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Abstract
Mechanical stimuli play critical roles in cardiovascular diseases, in which in vivo stresses in blood vessels present a great
challenge to predict. Based on the structural–thermal coupled finite element method, we propose a thermal expansion method
to estimate stresses in multi-layer blood vessels under healthy and pathological conditions. The proposed method provides
a relatively simple and convenient means to predict reliable in vivo mechanical stresses with accurate residual stress. The
method is first verified with the opening-up process and the pressure-radius responses for single andmulti-layer vessel models.
It is then applied to study the stress variation in a human carotid artery at different hypertension stages and in a plaque of
vascular stenosis. Our results show that specific or optimal residual stresses exist for different blood pressures, which helps
form a homogeneous stress distribution across vessel walls. High elastic shear stress is identified on the shoulder of the plaque,
which contributes to the tearing effect in plaque rupture. The present study indicates that the proposed numerical method is
a capable and efficient in vivo stress evaluation of patient-specific blood vessels for clinical purposes.
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1 Introduction

Medical practitioners are realizing that variations of the
mechanical stress beyond normal biological conditions are
closely associated with vascular remodeling and pathologi-
cal changes [1–3]. In order to explore a better understanding
of the stress-modulated remodeling of vascular tissues, it is
important to analyze the variations of in vivo mechanical
stress quantitatively. A lack of feasible approaches to mea-
sure in vivo stress distribution of a vascular wall, prediction
based on continuum mechanics provides a credible solution
[4].

A vascular wall is not stress-free even in the absence of
an external load such as blood pressure. The existence of
residual stress in unloaded blood vessels was confirmed in
1980s [5]. Because of the nonlinear mechanical behavior of
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vascular tissues, it is of crucial importance to estimate the
residual stress properly for further mechanical analysis.

As most residual stress of a blood vessel releases after it
is cut in radial directions with the opening of the vessel [6],
many studies set up the residual stresses through a reversed
process by folding the opened-up sectors. This conventional
reversed numerical approach is called the “opening angle
method” [7–10]. It was proven by Delfino et al. [7] that the
opening angle method helped predict the maximum stress in
a human carotid bifurcation much more reasonably compar-
ing to thosewithout considering the residual stress. However,
the opening angle method often causes discontinuous stress
distribution or non-matching stress at the rejoined sections
when without a precise “sealing” at the cutting ends [9]. Par-
ticularly when the multi-layer structure of blood vessels is
considered, separate bending loads are necessary to fold each
layer with different opening angles [8].

Most recently, residual stresses are developed through
intermediate ways for blood vessels in pathological condi-
tions. In their work, Polzer et al. [11] modeled the residual
stress with a volumetric tissue growth method that allows
a fast stress prediction of the abdominal aortic aneurysm
(AAA). The residual stress is estimated by adjusting the
increment of growth iteratively, based on the hypothesis
that the presence of residual stress leads to a homogeneous
stress distribution across the vascular wall [12]. Although the
homogeneous stress hypothesis simplifies the stress analy-
sis of blood vessels, it is not clear whether this hypothesis
is feasible to model vessels realistically with complicated
three-dimensional geometries. A generalized prestressing
algorithm (GPA) was introduced by Weisbecker et al. [13]
for predicting the stress distributions in the loaded vessel
models reconstructed from the in vivo medical imaging data.
This algorithm creates a prestressing configuration without
changing the initial geometry by resetting the calculated dis-
placement to zero during every converged iterative solution.
Using GPA, Pierce et al. [14] successfully applied measured
residual stresses directly into the patient-specific simula-
tions of AAAs. This approach was expected to improve the
reliability of stress predictions within the vessel walls with
aneurysms. But Pierce et al. introduced the residual stress
into a pressure loaded geometry rather than an unloaded one.
The possible effects of the geometry mismatch on wall stress
predictions need to be further quantified.

