ε is set to be 0.2. The computational domain is [− 5, 5]
covered with N = 300 grid points. The compact boundary
condition is used for the left boundary, and the inflow bound-
ary condition is applied on the right boundary.

The classical elementary waves in solution of Shu–Osher
problem include high-frequency waves and shock waves.
Figure 1 depicts the density ρ at time t = 1.8 against
the reference solution computed by the WENO-LF scheme
using 2000 grids. This figure is zoomed at the region x ∈
[0.5, 2.5], ρ ∈ [2.5, 5.0] which contains high-frequency
waves to facilitate comparative analysis. The comparisons
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Table 1 L1 and L∞ errors of the density ρ

N Flux L1 error L1 order L∞ error L∞ order

10 WENO-LBFS I 3.6972e−03 8.0058e−03

WENO-LBFS II 1.0243e−02 1.3851e−02

Hybrid WENO-LBFS III 3.6997e−03 8.0067e−03

Hybrid WENO-LBFS IV 3.7001e−03 8.0063e−03

20 WENO-LBFS I 1.7558e−04 4.3962 3.4371e−04 4.5418

WENO-LBFS II 5.3830e−04 4.2501 8.3720e−04 4.0483

Hybrid WENO-LBFS III 1.7558e−04 4.3972 3.4372e−04 4.5419

Hybrid WENO-LBFS IV 1.7558e−04 4.3977 3.4372e−04 4.5418

40 WENO-LBFS I 4.8228e−06 5.1861 1.0335e−05 5.0556

WENO-LBFS II 1.7060e−05 4.9797 3.2370e−05 4.6929

Hybrid WENO-LBFS III 4.8228e−06 5.1861 1.0335e−05 5.0556

Hybrid WENO-LBFS IV 4.8228e−06 5.1861 1.0335e−05 5.0557

80 WENO-LBFS I 1.4168e−07 5.0892 3.2195e−07 5.0046

WENO-LBFS II 5.3237e−07 5.0020 1.0617e−06 4.9302

Hybrid WENO-LBFS III 1.4168e−07 5.0892 3.2195e−07 5.0046

Hybrid WENO-LBFS IV 1.4168e−07 5.0892 3.2195e−07 5.0046

160 WENO-LBFS I 4.3461e−09 5.0268 8.3232e−09 5.2736

WENO-LBFS II 1.6455e−08 5.0158 3.1908e−08 5.0563

Hybrid WENO-LBFS III 4.3461e−09 5.0268 8.3232e−09 5.2736

Hybrid WENO-LBFS IV 4.3461e−09 5.0268 8.3232e−09 5.2736

Euler equations with initial condition: ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1, using N equally
spaced cells with different schemes

of WENO scheme combining with four kinds of LBFS are
described clearly in Fig. 1. From this figure, it can be found
that the results of the WENO-LBFS1 scheme, the WENO-
LBFS III scheme and the WENO-LBFS IV scheme have
almost no difference. And the results of these three schemes
are slightly better than that of the WENO-LBFS II scheme.
Based on the above, WENO scheme based on the hybrid
LBFS shows good performance to capture high-frequency
waves. For the weak shock waves, WENO scheme based on
the hybrid LBFS scheme tends to that of the WENO-LBFS
I scheme.

Example 3 The extension of Shu–Osher problem [18]. The
initial condition is

(ρ, u, p) =
{

(1.515695, 0.523346, 1.80500) for x � −4.5,

(1 + ε sin(20πx), 0, 1) for x > −4.5.

(49)

where ε is set to be 0.1. The computational domain is [− 5, 5]
covered with N = 2000 grid points. The compact boundary
condition is used for the left boundary, and the inflow bound-
ary condition is applied on the right boundary. The simulation
time is up to 5.0. The CFL number is set to be 0.6 in this case.

The extension of Shu–Osher problem is yielded by a
right facing shock wave of Mach number 1.1 impacting

on a high-frequency density perturbation. Figure 2 shows
the density ρ at time t = 5.0 against the reference solu-
tion computed by the WENO-HLLC scheme with 8000 grid
points. Particularly, the result obtained from the WENO-LF
scheme with 2000 grid points is also given for compar-
isons. The solution of this figure is zoomed at region x ∈
[− 2.2, 3.6], ρ ∈ [0.9, 1.7]which contains the smooth struc-
tures and the moving shock wave to facilitate comparative
analysis. From Fig. 2, it can be clearly observed that there is
no difference among the WENO-LBFS I, WENO-LBFS III
andWENO-LBFS IV schemes,which aremore accurate than
the WENO-LBFS II scheme, and the WENO-LF scheme is
the worst among all schemes. For this problem, the hybrid
WENO-LBFS III andWENO-LBFS IV schemes switch into
the inviscid WENO-LBFS I scheme.