In this work, we proposed a thermal expansion method,
which is a relatively simple and convenient approach to
rebuild the residual stress for healthy and stenosed vessels.
The method applies the residual strain field onto a blood
vessel with known given opening angles by introducing the
analytically solved thermal expansion. It greatly improves
the reliability in predicting in vivo stress in the vessel wall
under different physiological conditions, which allows us to
evaluate and examine in vivo stress in the cases of vessels

undergoing hypertension and complicated-shaped vessels
with stenosis. For stenosed vessels, evaluating the mechani-
cal stress is of critical importance on the prediction of plaque
rupture, but few studies have been reported with residual
stress taken into account [15].Using our developed approach,
one application is to estimate in vivo stress of stenosed ves-
sels that can further predict plaque rupture.

The paper is organized as follows: the thermal expansion
method is introduced in Sect. 2. The proposed method is ver-
ified for a range of opening angles and multi-layer models
in Sect. 3. In Sect. 4, the stress variations of blood vessels
under several selectedbloodpressures representinghyperten-
sive conditions are investigated using the proposed method.
The in vivo stress distribution of a stenosed vessel during a
cardiac cycle is also analyzed, and implications on plaque
rupture are discussed. Finally, conclusions and future work
are presented in Sect. 5.

2 Numerical method

2.1 Thermal expansionmethod

Configurations adopted for the present methods are illus-
trated in Fig. 1. In Fig. 1a, a vessel at an unloaded state
(without any external load)Ω1, which is cut in a radial direc-
tion (along the dashed line) results in a relaxed stress-free
state Ω0 with an opening angle of Φ0. Another virtual intact
blood vessel in a stress-free configuration Ω∗

0 is set up, as
shown in Fig. 1b, which serves as a reference configura-
tion. By introducing a thermal expansion into the reference
configuration Ω∗

0 , we achieve an expected unloaded config-
uration Ω1 with residual stress distributed in the vessel. The
unloaded configuration is slightly different from the desired
configuration of Ω1 due to practical and numerical errors;
therefore, we denote it as Ω ′

1. The corresponding discrete
points represented in the model are also labeled as x′ instead
of x.

For a simple illustration of the method, a straight blood
vessel is used and treated as a cylindrical tube with known
opening angles. The analytical evaluation of the residual
strain is briefly introduced as follows.

Taking the stress-free state in Fig. 1a as the reference con-
figuration, X ∈ (R,Θ, Z), the deformation gradient tensor
F for x ∈ (ρ, ϑ, ζ ) is formulated in cylindrical coordinates
as

F(X) = ∂x(X)

∂X
=
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Fig. 1 a The release of residual stress is illustrated by cutting a blood
vessel in an unloaded configuration Ω1 along a radial direction (as
shown by the dashed line), which results in an opened-up sector in
the stress-free configuration Ω0 with an opening angle Φ0, where
Θ0 = π−Φ0/2. b The generation of a blood vessel in an unloaded
configuration Ω ′

1 with residual stress from a zero-stress blood vessel in
a virtual configuration Ω∗

0 through a thermal expansion process

where ρ = ρ(R), ϑ = πΘ/Θ0 and ζ = ΛZ . Λ is the axial
stretch ratio, which is often assumed as Λ = 1 for plane
strain [6]. The circumferential stretch ratio is evaluated as
λϑ = π ρ/(Θ0R), and the circumferential residual strains
εϑ i and εϑo (with the subscripts “i” and “o” denote the inner
and outer walls, respectively) are written as

εϑ i = π ρi/(Θ0Ri) − 1, (2)

εϑo = π ρo/(Θ0Ro) − 1. (3)

Incompressibility of blood vessels requires det F = 1, so
Eq. (1) leads to

∂ρ/∂R = Θ0R/(π ρ). (4)

The integration of Eq. (4), i.e.
∫ ρo
ρi

ρdρ = ∫ Ro
Ri

Θ0R
π dR,

yields

ρ2
o − ρ2

i = Θ0(R
2
o − R2

i )/π . (5)

Following Holzapfel et al. [16], neglecting the variation
of the thickness of the vessel wall from the stress-free state
to the unloaded state, the inner and outer radii satisfy

ρo − ρi = Ro − Ri. (6)

By solvingEqs. (5) and (6) forρi,ρo with givengeometries
of the vessel Ri, Ro, and Φ0, the inner and outer circumfer-
ential residual strains εϑ i and εϑo are obtained from Eqs. (2)
and (3).

For a single-layer vessel model, we assume that εϑ varies
linearly across the wall thickness

εϑ(ρ) = εϑ i + ρ − ρi

ρo − ρi
(εϑo − εϑ i). (7)

For a multi-layer vessel model, a different linear distri-
bution of the strain can be applied within each single layer
similarly as Eq. (7).

By performing a thermal expansion process, the circum-
ferential residual strain is mapped onto the unloaded vessel
started from a virtual stress-free vessel, as illustrated in Fig.
1b. With the small deformation assumption for the expan-
sion process, the virtual geometry is set to be the same as the
unloaded geometry with negligible errors, i.e. ρ∗ ≈ ρ. The
circumferential residual strain εϑ in Eq. (7) is formulated as

εϑ(ρ∗) = −αT (ρ∗), (8)

and

T (ρ∗) = − 1

α

[
εϑ i + ρ∗ − ρ∗

i

ρ∗
o − ρ∗

i
(εϑo − εϑ i)

]
. (9)

here, ρ∗ is the radial distance in the virtual stress-free config-
uration; T (ρ∗) in Eqs. (8) and (9) is the target temperature
difference, which also varies linearly as a function of the
radial distance ρ∗; α is the artificial thermal expansion coef-
ficient of the vessel which pairs with T to satisfy the
circumferential residual strain εϑ(ρ∗) as Eq. (8). By defining
a proper temperature difference T (x∗) in its virtual con-
figuration Ω∗

0 , the thermal strain field ε(x′) in the unloaded
configuration Ω ′

1 is ensured to reproduce the residual strain
field ε(x). Once the residual strain is properly reproduced,
further loading can be applied to obtain in vivo stress distri-
butions in the vessel.

2.2 Practical procedure for rebuilding in vivo stress
distributions in finite elements

In practice, the in vivo stress of a blood vessel using the
thermal expansion method is estimated with finite elements
in five steps:

(1) Generate a discretizedmesh for the virtual or a stress-free
reference configuration Ω∗

0 . The two ends of the ves-
sel are fixed in both circumferential and axial directions,
but are allowed to expand freely in the radial direction.
Keep these boundary conditions throughout the proce-
dures unless specified otherwise.
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Table 1 Blood vessels used in the present work with the reference geometries and constitutive relations

Vessel model ρ∗
i (mm) ρ∗

o (mm) Opening angle λz Constitutive relation Reference vessel type

Single-layer 3.1 4 Φ0 = 100◦ 1.1 Nonlinear isotropic [16,21] Human carotid

Two-layer 1.725 2.527 Φ0M = 160◦, Φ0A = 120◦ 1.1 Nonlinear anisotropic [8] Human coronary

Two-layer 0.71 1.10 Φ0M = 160◦, Φ0A = 160◦ 1.7 Nonlinear anisotropic [16] Rabbit carotid

ρ∗
i and ρ∗

o are the inner and outer radii in virtual configuration; The subscripts “M” and “A” denote the media and adventitia layers, respectively;
λz is the axial stretch ratio in loaded configuration

(2) Evaluate residual strains analytically at the inner and
outer walls using Eqs. (2) and (3). Choose an artificial
thermal expansion parameter for the vessel and obtain
temperature differences for all discrete nodal points using
Eq. (9).

(3) Apply the temperature difference onto each node in the
virtual configuration Ω∗

0 . Thermal strains on all nodal
points are updated to unloaded stateΩ ′

1 gradually through
the thermal expansion of the materials as Eq. (8).

(4) Apply a uniform axial extension to represent a physio-
logical loading by replacing the axial constraints for the
nodes on one end with a specific axial stretch displace-
ment Uz = Lλz , where λz is the axial stretch ratio, L is
the axial length of the model in the unloaded state.

(5) Apply an internal pressure as a blood pressure to the inner
wall of the vessel.