Example 4 Woodward–Colella blastwave problem [18]. The
initial condition is

(ρ, u, p) =

⎧⎪⎨
⎪⎩

(1, 0, 1000) for 0 � x < 0.1,

(1, 0, 0.01) for 0.1 � x < 0.9,

(1, 0, 100) for x � 0.9.

(50)

The computational domain is x ∈ [0, 1] covered with N =
300 grid points. The reflective boundary condition is used for
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Fig. 1 Shu–Osher problem at t = 1.8. Solid line: the “exact” reference solution from the WENO-LF scheme with 2000 grid points. Symbols: the
results from the WENO-LBFS I, WENO-LBFS II, WENO-LBFS III and WENO-LBFS IV schemes with 300 grid points

the left and right boundaries. The final simulation time is up
to 0.038.

The solution of Woodward problem involves complex
wave structures yielded by the interaction of two shock
waves. In Fig. 3, the density ρ at t = 0.038 is plotted
against the reference solution computed by the WENO-LF
scheme using 2000 grids. This figure is zoomed at the region
x ∈ [0.53, 0.88], ρ ∈ [0, 7] which contains complex wave
structures to facilitate comparative analysis. The compar-
isons of WENO scheme combining with four kinds of LBFS
are described clearly in Fig. 3. From this figure, it can be seen
that the resolution of the inviscid WENO-LBFS I scheme is

the highest among all schemes. The results computed by the
hybrid WENO-LBFS IV scheme are almost same as that of
the hybrid WENO-LBFS III scheme. The performance of
the hybrid WENO-LBFS IV scheme is better than that of the
WENO-LBFS II scheme and slightly inferior to that of the
WENO-LBFS I scheme.

Example 5 Riemann problem with the initial condition:

(ρ, u, p) =
{

(5.99924, 19.5975, 460.894) for x � 0.5,

(5.999242,− 6.19633, 46.095) for x > 0.5.

(51)
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Fig. 2 Extension of Shu–Osher problem at t = 5.0. Solid line: the “exact”reference solution from the WENO-HLLC scheme with 8000 grid
points. Symbols: the results from the WENO-LBFS I, WENO-LBFS II, WENO-LBFS III, WENO-LBFS IV and WENO-LF schemes with 2000
grid points

The computational domain is x ∈ [0, 1] covered with N =
200 grid points. The outflow boundary condition is imposed
for the left and right boundaries. The simulation time is up
to 0.035.

The classical elementary waves in a solution of the Rie-
mann problem include shock waves. In Fig. 4, the density
ρ at t = 0.035 is plotted where the comparisons of WENO
scheme based on four kinds of LBFS are described clearly.
This figure is zoomed at the region x ∈ [0.4, 1], ρ ∈ [5, 35]
which contains shock waves to facilitate comparative anal-
ysis. Especially, the solution obtained by the WENO-LF

scheme with grid size N = 1600 as the reference solution is
given.

From Fig. 4, it is clearly seen that the resolution of the
hybridWENO-LBFSscheme is the highest and the resolution
of the inviscid WENO-LBFS I scheme is the lowest among
all schemes. The performance of the hybrid WENO-LBFS
IV scheme is slightly superior to that of the viscous WENO-
LBFS II scheme. There is no difference between the hybrid
WENO-LBFS III scheme and the hybrid WENO-LBFS IV
scheme. It should be noted that the results of the inviscid
WENO-LBFS I scheme show oscillations near discontinuity
x = 0.5, and the errors between the results computed by
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Fig. 3 Woodward problem at t = 0.038. Solid line: the “exact” reference solution from WENO-LF scheme with 2000 grids. Symbols: the results
from the inviscid WENO-LBFS I, viscous WENO-LBFS II, hybrid WENO-LBFS III and hybrid WENO-LBFS IV schemes with 300 grids

the WENO-LBFS I scheme and the reference solution are
very large at the region x ∈ [0.5, 0.8]. For this shock waves
problem, the hybrid WENO-LBFS III scheme and hybrid
WENO-LBFS IV switch into the viscous WENO-LBFS II
scheme for better capturing shock waves.