For vessels with more complicated geometries such as
stenosed vessels, the present method is also accessible with
proper assumptions. Pathology studies show that the for-
mation of a plaque at the inner wall mainly results from
the accumulation of fatty substances, calcium and metabolic
waste of cells beneath epithelial cells [17,18]. During the
growth of the plaque, a stress distribution in the plaque
appears as well. Based on the continuum mechanics, the
variation of mechanical stress should be continuous across
the stenosed wall from the inner wall of the vessel where
the plaque starts growing. Therefore, we assume the stress
of the plaque is consistent with its substrate of the inner
wall at the interface between the plaque and vessel, and
the stress inside plaque decreases gradually towards the
surface to blood streams. In order to simulate the in vivo
stress distribution in a stenosed vessel, we attached a plaque
onto the inner wall of a straight tube geometrically and
set boundary conditions for the two ends of the tube as
described in step 1. According to steps 2 and 3, we calcu-
lated the temperature differences for the straight tube with
known opening angles, and applied them on correspond-
ing nodal points. While doing so, the same temperature
difference as in the inner wall was added into the plaque.
Through a thermal expansion process, we obtained a pre-
stressed stenosed vessel. Finally, following steps 4 and 5,
we rebuilt the in vivo stress of the stenosed vessel under
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Fig. 2 a Discretized meshes of blood vessels at virtual state. b An
illustration of a model with a preset radial cut, which is used to simulate
the opening-up process. BCDE is the surface on which the constraints
are adopted to eliminate the rigid body motion, and FGHI presents a
radial cut which detaches the mesh to release the residual stress during
the opening-up process

physiological loading conditions. The plaques often con-
sist of different components [19,20], and stress distributions
inside plaques are often non-uniform. In the present study,
for demonstrating the proposed method, we adopted homo-
geneous assumptions for the plaque for simplicity. If the
detailed stress concentrations of the plaque are of interest,
the detailed material properties of the plaque are required,
and more complicated contact conditions need to be intro-
duced.

Similarly, this approach is also applicable for vessels with
bifurcations. In such cases, separate thermal expansion is
necessary to form the residual stress of each branch, and har-
monic average can be used for the joint parts of two branches.
Vessels with bifurcations will be included in our future stud-
ies.
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Fig. 3 The distributions of the circumferential residual stress across the wall (a,b), the opening angles and remaining von Mises stresses at the
opened-up states (c,d). a For the single-layer model with reference opening angle Φ0 = 100◦. b For the two-layer model with reference opening
angles Φ0M = 160◦ and Φ0A = 120◦ for media layer and adventitia layer, respectively. The shadows show the unloaded states of the vessels as
reference configurations to the opened-up configurations. Dashed line and dash-dotted line stand for the reference results, and discretized symbols
(squares, star, and triangles) for the numerical results

3 Verification and error analysis

A thorough verification of the proposed thermal expansion
method in reproducing accurate residual stress is done in this
study. Three general types of blood vessels, single and multi-
layer vessels, are referred to in the literature. They are human
carotid artery [16,21], human coronary artery [8] and rabbit
carotid artery [16]. Table 1 lists the corresponding geomet-
rical data and material models.

For a single-layer vessel model of human carotid arteries,
the constitutive relation proposed by Demiray [21] is used as
Eq. (10), which presents the stiffening effects of vessels with
the increase of blood pressure.

W = a

b

{
exp

[
b

2

(
Ī1 − 3

)] − 1

}
, (10)

Table 2 Error analysis on volume change

Vessel model ρ∗
i (mm) ρ∗

o (mm) ρ′
i (mm) ρ′

o(mm) V /V

Single-layer 3.1 4 3.1099 4.0093 0.204%

Two-layer 1.725 2.527 1.7327 2.5329 0.095%

ρ′
i and ρ′

o are the numerical radii in unloaded configuration. V /V is
the ratio of volume change after the expansion process

in which Ī1 is the first invariant of the modified left Cauchy–

Green tensor b̄ = F̄ F̄
T
,where the deformation gradient F =(

J 1/3 I
)
F̄ = J 1/3 F̄ and J = det F. Following Holzapfel et

al. [16], the parameters in this study are set as a = 44.2 kPa
and b = 16.7.

Both the human coronary artery and the rabbit carotid
artery are modeled as two-layer vessels, which consider the
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media and adventitia layers with the media layer taking 2/3
of the wall thickness [8,16]. The constitutive relation pro-
posed by Holzapfel et al. [16] is adopted as Eq. (11). Here
the distortional free-energy functionsWM andWA to charac-
terize the mechanical behaviors of the media and adventitia,
respectively, are adopted

W = WM + WA, (11)

where

WM = μM

2
( Ī1 − 3)

+ k1M
2k2M

∑
i=4,6

{
exp

[
k2M

(
ĪiM − 1

)2] − 1
}
,

WA = μA

2
( Ī1 − 3)

+ k1A
2k2A

∑
i=4,6

{
exp

[
k2A

(
ĪiA − 1

)2] − 1
}
.

FollowingGasser et al. [8], we adopt the following param-
eters for the human coronary artery as μM = 27 kPa,
k1M = 0.64 kPa, k2M = 3.54, βM = 10◦ for the media,
and μA = 2.7 kPa, k1A = 5.1 kPa, k2A = 15.4, βA = 40◦
for the adventitia. The parameters used for the rabbit carotid
artery refer to Holzapfel et al. [16], as μM = 3 kPa, k1M =
2.3632 kPa, k2M = 0.8393, βM = 29◦ for the media, and
μA = 0.3 kPa, k1A = 0.562 kPa, k2A = 0.7112, βA = 62◦
for the adventitia.

Table 3 The classification of blood pressure for adults

Category Mean
systolic
Ps(mmHg)

Mean
diastolic
Pd(mmHg)

Mean
pressure
P(mmHg)

Normal 106.0 69.5 81.7

High normal
(prehypertension)

129.5 84.5 99.5

Stage 1 hypertension 149.5 94.5 112.8

Stage 2 hypertension 169.5 104.5 126.2

Stage 3 hypertension
(hypertensive
emergency)

180.0 110.0 133.3

1 mmHg = 1.33 kPa

3.1 Error in residual stress for single andmultiple
layer models

First, the errors of rebuilt residual stress and opening
angles are analyzed with different materials using single-
layer or multi-layer blood vessel models. Circumferen-
tial residual stress and achieved opening angles after the
release of residual stress are compared with referenced
results.

Blood vessels are discretized as illustrated in Fig. 2a. For
multi-layer vessel models in this study, we assumed that
the interface of two layers are bonded together and the dis-
placements for both layers at the interface are identical. To
simulate the opening-up process, two separate sets of nodes
presenting as FGHI surface are created, as shown in Fig. 2b,
which works as a preset radial cut along the surface FGHI
in blood vessels. Node D is constrained in all directions to
eliminate rigid body motion, all nodes on surface BCDE are
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constrained in the circumferential direction, and node C is
constrained in the radial direction to prevent out-of-plane
rotation.

Figure 3 shows the numerical results of the predicted cir-
cumferential residual stress for the single-layer (Fig. 3a) and
two-layer (Fig. 3b) vessels. The result in Fig. 3a is com-
pared to the semi-analytical solution by solving the boundary
value problems based on continuum mechanics [4], and the
result for the two-layer model in Fig. 3b is compared to the
numerical results from Gasser et al. [8]. Differences in the
circumferential stress appear. We believe that this is due to
the assumption of isotropic expansion adopted in the thermal
approach, with which redundant axial expansion associated
with the circumferential expansion was introduced simulta-
neously. An anisotropic expansion can also be introduced
by solving the stress equilibrium equations under thermal-
mechanical stress coupling, inwhich the principal strains and
local temperature differences need to be formulated interac-
tively as discussed in Lubarda [22]. However, this generated
error of the overall volume change is negligible, as will be
discussed later.

The relative error between the given reference opening
angle Φ0 and the opening angle obtained numerically Φ1, is
evaluated as ξ = (Φ1 − Φ0)/Φ0. For the single-layer model,
the error of the simulated opening angle is 0.21%; for the two-
layer model, the error is 0.02% for the media, and 1.45% for
the adventitia, respectively.

Table 2 shows the differences of inner and outer radii
between the reference and numerical results in the unloaded
configuration. The error in relative volume change V /V
is found to be small enough to satisfy the volume conserva-
tion.