3.3 Test 2D cases with shock waves

In the previous section, 1D cases with shock waves and con-
tact discontinuities are tested. Based on the numerical results,
it is known that the hybrid WENO-LBFS III scheme and
hybrid WENO-LBFS IV scheme have good performances
to capture some complex wave structures (including shock

waves, contact discontinuities, etc.). Next, 2D cases with the
complexwave structures are used to test the ability ofWENO
scheme based on hybrid LBFS.

Example 6 Double Mach reflection [51]. The computational
domain is [0, 4] × [0, 1]. Initially a right-moving Mach 10
shock is positioned at x = 1

6 , y = 0 and makes a 60◦ angle
with x-axis. For the top boundary, the flow values are set to
describe the exactmotion of aMach 10 shock. For the bottom
boundary, the exact post-shock condition is imposed for the
range 0 � x � 1

6 , and the reflectingwall is at rest. For the left
and right boundaries, inflow boundary and outflow boundary
are adopted respectively. The computational time is up to t =
0.2.
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Fig. 4 Riemann problem at t = 0.035. Solid line: the “exact” reference solution from the WENO-LF scheme with 1600 grids. Symbols: the results
from the inviscid WENO-LBFS I, viscous WENO-LBFS II, hybrid WENO-LBFS III and hybrid WENO-LBFS IV schemes with 200 grids

This problem is often provided as a case to test high-
resolution schemes. Figure 5 shows the density contours with
grid size h = 1

480 for WENO scheme based on different
LBFS. Especially, the solutions obtained by the WENO-LF
scheme with grid size h = 1

960 and the hybrid WENO-LBFS
III∗ schemewith mesh h = 1

480 as the reference solutions are
given. The figure is zoomed at the region [2, 2.875]× [0, 1],
which contains complex wave structures to facilitate com-
parative analysis, and the density is plotted by 30 equally
spaced contour lines from ρ = 1.5 to ρ = 22.8. From
this figure, it can be observed that the number of captur-
ing complex wave structures of the inviscid WENO-LBFS
I scheme is most among all schemes, but it exhibits oscil-
lations and instability. The reason may be the viscidity of

theWENO-LBFS I scheme is too small. The hybridWENO-
LBFS III scheme can capture more vortices than viscous
WENO-LBFS II scheme. It should be noted that it has almost
no difference between the hybrid WENO-LBFS III scheme
and the hybrid WENO-LBFS III∗ scheme, but the vortices
of the hybrid WENO-LBFS III∗ scheme may be smeared
out. The more important feature is that the performance of
the hybrid WENO-LBFS IV scheme to shock-capturing is
better among all hybrid scheme for this problem.

Example 7 Implosion problem [49]. The initial condition is

(ρ, u, v, p) =
{

(1, 0, 0, 1), |x | − 0.15 � y � −|x | + 0.15,

(0.125, 0, 0, 0.14), otherwise.

(52)
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Fig. 5 Double Mach reflection problem at t = 0.2. The results with h = 1
480 computed by WENO scheme based on five kinds of LBFS and the

results with h = 1
960 computed by the WENO-LF scheme

The computational domain is [−0.3, 0.3]× [−0.3, 0.3]. The
reflective boundary condition is imposed for the left, right
and button boundaries. For the top boundary, the outflow
boundary is applied. The final simulation time is up to 0.8.

Implosion problem is used to illustrate the ability of
WENO scheme based on four kinds of LBFS for 2D prob-
lems.

Figures 6 and 7 respectively show the pressure and Mach
number contours with uniform grid size of 400 × 400 for
WENO scheme based on different LBFS. Especially, the

solution obtained by the WENO-LF scheme with uniform
grid size of 800× 800 as the reference solution is given. The
pressure is plotted by 35 equally spaced contour lines from
p = 0.54 to p = 1.19, and the Mach number is depicted
by same contour lines from Mach = 0.01 to Mach = 0.2
to facilitate comparative analysis. Particularly, it should be
noted that the WENO-LBFS I scheme can not be applied
to simulate the implosion problem when the mesh size is
400 × 400. It may be that the WENO-LBFS I scheme is an
inviscid scheme, so it can not capture strong shock waves.
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Fig. 6 Implosion problem at t = 0.8. Left: the pressure computed by the WENO-LBFS II scheme and the WENO-LBFS IV scheme with grid size
of 400× 400. Right: the pressure computed by the WENO-LBFS III scheme with grid size of 400× 400 and computed by the WENO-LF scheme
with grid size of 800 × 800

From Figs. 6 and 7, it can be observed that theWENO-LBFS
II scheme can capturemore complexwave structures than the
WENO-LBFS III scheme and the WENO-LBFS IV scheme.
Owing to that the results of the WENO-LBFS III∗ scheme
and the WENO-LBFS III scheme have no significant differ-
ence, the result computed by the WENO-LBFS III∗ scheme
is not shown in Figs. 6 and 7. Obviously, the wave structures
of the WENO-LBFS III scheme at the center are not sym-
metrical. The result is not our expectation according to the
reference solution. Based on the above, the present WENO
scheme based on the hybrid LBFS has good performance to
capture the complex wave structures.