3.2 Error variation with various reference opening
angles

An error sensitivity of the present method to various refer-
ence opening angles from 20◦ to 340◦ is examined. Figure 4a
shows that the relative error of opening angle are less than
1% and 6% for the single-layer and two-layer models,
respectively. The residual stress is almost released and the
remaining stress ratios for the single-layer and two-layer
models are less than 4.0% and 6.3%, as shown in Fig. 4b.
The error analysis of the opening-up process indicates that
the thermal expansion method could ensure the accuracy of
the residual stress rebuilt in blood vessels for a large range
of reference opening angles. The experiments by Holzapfel
et al. [23] confirmed that an unloaded blood vessel may
not release all of the residual stress even it is cut radially
and springs open. Nevertheless, the opened-up vessel likely
releases most of it [6].
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the present numerical results and the reference results in Ref. [16]. a
Single-layer, human carotid. b Two-layer, rabbit carotid. The results
with residual stress are labeled as “w/ RS”, and those without residual
stress are labeled as “w/o RS”

3.3 Validation of the pressure-radius relations

The pressure-radius responding curves with or without the
presence of residual stress for the single-layer (Fig. 5a) and
two-layer (Fig. 5b) models are compared with results in Ref.
[16]. The hyperelastic deformations predicted in the present
work agree well with the reference results.

As illustrated by these verification studies, the proposed
thermal expansion method is able to apply the residual strain
field onto a blood vessel with various given opening angles.
Rather than “stitching” the open ends back to a tubular
shape numerically as the opening angle method, the pro-
posed method avoids dealing with the large deformation
associated with the folding process and eliminates the non-
physical discontinuities of stress distribution acquired by
co-localizations in meshes. Instead of managing the residual

123



A prediction of in vivo mechanical stresses in blood vessels using thermal expansion method... 1163

80 100 120 140

40

80

120

160

C
irc

um
fe

re
nt

ia
l s

tre
ss

 (k
Pa

)

=20°, Intima
=20°, Media
=20°, Adventitia
=60°, Intima
=60°, Media
=60°, Adventitia
=100°, Intima
=100°, Media
=100°, Adventitia

Mean pressure  (mmHg)

Adventitia

O

Media

Intima

ba

P

*
o

*
i

2* *
i o

Fig. 6 a Single-layer finite element model of a human carotid artery at its virtual state. The intima denotes the inner wall, the media denotes the
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Fig. 7 Stenosed finite element model of a human carotid artery at its
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mesh presents the straight blood vessel, single-layer model, the length
of the vessel L = 40 mm, Φ0 = 100◦, ρ∗
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strain field iteratively by the volumetric tissue growthmethod
[11] or the scheme used in GPA [14], the present method
bypasses the sophisticated iterative process by setting tem-
perature differences explicitly and specifically; therefore, it
can be implemented easily and greatly improve the efficiency
of the numerical calculation.

4 Applications to hypertension and vascular
stenosis

4.1 Mechanical stress in different layers of blood
vessels under hypertensive pressures

According to Ref. [24] as listed in Table 3, blood pressure
is divided into five stages, and each of the stages contains
three characteristic pressures, namely, mean diastolic pres-
sure Pd, mean systolic pressure Ps, and the mean pressure P
determined by P = Pd + (Ps − Pd)/3.

A single-layer finite element model for the human carotid
artery in Table 1 is created for stress analysis. In order to
investigate the effect of the variation of residual stress on
stress distributions in blood vessels, three different reference
opening angles Φ0 = 20◦, 60◦, 100◦ are adopted, respec-
tively, when casting residual stresses into blood vessels using
thermal expansion method. Static blood pressures from nor-
mal to hypertensive emergency are inflated into the blood
vessels thereafter according to Table 3.

Figure 6a shows different radial locations are selected to
represent the intima, media and adventitia layers of blood
vessels respectively. The stresses at these three layers rep-
resent the stress distributions of endothelial cells (ECs),
vascular smooth muscle cells (VSMCs), and cells in tissues
at the outside boundaries of the blood vessels.

The circumferential stresses in the blood vessels are pre-
dicted as shown in Fig. 6b. For all opening angles adopted, an
increase of blood pressure results in an increase of circumfer-
ential stress in each layer. The most obvious increase of the
circumferential stress in blood vessels appears in the intima
layer where ECs locate. While the mean pressure increases
63% (i.e. from 81.7 to 133.3 mmHg), the maximum increase
of the stress in the intima layer varies from101.2% to110.0%.
Although the increase of the circumferential stress for each
layer is enhanced by the increase of opening angle, we find
that when the opening angle increases five times from 20◦ to
100◦, the maximum stress increases in different vessel lay-
ers associated with the blood pressure increase are limited
from 8.75% (for the intima) to 12.3% (for the adventitia),
which indicates that an apparent nonlinear dependence of
the blood inflation induced stress increase on the residual
stress embedded in the vessels. As shown in Fig. 6b, with the
increase of the opening angle Φ0, the circumferential stress
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of the intima decreaseswhile the adventitia increases. Specif-
ically, the stresses of the media layers (labeled as triangles
in Fig. 6b) coincide with each other for all opening angles,
which suggests that the variation of the residual stress has
minor influence on the stress in the media layer.

Figure 6b also shows that under the residual stress when
Φ0 equals 60◦, the circumferential stress has the minimum
amount of variation along the radial direction compared to
the cases of 20◦ and 100◦. This suggests that in order to
ensure homogeneous stress distribution, the opening angle is
a specific value when the blood pressure is given. We know
that when the blood pressure becomes abnormal, the stress-
modulated remodeling of the vascular tissue adjusts the stress
distribution in the blood vessel and the opening angle also
changes [25]. As shown in the present work, optimal resid-
ual stresses maintaining a uniform stress distribution can

be predicted and used for estimating the mechanobiological
variations when the blood pressure alters.

4.2 Variation of mechanical stress around stenosis
during a cardiac cycle

The variations of stress in plaques are studied using the ther-
mal expansion method. Figure 7 shows a discretized mesh of
a stenosed human carotid artery. The plaque is modeled as
neo-Hookean material with the shear modulus μ = 100 kPa
[26]. The length of the vessel wall adopted is ten times of the
outer radius so that the influences from the ends constraints
are negligible. Both plaque and blood vessel are simplified
as ideal geometries with smooth surfaces.

For stenosed vessels, the discontinuity of the mate-
rial property between the plaque and vessel wall often
causes additional elastic shear stress. During a cardiac cycle
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(Fig. 8a), the maximum of elastic shear stress σrθ in the
plaque varies from 30.5 to 53.6 kPa, and the mean value
varies from 2.7 to 5.0 kPa (Fig. 8b). The elastic shear stress
σrθ distribution in the stenosis is shown in Fig. 8c. It is found
that high elastic shear stress σrθ appears on the edge of the
plaque, which forms an arched zone. The maximum elastic
shear stress σmax

rθ is located at the shoulder of the plaque.
Figure 8b, c suggests that both the area of arched zone and
the maximum σmax

rθ experience a periodic fluctuation under
every pulse, which functions as a “tearing effect”. This “tear-
ing effect” may explain the fatigue rupture that appears at the
shoulder of plaques as observed by Li et al. [27] in their clin-
ical studies.

Moreover, the maximum value σmax
rθ increases by 76%

when the blood pressure climbs to 106.0 mmHg (Fig. 8b),
which is about 1.2 times the circumferential stress of intima
of healthy vessels. It indicates that large elastic shear stress
σrθ appears around the plaque for each cardiac cycle, which
supports the use of σrθ as a key index when evaluating the
risk of plaque rupture.

5 Conclusions

In this work, a thermal expansion method was developed for
numerical study of in vivo mechanical stress in blood ves-
sels under healthy and pathological conditions. The results of
present method provide good agreements with the reference
results of the opening-up processes and the pressure-radius
relations. The robust solutions in rebuilding residual stresses
for blood vessels with a large range of reference opening
angles are also presented. It is found that the present method
is easy to apply with the multi-layer model of blood vessels
for various constitutive relations. The developed numerical
procedure based on thermal expansion method is compe-
tent for further in vivo stress prediction of pathological
blood vessels under different physiological conditions. In
addition, numerical results showed that the most obvious
increase of the circumferential stress appears in the intima
layer while pressure increases from normal blood pressure to
severe hypertension, and also suggested that specific resid-
ual stresses ensuring a uniform stress distribution can be
predicted for given blood pressures. Furthermore, a case
study of in vivo stress estimation of a plaque in a ves-
sel during a cardiac cycle supported that the elastic shear
stress around the shoulder could be taken as a key index
when evaluating the rupture risk because of the “tearing
effect”.
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