Example 8 2D Riemann problem with four planar shocks
[23]. The initial condition is given as follows

(ρ, u, v, p)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.5, 0, 0, 1.5) for x > 0.8, y > 0.8,

(0.5323, 1.206, 0, 0.3) for x � 0.8, y > 0.8,

(0.138, 1.206, 1.206, 0.029) for x < 0.8, y � 0.8,

(0.5323, 0, 1.206, 0.3) for x � 0.8, y � 0.8.

(53)

The computational domain is [0, 1]× [0, 1] with a mesh size
of 400× 400. The compact boundary condition is applied at
all boundaries. The simulation time is up to 0.65.

This problem, whose solution produces multi-scale wave
structures resulting from shock wave interactions, is used to
validate the capability of WENO scheme-based four kinds
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Fig. 7 Implosion problem at t = 0.8. Left: the Mach number computed by the WENO-LBFS II scheme and the WENO-LBFS IV scheme with
grid size of 400 × 400. Right: the Mach number computed by the WENO-LBFS III scheme with grid size of 400 × 400 and computed by the
WENO-LF scheme with grid size of 800 × 800

of LBFS capturing small-scale wave structures. Figure 8 dis-
plays the density distribution, where the density is plotted by
16 equally spaced contour lines from ρ = 0.2 to ρ = 1.7.
From Fig. 8, it can be seen that the inviscid WENO-LBFS
I scheme can capture more complex wave structures in all
schemes, while it seems that the viscidity of the inviscid
WENO-LBFs I scheme is too small to be unstable. The abil-
ity of the hybrid WENO-LBFS III and WENO-LBFS IV
schemes is slightly better than that of the viscous WENO-
LBFS II scheme. For this shock wave problem, the hybrid
WENO-LBFS scheme changes into the viscous WENO-
LBFS II scheme to better capture complex wave structures.

Example 9 2D Riemann problem with four planar contact
discontinuities with same sign vortex sheets [23]. The initial
data is given as follows

(ρ, u, v, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 0.75, − 0.5, 0.3) for x > 0.5, y > 0.5;
(2, 0.75, 0.5, 0.3) for x � 0.5, y > 0.5;
(1, − 0.75, 0.5, 0.3) for x < 0.5, y � 0.5;
(3,− 0.75, − 0.5, 0.3) for x � 0.5, y � 0.5.

(54)

The computational domain is [0, 1] × [0, 1] with a grid size
of 400 × 400. All boundaries are treated with the com-
pact boundary condition. The final simulation time is to be
0.3.

The problem consists of four planar contour discontinu-
ities, whose instantaneous interaction results in a complex
wave pattern. Figure 9 presents the density distribution,
which is plotted by 20 equally spaced contour lines from
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Fig. 8 Density distribution for Riemann problem with four planar shocks at t = 0.65

ρ = 0.2 to ρ = 3.5. Due to the initial pressure distri-
bution is uniform which is equal to 1, the Mach number
is relatively large. Therefore, the solution of this prob-
lem can display more small scale structures. It can be
observed in Fig. 9 that the capability of the WENO-LBFS
I, hybrid WENO-LBFS III and hybrid WENO-LBFS IV
schemes is better than that of the WENO-LBFS II scheme.
For this problem involving four planar contact disconti-
nuities with same sign vortex sheets, the hybrid WENO-
LBFS scheme switches into the inviscid WENO-LBFS I
scheme.

Example 10 2D Riemann problem with four planar contact
discontinuities with different sign vortex sheets [23]. The
initial condition is given as follows

(ρ, u, v, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, − 0.75, − 0.5, 1) for x > 0.5, y > 0.5,

(2, − 0.75, 0.5, 1) for x � 0.5, y > 0.5,

(1, 0.75, 0.5, 1) for x < 0.5, y � 0.5,

(3, 0.75, − 0.5, 1) for x � 0.5, y � 0.5.

(55)

The computational domain is [0, 1] × [0, 1] with a uniform
mesh of 400 × 400. All boundaries are implemented by the
compact boundary condition.

In this case, four planar contact discontinuities support
vortex sheets with different signs, which generate totally dif-
ferent flow patterns. The solution of this problem contains
so-called delta-shocks. The density distributions at t = 0.25
are shown in Fig. 10 where the density is plotted by 20
equally spaced contour lines from ρ = 1.2 to ρ = 4.0.
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Fig. 9 Density distribution for Riemann problem with four planar contact discontinuities with same sign vortex sheets at t = 0.3. The initial
pressure is uniform (p = 1.0)

From this figure, it can be clearly seen that there is almost
no difference among the WENO-LBFS I, hybrid WENO-
LBFS III and hybrid WENO-LBFS IV schemes. In these
three schemes, more small scale vortices are observed, com-
pared with the WENO-LBFS II scheme. For this problem
involving four planar contact discontinuities with different
sign vortex sheets, the hybridWENO-LBFS scheme tends to
the inviscid WENO-LBFS I scheme.

Example 11 A Mach 3 wind tunnel with a step. The com-
putational domain is the red region in Fig. 11. The reflective
boundary condition is imposed on the top and bottom bound-
aries. For the left boundary, the inflow boundary condition is
applied. For the right boundary, the outflow boundary con-
dition is used. The final simulation time is up to 4.0.

A Mach 3 wind tunnel with a step is used to illustrate
the ability of the hybrid WENO-LBFS III scheme for multi-
block domains to obtain a stable solution. Figure 12 shows
the density and pressure contours with uniform grid size of
120 × 40 and 240 × 80 for the hybrid WENO-LBFS III
scheme. The density is plotted by 30 equally spaced contour
lines from ρ = 1 to ρ = 6, and pressure is depicted by same
contour lines from p = 0.5 to = 11.5 to facilitate compara-
tive analysis. Particularly, it should be noted that the inviscid
WENO-LBFS I scheme can not be applied to simulate this
problem. It may be because the numerical viscosity of the
iviscid WENO-LBFS I scheme is too small to capture strong
shock waves. From Fig. 12, it can be observed that the hybrid
WENO-LBFS III scheme can capture shockwaves in no spe-
cial entropy correction for cell at the corner. This implies that
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Fig. 10 Density distribution for Riemann problem with four planar contact discontinuities with different sign vortex sheets at t = 0.25. The initial
pressure is uniform (p = 1.0)

the hybridWENO-LBFS III scheme can obtain a stable solu-
tion for a stationary Mach 3 flow hitting a rectangular step
owing that the hybrid WENO-LBFS III scheme combines
the advantages of the inviscid WENO-LBFS I scheme and
the viscous WENO-LBFS II scheme. It should be referred
that the results of the hybrid WENO-LBFS IV scheme and
the hybrid WENO-LBFS III scheme have no difference for
this problem.

4 Conclusions

In this paper, compared with the inviscid WENO-LBFS I
scheme and viscousWENO-LBFS II scheme, the good prop-
erties of the hybrid WENO-LBFS scheme are investigated
for simulation of compressible flows. Through simulations

Density = 1.4
Pressure = 1.0

x-velocity = 3.0
y-velocity = 0.0
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Reflecting

Reflecting

In
flo
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O
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Fig. 11 Regine of a Mach 3 wind tunnel with a step [0, 3]× [0, 1]. The
step is from x = 0.6 to x = 3.0 and is 0.2 length units high

with smooth solution, contact discontinuities, strong shock
waves and complex wave structures, numerical results show
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Fig. 12 Mach 3 wind tunnel with a step at t = 4.0. Left: the density computed by the hybrid WENO-LBFS III scheme with grid size of 120 × 40
and 240 × 80. Right: the pressure computed by the hybrid WENO-LBFS III scheme with grid size of 120 × 40 and 240 × 80

that WENO scheme based on inviscid LBFS I, viscous
LBFS II, hybrid LBFS III and hybrid LBFS IV all can
achieve high-order accuracy. For smooth problems, the invis-
cid WENO-LBFS I scheme can more accurately calculate
the solution than the viscous WENO-LBFS II scheme, and
the hybrid WENO-LBFS scheme switches into the inviscid
WENO-LBFS I scheme. For shock waves problems, the vis-
cous WENO-LBFS II scheme can capture more complex
wave structures and has higher resolution than the invis-
cid WENO-LBFS I scheme, and the hybrid WENO-LBFS
scheme changes into the viscous WENO-LBFS II scheme.
Thus, the present hybrid WENO-LBFS scheme has high-
accuracy, high-resolution and high-efficiency. What’s more,
it can not only accurately calculate the solution of smooth
regions, but can effectively capture shock waves without
oscillations.
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